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Abstract—Industrial robots play crucial roles on machining and 
manufacturing automation. Recently, more and more highly 
repetitive and hazardous jobs have been done by industrial robots. 
However, current automatic machining systems by robots are still 
not flexible and robust enough in the workpiece-loading process. In 
this paper, a dual-arm robotic object-locating system equipped with 
a depth camera is proposed for autonomous workpiece loading to 
improve the flexibility and robustness of the robotic machining 
systems. It can automatically locate the workpiece, and then load it 
by inserting the gripper fingers into the grasping position. Firstly, 
the 6D pose of the in-hand workpiece occluded by the robotic 
gripper is estimated by the proposed marker-based multi-view pose 
estimation method based on the point pair features (PPFs). 
According to the estimated pose, a dual-arm pose is generated for 
locating grasping position of the in-hand workpiece considering the 
orientational constraint, and the dual-arm motion to reach that pose 
is planned online by a sampling-based planning algorithm. However, 
due to some error factors, such as system modeling error and pose 
estimation error, there may be a locating error which leads to 
loading failure. Therefore, an object-locating control strategy is 
developed for compensating the locating error. Illustrative 
experiments are conducted to evaluate the performance of the 
proposed methods and to verify the feasibility of the proposed 
system. Detailed analysis related to the experimental results is 
provided. 

Index Terms—Dual-arm robotic system, manufacturing auto-
mation, motion planning, next-best view planning, object-locating 
control, point pair feature, workpiece loading 

I. INTRODUCTION 

n recent decades, robotics has been widely used to automate 
manufacturing processes not only in the industrial field but 
also in some applications related to the daily life. It can replace 
human operators for highly repetitive and/or hazardous works. 
Moreover, stable robots or machines have the ability to work 
day and night without taking a break compared to human 
beings, which greatly increases productivity. In the industrial 
field, works adopt robotics for automation including welding 
and warehouse management to name a few. When it comes to 
welding, glare and harsh working environment come to mind 
immediately. Working in such environment for a long time may 
cause permanent damage to one’s eyes. Therefore, robotic arms 
have been used to replace operators. They can automatically 
weld certain standardized workpieces by following the 
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predefined trajectories. Then regarding warehouse management, 
in conventional method, labors play an important role in this 
work. They are responsible for classifying incoming cargoes, 
arranging them, preparing items for shipment etc. In general, these 
cargoes are large and heavy for human. Labors are only able to 
deal with few of them at a time. Consequently, most of the present 
warehouse systems use conveyor systems with barcode scanner 
for delivery and classification, and replace human operators with 
robotic arms for manipulating these heavy cargoes. However, 
there are still many issues in robotics related to manufacturing 
automation. In the workpiece-loading process of most of the 
existing systems, it is essential to design a fixture for a specific 
kind of workpiece so that pose of the workpieces can be located, 
then calibrations between surrounding equipment and planning of 
trajectory of the robot arm for loading these workpieces should be 
accomplished in advance. 

In this paper, inspired by the application of robotic arm for 
loading workpieces for CNC machines, the idea that introducing a 
robot arm and a visual sensor into the robotic machining systems 
for automating the workpiece-loading procedure comes up. To 
apply the robot arm for loading workpieces for robotic machining 
systems, a method that solves the transfer of workpieces between 
robots is necessary. Thus, for simplicity, a dual-arm robotic 
system composed of two single-arm manipulators with visual 
sensory feedback is proposed and is used in this paper. It is 
supposed that one of the robot arms is able to conduct random bin 
picking. Therefore, the workpiece is initially held by that robot. In 
the dual-arm robotic system, two robot arms can operate not only 
in a non-coordinated manner, where the arms perform two 
independent tasks, but also in a coordinated manner, where the 
arms perform different parts of the same task with temporary and 
spatial coordination of arm movements [1]. One arm can pick up 
and hold the workpiece independently, and then transfer it to the 
other arm for machining by using the sensory information to plan 
and control. The main contributions provided in this work lie in 
the improvements of robustness and flexibility of the loading 
process in the original robotic machining system. In addition, 
some time-consuming preparatory works and costs for additional 
mechanisms will be saved when loading workpieces for robotic 
machining. In terms of the robustness of system, the proposed 
system can make use of the acquired visual 
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information to sense the surrounding changes and to estimate the 
pose of incoming workpiece which is grasped by one of the robot 
arms. Consequently, the limitation on the predetermined 
situations is eased. Considering the flexibility of system, the 
proposed system can plan and execute a feasible single-/dual-
arm motion online based on the estimated in-hand object pose. 
The motion of robot arms is no longer constrained by the 
trajectories which are predefined manually by human workers. 

