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 Abstract—A methodology of robot-assisted breast tumor 
detection and stiffness prediction has been established. In the paper, 
a statistical shape model for tumor morphology was built and 
utilized for tumor phantom fabrication in palpation experiments. 
The force signals acquired from robot-held probe during the 
automated palpation were pre-processed to reduce the surrounding 
tissue effect before the subsequent detection of force peak, slope 
feature, and shape correlation. The tumor detection by the proposed 
algorithm could produce robust results for tumor existence. 
Subsequently the force curve features were also extracted for 
training the Support Vector Regression (SVR) model for tumor 
stiffness prediction. The result showed that the prediction error was 
8% and 15% respectively for the trained and interpolated stiffness 
for the testing set. The accuracy of stiffness prediction is acceptable 
for providing the second opinion as a companion to image modality 
for breast cancer diagnosis.  

Index Terms— Robot-Assisted Diagnosis, Biomechanics, Breast 
Cancer 

I. INTRODUCTION 

N accordance with WHO’s (World Health Organization) 
statistics, cancer deprived 8.2 million people of their lives in 

2012 [1]. Among of various kinds of cancers, Breast Cancer was 
the most frequent types for women. Lack of timely diagnosis led 
to curative treatments become useless [2]. As a result, immediate 
researches about breast cancer to provide timely diagnosis and 
treatment are necessary. Nowadays, ultrasound is often used on 
breast tumor examination because of three merits: easy to 
distinguish cyst from tumor, no radiation and low-cost [3]. 
Nevertheless, it also has drawbacks. For example, ultrasonic 
images are blurry due to the shadow generated by echo. To 
improve accuracy, additional biopsy procedures must be carried 
out, which are invasive and reduce patients’ desire to receive 
such checkup [4]. Thus, investment in breast cancer diagnosis is 
necessary.  

Physical examination, though subjective, is common now to find 
breast tumor: patients describe their symptoms while physicians 
check irregular parts by palpation [5]. If we can determine if 
there exist a tumor and quantify biomechanical property between 
different tumors, it will definitely bring great benefits in breast 
tumor diagnosis [6-7]. In this research, we analyzed force relation 
between probe and tumor, determine the existence of tumor, 
position it and then created a model based on stiffness ratio 
between tumor and tissue. Integrating this stiffness prediction 
model with ultrasound image, this system can provide 
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addition-al information for physician improving breast cancer 
diagnosis accuracy.  

Biomechanical analysis on tissue is extremely intricate because 
of the deformation when palpating [8-9]. In other words, it’s 
hard to derive an equation of static equilibrium between the 
stress and tumor. Hence, the analysis of tumor stiffness must be 
not on the basis of the equation but statistics. That is, the system 
makes prediction on some kinds of data which describes the 
stiffness of tumors. On the other hand, there are abundant 
information related to tumor’s stiffness such as size, shape or 
position, there is a need to determine whether it is important or 
not in tumor’s stiffness prediction. With previous demands, a 
palpation robot solution has been proposed to achieve the goal. 
Robot-automated platform offers the stable palpation properties 
of the phantom tumor [10]. With the force information 
measured, the detection of tumor position can be more precise 
and finished in few minutes. In following section, the paper will 
describe the robot-assisted palpation system for tumor 
examination in four parts. First, because it is nearly impossible 
to fabricate all kinds of tumor phantoms which were used in the 
experiments afterward, decisive factors for tumor phantom 
model were designed. Second, a robotic arm as well as a load 
cell was chosen to detect the stiffness of phantoms, simulating 
palpation in reality. Third, a tumor detection scheme was 
proposed to locate the tumor. In the end, enter the data of tumor 
phantoms that its stiffness ratio we have already known into our 
biomechanical model, and then the model can predict unknown 
samples. 

II.  METHOD 

A palpation robot for automated breast tumor exploration is 
proposed as Fig. 1. The robot is equipped with a palpation probe 
on a force sensor, which is attached to the end-effector. The 
force sensor is able to measure the contact forces on the 
palpation probe as the probe touches the soft tissue surface 
during palpation procedure. The palpation contact forces are 
related to the indentation depth and moving speed of the probe, 
relative distance to the tumor, stiffness of the soft tissue and 
tumor and tumor morphology etc. The complex relationship 
could be described as the equation as Eq. (1) of which the 
analytic solution does not exist. However experimental approach 
together with a large amount of data could provide a good 
solution for finding the solution of the inverse problem of Eq. 
(1).  
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𝑓 = 𝒈(𝑎, 𝑑, 𝑥, 𝒔, 𝑘)                     (1) 
 

where f is the measured force from the probe, a is the 
geometric parameter of the probe, d is the indentation depth, x is 
the probe position relative to the tumor, s the morphology of the 
inclusion, and k is the stiffness ratio of the inclusion to the 
surrounding tissue. For the experimental approach, the forward 
problem is to build the data set relating the contact forces with 
all the parameters of the probe geometry a, indentation depth d, 
position relative to the tumor x, morphology of the inclusion, and 
tumor stiffness relative to the surrounding tissue k. Then the 
tumor stiffness ratio is trying to find by solving the inverse 
problem using machine learning algorithm.  

Fig. 1.  Robot-Assisted Palpation for Breast Tumor Examination 

A. Reconstruction of tumor’s shape 

First of all, breast phantoms with tumors were prepared for 
robot assisted palpation experiments. These phantoms were 
fabricated with reference to the 3D breast ultrasonic images from 
259 human subjects scanned by a 3D ultrasound machine 
(Voluson 730, GE Healthcare, USA). Among these breast 
tumors were 145 benign and 115 malignant individually. The 4D 
view software of the ultrasound machine also provides image 
enhancement, segmentation and 3D reconstruction function to 
output the 3D model of the segmented tumor. The 3D 
reconstruction process of the tumors is shown in Fig. 2. The 
output is a STL format of 3D surface model with down-sampling 
to 1272 triangular facets. 

Original Image Histogram                                               Enhanced Image 

Enhancement 

腫瘤邊界切割
3D Reconstruction 1Segmentation      

Fig. 2  The 3D reconstructed Breast Tumor from Ultrasound Imaging 

Then the point distribution model [11] was applied to construct 

the mesh on the surface of tumors and presents each tumor as a 

vector. As shown in Fig. 3, first, alignment of the tumors is 

performed. Center of centroid of each tumor is assigned to the 

origin, and long axis of the tumor as the X-axis, short axis on 

the circumference of cross section, which contains origin and is 

perpendicular to X-axis, as the Y-axis. Then a unit sphere is 

constructed to project an arrow to find the intersection point 

with the facet of the tumor. These intersected points are then 

used to represent the morphology features of the tumors.  
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Fig. 3 Vector Representation of Tumor Morphology   

Therefore each tumor’s 3D geometry (after normalization) will 

be represented by a column vector of dimension 3816 (i.e. 1272 

points in x, y and z coordinates).  良惡性訓練空間  投影係數  變動
  =         

1

單位球

  =1.54   =4.30   =7.06   =9.82

  =         

(a)

單位