The rest of the paper is organized as follows. Literature survey 
is discussed in Section II. Section III formulates the problem 
studied in this paper. Sections IV presents the proposed methods 
and approaches. Section V describes the experimental results 
and analysis to evaluate the method for autonomous workpiece 
loading.  Section VI concludes this paper. 

II.LITERATURE SURVEY 

In consequence of the advantages of low cost, high flexibility, 
and multi-functionality, industrial manipulators have been 
adopted for industrial automation and robotic machining over 
the past few decades [2]. With increasing research interest in 
these applications, there are more and more related research 
works regarding the robotic manufacturing. Moreover, due to 
recent advances in both anthropomorphic robots and bimanual 
industrial manipulators [1], the use of dual-/multi-arm robotic 
system for manufacturing has attracted a large deal of interest. 
In this section, research works related to dual-/multi-arm robot 
for manufacturing are reviewed and are classified into four 
categories including peg in hole [3]-[8], pick and place [9]-[14], 
additive manufacturing [15]-[18], and subtractive 
manufacturing [19]-[23]. 

For dual-/multi-arm peg-in-hole assembly, motion 
planning and control strategy are two core issues. In[3] and [4], 
both motion planning strategies for generating grasps and 
motions of a dual-arm robot and control strategies for 
compensating the misalignment errors between peg and hole are 
presented. They both use visual sensor to locate the objects and 
then plan grasps and motions based on objects’ CAD model. 
Compliant control is used in [3], but PID control in [4]. In [5]
and [7], motion planning problem is focused. Pose constraints of 
objects and robot and gravitational constraints are taken into 
account when planning in [5]. Manipulability Metric is 
optimized in [7]. In [6] and [8], control strategy for revising the 
reference trajectory to complete the peg-in-hole task is 
concentrated on. Hybrid force/position control scheme is 
adopted in [6], while a sparse kinematic control strategy that 
minimizes the number of joints actuated for a coordinated task 
between two arms is proposed in [8].  

In pick-and-place task, some originally unachievable task 
requirements by a single robot arm due to limitation of robot 
workspace can be done now through object exchange between 
two or multiple robots. Thus, motion planning for regrapsing 
and object exchange is one of the core issues and is discussed in 
[9], [11], [12], and [14]. Furthermore, when both the start goal 
configurations of the objects can be reached by all robots in the 
system, scheduling and dispatching is also an important issue. In 
[10], part-dispatching rules are proposed to improve the 
productivity. In [13], a scheduling component which coordinates 
manipulation actions between two robot arms to minimize 
execution time is presented. 

For additive and subtractive manufacturing, owing to 
additional and redundant degrees of freedom, the system can 
process more complex surface shape of workpiece by dual-
/multi-arm cooperation. To operate in a coordinated manner, 
motion planning and control strategy for coordination are two 
main issues. In [15], an object-oriented hierarchical planning 
control strategy as well as a new symmetrical internal and 
external adaptive variable impedance control are proposed. In 
[16], [18], [19], and [20], there are various motion planning 
approaches proposed for dual-/multi-arm robotic system, such 
as an approach based on the closed kinematic chain model [16], 
an approach considering resource allocation [18], a path-
constrained approach for synchronous motion by appropriately 
parameterizing the configuration variables [19], and an 
optimization method that minimizes the system compliance 
factor to reduce machining torques and deflection of tool [20]. 
In addition to motion planning and control issues, there are also 
a few works discussing calibration between robots’ base 
coordinate frame and scheduling of the robotic system. In [17], 
a three-point calibration method of two robots’ relative base 
coordinate system as well as a motion planning method based on 
non-master/slave scheme is presented. In [21], a non-contact 
calibration method depending on binocular vision is proposed 
for Multi-robot coordination grinding system. For scheduling 
issue, an efficient method balancing the workload of the robots 
and ensuring collision-free scheduling is presented in [22], and 
a method for energy consumption optimization by embedding 
evaluations of robots’ energy consumptions into a scheduling 
model is presented in [23]. 

In summary, adoption of dual-/multi-arm robotic system for 
manufacturing can expand workspace of the whole system, 
improve flexibility, speed up process, etc. To achieve these 
benefits, there are corresponding issues should be tackled. It can 
be concluded that most works address motion planning problem 
for dual-/multi-arm robotic system. Control issue is discussed 
when the system is required to operate in a coordinated manner 
or the arms are physically interacting with one another. 
Calibration problem is mostly considered when the arms are not 
connected with each other by any mechanism, i.e., the 
relationship between base coordinate frames cannot be derived 
from CAD model. Then scheduling issue is faced when source 
conflicts exist. In this paper, a dual-arm robotic system for 
manipulating and loading workpieces in a coordinated manner 
is proposed. There are no additional mechanisms used to connect 
them. Therefore, motion planning and control issue, as well as 
calibration problem should all be considered, which increases 
the difficulty. The way that the workpiece is loaded is by 
inserting the gripper fingers into grasping position of the 
workpiece, which is similar to the peg-in-hole assembly. Similar 
works include [3], [4], and [6]. Compared to [3], both consider 
motion planning problem, but the proposed system does not 
require expensive F/T sensors to implement the control strategy. 
Compared to [4], both use vision-based control, but the proposed 
system considers not only positional but also orientational 
locating error. Compared to [6], the proposed system does not 
rely on collaborative robots. 

III. PROBLEM FORMULATION 

The robots involved in the workpiece-loading process have 
different functions including picking, sensing, and machining. 
The robot with picking function picks the workpiece and tranfer 
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it to the robot with maching function. During the process, the 
robot with sensing function provides useful information. 
However, considering space and cost, one of the robot has both 
sensing and machining function in the proposed system. The 
proposed dual-arm robotic system is composed of two industrial 
manipulators which have an overlapping workspace. Each 
industrial manipulator has its independent robot controller in 
Windows operating system. Available measurements include 
joint states of the dual-arm robot from encoders of joint motors, 
and rich visual information, such as RGB images, depth images, 
and point cloud data, provided by a RealSense D415 RGB-D 
camera mounted on one of the robot arms in eye-in-hand 
configuration. The reason why the eye-in-hand configuration is 
adopted is because it can make use of degrees of freedom of the 
robot to sense the environment and is more flexible. 

To implement the workpiece-loading task on the proposed 
dual-arm robotic system, challenges include pose estimation of 
the target workpiece which is grasped and is partially occluded 
by robotic gripper, online planning of collision-free and feasible 
dual-arm motion for locating grasping position and satisfying 
orientational constraint, and control strategy design to 
compensate the object-locating error in order for loading the 
workpiece successfully. An illustration of the formulated 
problem tackled is shown in Figure 1. 

A. In-hand Object Pose Estimation 

To locate grasping position of the target workpiece, current 
pose of the target workpiece must be estimated. In the case faced 
in this paper, the object has already been held by one of the robot 
arms, which belongs to the post-grasp case. In the pose-grasp 
case, in-hand object is often significantly occluded by robotic 
gripper, which decreases the number of visual data belongs to 
the target object acquired from a single view. Moreover, it is 
hard to distinguish the target object from the gripper by the 
received visual information when they look similar. Hence, in-
hand object pose estimation remains challenging. In this paper, 
a marker-based multi-view object pose estimation algorithm is 
implemented to tackle this challenging problem. 

B. Dual-arm Motion Planning 

Considering motion planning for robotic manipulation, a 
desirable property is the ability to identify usable solutions 
quickly. In dual-/multi-arm system, the number of degrees of 
freedom is increased. Although more complex and dexterous 
manipulation tasks can be performed, the configuration space of 
these platforms is high-dimensional, which will increase the 
computational loads. In addition to the requirement to plan over 
such high-dimensional configuration spaces, the motion planner 
also has to perform computationally expensive collision 
checking procedures, and to take task objectives into account. 
Thus, quickly providing feasible plans for the manipulation 
problem in dual-arm system is challenging. 

C.Object-locating Control Strategy Design 

The dual-arm robotic system consists of two independent 
industrial manipulators which have their own platforms and are 
not connected by any mechanisms. The transformation between 
base frames of the robots has to be obtained by conducting 
calibration manually, which is inevitable that there will be 
calibration errors. In consequence, the object is usually not 
located well because planning of the robot poses used for 
locating object involves this transformation, not to mention that 
the robotic system also contains other potential error factors such 

as estimation error of the object pose. Thus, an object-locating 
control strategy should be developed and used to decrease the 
error so that the workpiece can be loaded successfully. 

In Figure 2, the primary coordinate systems are shown with 
their notations. Frame {𝐵𝐿} and {𝐵𝑅} are the base frames of the 
left arm and the right arm, respectively. Here, the base frame of 
the left arm is looked upon as the world frame of the whole 
system. All data represented in the local reference frames are 
usually transformed into the world frame before other processes 
such as motion planning. Frame {𝐹𝐿}  and {𝐹𝑅}  represent the 
flange frames of the left arm and right arm, respectively. Frame 
{𝐶} denotes the camera coordinate system. In addition, frame 
{𝐺𝑅} is the gripper frame of the right arm, which is extended 
from frame {𝐹𝑅}. The relation between frame {𝐺𝑅} and {𝐹𝑅} is 
determined directly by 3D CAD models of the gripper and the 
adapter. Finally, frame {O} is the workpiece frame. The pose 
estimation result is exactly the transformation between the 
workpiece frame and the world frame. 

IV. OBJECT POSE ESTIMATION AND OBJECT LOCATING 

In Figure 3, an overview of the proposed method is shown. 
There are two main portions: pose estimation for in-hand 
workpiece (blue block) and dual-arm object locating (red block). 
Pose of the in-hand workpiece is estimated by the proposed 
marker-based multi-view pose estimation method. After that, 

the estimated pose of the in-hand workpiece 𝑻𝑶
𝑩𝑳  will then be 

Figure 1. Schematic diagram of the formulated problem. 
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the input of the dual-arm object locating to locate the workpiece. 
These two portions are introduced in the following two 
subsections, respectively. 

A. Marker-based Multi-view Pose Estimation 

The dual-arm robot firstly moves to a predefined initial pose 
to make the camera which is installed on one of the robot arms 
perceive the marker which is attached to the other one near the 
target object. The marker called ArUco marker is a synthetic 
square marker composed by a wide black border and an inner 
binary matrix which determines its identifier. In this way, 
position of the marker 𝒑𝑷𝑶𝑰 can be estimated and will be used 
for the following next-best view planning and point cloud 
segmentation. After that, the method enters the active vision 
loop composed of scene updating, next-best view planning, and 
motion planning to acquire visual data from multiple views. In 
the active vision loop, only the robot with visual sensor will 
move. In the scene updating stage, the perceived point cloud 
from the current view is briefly segmented according to the 
position of the marker by  

{

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑚𝑎𝑥

𝑦
𝑚𝑖𝑛

≤ 𝑦
𝑖
≤ 𝑦

𝑚𝑎𝑥

𝑧𝑚𝑖𝑛 ≤ 𝑧𝑖 ≤ 𝑧𝑚𝑎𝑥

, (1) 

where 𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥 , 𝑧𝑚𝑖𝑛 , and 𝑧𝑚𝑎𝑥  are user-
defined parameters according to the prior knowledge of the 
hardware setup and 𝒑𝑷𝑶𝑰 , and these parameters define a 3-
dimensional bounding box. Points with coordinates that 
satisfies (1) will be kept otherwise filtered out. After that, it is 
sent to the octomap server to update the occupancy map [24]
and surface normals of points received from the current view 
are estimated before being fused together with point clouds 
from other views. In the next-best view planning stage, the 
position of the marker and the occupancy map are taken as 
inputs to plan the next-best viewpoint. The proposed marker-
based next-best view planning strategy contains three steps, 
sampling of candidate views, making evaluations, and selecting 
the next-best view. 

1) Generation of Candidate Views 
In order to parameterize the generation of candidate views 

such that the generation can be easily tunable as well as to 
particularly make the sensor concentrate on a certain area, a 
spherical coordinate system is introduced as shown in Figure 4. 
Position of the marker 𝒑𝑷𝑶𝑰 obtained by estimating pose of the 
marker is taken as the input, is viewed as the point of interest, 
and is served as the origin of sphere. Position of each candidate 
view 𝒑𝒓𝒂𝒚𝒐 can then be parameterized as  

𝒑𝒓𝒂𝒚𝒐 = [
𝑟 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜑
𝑟 𝑠𝑖𝑛 𝜃 𝑠𝑖𝑛 𝜑

𝑟 𝑐𝑜𝑠 𝜃

], (2) 

where 𝑟 is the Euclidean distance from 𝒑𝑷𝑶𝑰 to 𝒑𝒓𝒂𝒚𝒐, 𝜃 is the 

polar angle between the zenith direction and the line segment 
𝒑𝑷𝑶𝑰𝒑𝒓𝒂𝒚𝒐 , and 𝜑 is the azimuthal angle measured from the 

azimuth reference direction to the orthogonal projection of the 
line segment 𝒑𝑷𝑶𝑰𝒑𝒓𝒂𝒚𝒐 on the reference plane. For sampling 

orientation of each candidate view, the unit vector in the 
direction of increasing polar angle 𝒆𝜽 is used, which is defined 
as 

𝒆𝜽 = [
𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜑
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛 𝜑

−𝑠𝑖𝑛 𝜃

]. (3) 

The unit vector in 𝑧 direction of the candidate views is given by 

𝒖𝒛 =
𝒑𝑷𝑶𝑰 − 𝒑𝒓𝒂𝒚𝒐

‖𝒑𝑷𝑶𝑰 − 𝒑𝒓𝒂𝒚𝒐‖
. (4) 

Then 𝒆𝜽  is rotated around 𝒖𝒛  by an rotation angle 𝛼  for 
different orientations at the same position: 

𝒆𝜽,𝒓𝒐𝒕 = 𝐴𝑛𝑔𝑙𝑒𝐴𝑥𝑖𝑠(𝛼, 𝒖𝒛)𝒆𝜽

= (cos𝛼)𝒆𝜽 + (sin 𝛼)(𝒖𝒛 × 𝒆𝜽) + (1
− cos 𝛼)(𝒖𝒛 × 𝒆𝜽)𝒖𝒛. 

(5) 

After that, the unit vectors in 𝑥 and 𝑦 direction of the candidate 
views are computed as 

Figure 3. An overview of the proposed method. 
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𝒖𝒙 =
𝒆𝜽, 𝒓𝒐𝒕 − (𝒆𝜽, 𝒓𝒐𝒕 ∙ 𝒖𝒛)𝒖𝒛

‖𝒆𝜽, 𝒓𝒐𝒕 − (𝒆𝜽, 𝒓𝒐𝒕 ∙ 𝒖𝒛)𝒖𝒛‖
, (6) 

𝒖𝒚 =
𝒖𝒛 × 𝒖𝒙

‖𝒖𝒛 × 𝒖𝒙‖
. (7) 

Therefore, the candidate views can be represented as 

 = [
𝒖𝒙 𝒖𝒚 𝒖𝒛 𝒑𝒓𝒂𝒚𝒐

   1
].  (8) 

The tunable parameters include radius 𝑟 , polar angle 𝜃 , 
azimuthal angle 𝜑, and rotation angle 𝛼. By approiately setting 
these parameters, the generation of candidate views can be done. 

2) Simulation of Visual Perception 
After generation of the candidate views, next step is to 

perform simulation of visual perception on each candidate view 
and to estimate the amount of information can be received from 
each candidate view. In this strategy, a ray-tracing simulation is 
conducted with the occupancy map as input which is 
represented by Octomap [24]. Ray-tracing simulation casts 
multiple rays in field of view of the camera in a discretized way 
from the origin of each candidate view (see Figure 5). These 
rays may intersect the occupancy map with some voxels. 
Centers of the intersected voxels as well as their logits of 
occupancy probability are extracted as points and represent the 
amount of information perceived from the candidate view. The 
intersected points are either unknown or occupied according to 
their logits of occupancy probability 𝐼. For each point 𝒑 , if its 
absolute value of 𝐼𝑖  is within a threshold 𝜀    , it is unknown; 
Otherwise, it is occupied. 

Type of point 𝒑 = {
Unknown, if |𝐼𝑖| < 𝜀    

Occupied, otherwise
.  (9) 

3) Selection of Next-best View 
To choose the next-best viewpoint from the candidate views, 

an evaluation metric is necessary to judge them. Here, the 
metric used is designed by the concept of information gain. First, 
each type of point is assigned a weight. Then, the candidate 
views are evaluated by summation of weights of all the 
perceived points. More specifically, for a candidate view   , its 
metric value 𝐺𝑖 is defined as 

𝐺𝑖 = ∑ {
1, if 𝒑  is unknown

− .2, otherwise
𝒑  visible from   

.  
(10) 

The one reachable and with larger metric value G is chosen as 
the next-best viewpoint. If the termination condition is not 
satisfied, motion planning is executed to find a trajectory for the 
robot arm which has the camera reach the feasible next-best 
view to scan the scene. The termination condition in this work 
is the number of next-best views used to acquire information. If 
the number of next-best views used exceeds a threshold, the 
active vision loop ends. 

After ending the active vision loop for acquiring visual 
information from multiple views, the interested point cloud 
which may belong to the target object and is used for 6D object 
pose estimation is segmented with the help of the pose of the 
marker by (1). In this paper, the point pair feature (PPF) 
proposed by [25] is used to register 3D CAD model of the object 
to the object point cloud for obtaining object pose. For the sake 
of efficiency, the method extracts PPFs of the object model and 

constructs a hash map offline for online estimating process. In 
the online matching process, sets of 4-point co-planar bases are 
sampled on the object's point cloud segment ( 𝑂 ), and the 
congruent sets are searched on the model’s point cloud ( 𝑀) to 
generate object pose hypotheses with the help of the hash map 
(Figure 6). After getting the pose hypotheses, post-processing 
techniques including pose clustering and iterative closest point 
are applied on the hypothesis set to generate the final estimation 

result 𝑻𝑶
𝑩𝑳 . 

B. Dual-arm Object Locating 

After finishing the proposed marker-based multi-view pose 

estimation, pose of the in-hand workpiece 𝑻𝑶
𝑩𝑳  is estimated and 

is then taken as the input to generate a dual-arm pose for 
locating grasping position of the workpiece. The dual-arm pose 
is generated through retrieving from the corresponding pose of 
the workpiece which is gripped. In other words, a workpiece 

pose 𝑻 𝒐 𝑶
𝑩𝑳  will be sampled first in the shared workspace. After 

that, by considering the estimated relationship 𝑻𝑶
 𝑳  and the 

loading constraint 𝑻𝑶
   between the workpiece and the flanges, 

a set of robot poses ( 𝑻 𝑳

𝑩𝑳 , 𝑻  

𝑩𝑳 ) is retrieved as follows: 

𝑻 𝑳

𝑩𝑳 = 𝑻 𝒐 𝑶

𝑩𝑳 𝑻𝑶

 𝑳
− 

 

𝑻
𝑩𝑳 = 𝑻 𝒐 𝑶

𝑩𝑳 (𝑻 𝑻𝑶

  )
− 

, 
(11) 

where 𝑻  is the compensation matrix which is initially an 
identity matrix and is introduced later. If both robot poses are 
IK-feasible and achievable checked by RRT-Connect algorithm 
[26], both robots will move to the retrieved dual-arm pose to 

Figure 5. A schematic diagram of ray-tracing simulation. 

Origin of the 
candidate view

hit

miss

Figure 6. Matching bases between the object's point cloud segment and the 

model’s point cloud. 
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initially locate the object and the procedure moves on to the 
object-locating control loop. Otherwise, it will turn back to 
sample a new workpiece pose and retrieve a new set of robot 
poses. 

The concept of this object-locating control strategy is to 
maintain a matrix 𝑻  which estimates the current deviation 
from the ideal pose, and then use it to adjust the pose of the 
robot with visual sensor for compensation by using (11) to 
retrieve it again. Block diagram of object-locating control 
strategy is shown in Figure 7. At the beginning, 𝑻  is initialized 
to an identity matrix. In each round, after the robot with visual 
sensor moves to the retrieved pose, 𝑻  is updated by making 
use of the point cloud data generated from the depth camera. 
First, points belong to the workpiece among the captured point 
cloud are segmented by a color-based algorithm, and are 
transformed into the frame {𝐹𝑅} . With the points of the 
workpiece 𝑷 , 𝑻  can then be obtained by using the ICP 
algorithm [27], a local registration algorithm, to align these 
points to the workpiece model which is transformed by the 

loading constraint 𝑻𝑶
  . The robots will continually adjust their 

end-effector’s poses by using and updating 𝑻  until 𝑻  is close 
enough to the identity matrix as shown in Figure 3, which 

means the adjustment is small enough and the constraint 𝑻𝑶
   is 

considered to be satisfied. The conditions used to determine the 
similarity between 𝑻  and the identity matrix are designed as 
follows: 

{
 
 

 
 

|𝛼| < 1. °
|𝛽| < 1. °
|𝛾| < 1. °

𝛿 = ∑
1

𝑁
‖𝒑 − 𝑻 𝒑 ‖

𝒑 ∈𝑷 

< 5 × 1  3

,  (12) 

where 𝛼, 𝛽, and 𝛾 are Euler angles of the rotational part of 𝑻 , 
𝛿  is the average translational difference before and after 𝑷 

being transformed by 𝑻 , and 𝑁 is the total number of points in 
𝑷 . Once these conditions are satisfied, the final application is 
executed. 

V. EXPERIMENTS 

In Figure 8, experimental setup of the dual-arm robotic 
platform used for validation is shown. The platform is 
composed of two ITRI AR605 industrial robots, an Intel 
RealSense D415 depth camera, an ArUco marker, and HCG 
faucet part. Each ITRI AR605 industrial robot has six degrees-

Figure 7. The block diagram of the object-locating control strategy. 

Object-locating Control

Point Cloud 

Extraction

𝑷 Point Cloud 

Alignment

Motion 

Planner

𝑻 

Robot 

Controller

𝑻 𝒐 𝑶
𝑩𝑳 , 𝑻𝑶

  

Joint Feedback  

Point Cloud 

Acquisition

Figure 9. A closed-up view of the grasping mechanism. 

Cases Images CAD Models 

LF4115NE 

H006-C 

H006-R 

Figure 10. Images and CAD models of these three different cases adopted 
in the workpiece-loading application. 

Figure 8. Experimental setup of the dual-arm robotic platform. 

Ethernet Switch

Robot 
Controller

Robot 
Controller

Personal 
Computer

Depth Camera
(RealSense D415)

Industrial Robot
(ITRI AR605)

Industrial Robot
(ITRI AR605)

Marker
(ArUco Marker)

Faucet Part
(HCG LF4115NE)
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of-freedom, 6 kg maximum payloads, and a robot controller. 
The robot controller is position-based and cannot be controlled 
in torque mode. In addition, the robot consists of rigid links. 
Therefore, it is not compliant. The RealSense D415 depth 
camera is mounted on the right robot arm to acquire 
surrounding visual data, which forms the eye-in-hand 
configuration. The ArUco marker used to locate the point of 
interest when sampling candidate views is attached to the 
gripper adapter of the left robot arm which is designed to 
connect the flange with the parallel gripper (Figure 9). The 
target workpiece is the HCG faucet part (product type: 
LF4115NE). A personal computer is served as the upper-level 
controller which is responsible for all planning and 
computations and connects to both robot controllers through an 
Ethernet switch. 

To verify the applicability of the proposed system to 
workpiece loading, there are two more cases designed for 
experiments considering shapes of the workpiece and of the 
grasping position in addition to the HCG faucet part. Images 
and CAD models with coordinate systems visualized of these 
three cases are shown in Figure 10. It can be seen that y-axis in 
all coordinate systems points towards the grasping positions. 
This is designed purposely. In this way, the loading constraint 

𝑻𝑶
   used to retrieve the robot poses is the same in all the cases 

and is defined as  

𝑻𝑶
  = [

1    
  −1  
 1   .45
   1

].  (13) 

Experiments are conducted with and without the proposed 
object-locating control strategy, and each case is executed ten 
times to compute its success rate and to valid the proposed 
method. A workpiece-loading trial is regarded as successful if 
the gripper fingers are inserted smoothly into the grasping 
position without serious collision with the workpiece. Table I
lists and summarizes these cases. The experimental procedure 
is illustrated in Figure 11. 

A. Without Object-locating Control 

In this section, the trials conducted without the proposed 
object-locating strategy are demonstrated. The experimental 
results obtained from the first trial in each case are shown in 

Table II. Firstly, the pose estimation result 𝑻𝑶
𝑩𝑳  is presented by 

using the CAD model and the final point cloud fusion result. 
The CAD model is transformed into the same coordinate frame 

with the fused point cloud’s by 𝑻𝑶
𝑩𝑳  to demonstrate the result. 

Figure 11. An illustration of the experimental procedure. 

Table I: Experimental cases in robotic workpiece loading. 

Case 

Object-

locating 

Control 

Shape of 

Workpiece 

(𝐇 × 𝐖 × 𝐃) 

Shape of 

Grasping 

Position 

Exp. 

times 

LF4115NE 

Without  . 28 m
×  . 284m
×  . 96m 

Circular 10 

With 

H006-C 

Without  . 372m
×  . 611m
×  . 711m 

Circular 10 

With 

H006-R 

Without  . 372m
×  . 611m
×  . 711m 

Rectangular 10 

With 

Table II: The experimental results obtained from the first trial in each case
without object-locating control. 

Case 𝑻𝑶
𝑩𝑳  

𝑷  

(initial locate) 
Result 

LF4115NE 

H006-C 

H006-R 

Table III: Summary of the workpiece-loading results of these ten trials in 
different cases without object-locating control. 

Case 
T

1 

T

2 

T

3 

T

4 

T

5 

T

6 

T

7 

T

8 

T

9 

T 

10 

LF4115NE X X X X X X X X X X 

H006-C X X X X X X X X X X 

H006-R X O O O X X X O X X 
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After moving to the initial locating poses, point cloud of the 
workpiece 𝑷  is extracted and transformed into the frame {𝐹𝑅}. 
The figures displayed in Table II show 𝑷  (dark blue) together 
with the workpiece model (red) which is transformed into the 

expected pose by the loading constraint 𝑻𝑶
  . It can be seen that 

𝑷  is not very matched with the model, which means the 

workpiece is not actually at the expected pose and 𝑻𝑶
   is not 

satisfied. Because the object-locating control strategy for 
compensating the locating errors is not applied, the procedure 
will move on to the loading process. The robots will directly 
attempt to load the workpiece. The results of the first trail in 
these three cases are demonstrated in the last column of Table 
II. They are all failed to load the workpiece. Moreover, the 
loading results of all trials in these three cases are organized in 
Table III. 

B. With Object-locating Control 

In this section, the trials conducted with the proposed 
object-locating strategy are demonstrated. The difference with 
the previous section lies after the robots reach the initial 
locating poses. In previous section, the procedure moves on to 
the final workpiece-loading process. However, in this section, 
the procedure enters a feedback loop as shown in Figure 3 to 
maintain the compensation matrix 𝑻  and adjust the robot poses, 
which aims to fix the locating errors. The loop will not end until 
the termination conditions listed in  (12) are satisfied. The final 
workpiece-loading process is then executed. In Table IV, the 
experimental results obtained from the first trial in each case are 

also shown. The pose estimation result 𝑻𝑶
𝑩𝑳  is firstly presented 

by using the CAD model and the final point cloud fusion result. 
After that, point clouds of the workpiece 𝑷  extracted after 
reaching the initial locating poses and in the final round of the 
loop are both shown. It can be obviously seen that point clouds 
of the workpiece become more matched with the model at the 
expected pose after terminating the loop, which means the 
locating errors is compensated. The results of the first trail in 
these three cases are also demonstrated in the last column of 
Table IV. They load the workpiece successfully. 

The success rates of all cases are summarized and visualized 
in  Figure 12. Without the proposed control strategy, all trials 
in case LF4115NE and H006-C are failed. In case H006-R, the 
success rate is 40%. Nevertheless, after applying the object-
locating control strategy, the success rates of case H006-C and 
H006-R become 100% and the success rate of case LF4115NE 
becomes 90%. It can be seen that the object-locating control 
strategy greatly improves the performance of the application. 

Also, from the variations of the metrics used in the termination 
conditions shown in Figure 13, it can be observed that the 
locating errors are actually compensated.  

Finally, sizes of the grasping positions of different cases and 
sizes of the gripper fingers in different layers are measured. 
Tolerances in these three cases are computed and listed in Table 
V. From these experimental results, it can be concluded that the 
proposed method is valid for estimating the in-hand object pose 
and fixing the locating errors such that the workpiece is well-
located. The proposed dual-arm robotic system is applicable to 
the robotic workpiece-loading application with accuracy 
around ±1 millimeters. 

VI. CONCLUSION 

In this paper, a dual-arm robotic object-locating system 
equipped with a RGB-D camera for autonomous workpiece 
loading is presented. The system can automatically locate the 
workpiece, and then load it by inserting the gripper fingers into 
the grasping position. Firstly, the marker-based multi-view pose 
estimation method based on point pair features (PPFs) is 
proposed to estimate 6D pose of the in-hand workpiece occluded 
by the robotic gripper. The method acquires more visual 
information related to the workpiece for pose estimation from 
multiple viewpoints planned by the next-best view planning with 
the help of marker. After that, based on the estimated pose, a 
feasible set of robot poses is generated for locating grasping 
position of the in-hand workpiece considering the robot 
kinematics and the orientational constraint. Then, a dual-arm 
motion to reach these robot poses is planned online by a 
sampling-based planning algorithm and is executed. 
Nonetheless, because there may be locating errors due to some 

Table IV: The experimental results obtained from the first trial in each case 
with object-locating control. 

Case 𝑻𝑶
𝑩𝑳  

𝑷   

(initial 

locate) 

𝑷   

(final 

round) 

Result 

LF4115NE 

H006-C 

H006-R 

Figure 12. Success rates of the workpiece-loading application in these three 
cases w/wo the object-locating control strategy. 

Table V: Tolerances in the workpiece-loading case. 

Case LF4115NE H006-C H006-R 

Tolerance 

(mm) 
±1. 9 ±1.665 ±6.51 × ±1.2 5 
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error factors, such as system modeling error and pose estimation 
error, an object-locating control strategy based on visual 
feedback is developed for compensating the locating errors in 
this paper. The final loading process is conducted after 
termination conditions of the feedback loop are satisfied. 

The experimental results demonstrate the feasibility of the 
proposed marker-based multi-view pose estimation method and 
object-locating strategy. Effect of the object-locating control 
strategy is evaluated by conducting the workpiece-loading 
application on three different cases. The success rates of these 
three cases are greatly increased by the object-locating control 
strategy from almost 0% to around 100%. With the object-
locating control strategy, accuracy of the robotic workpiece-
loading application can achieve around ±1 millimeters. Under 

the premise that one of the robot arms is able to conduct random 
bin picking, the limitation on the predetermined situations is 
eased, and there is no longer any requirement to additionally 
design fixtures to locate the workpieces precisely and to 
predefine robot trajectories manually. Position and orientation 
of the workpiece in the shared workspace when being loaded can 
be flexibly adjusted according to the task objectives and 
constraints. 

Future works include ensuring the synchronous dual-arm 
behavior to improve the system security, as well as leveraging 
machine learning techniques to improve the point cloud 
segmentation. In addition, because it is hard to implement other 
systems or methods which are related to the proposed one 
without required hardware and released codes of their methods, 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

(k) (l) 
Figure 13. Variations of the metrics in the termination conditions in ten trials. (a)-(d): Case LF4115NE. (e)-(h): Case H006-C. (i)-(l): Case H006-R. 
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it is difficult to make a comparison between each other on their 
performances using the experiments considered in this thesis. If 
standard validation procedures about robotic workpiece loading 
can be established, the comparison will be easier to do. 
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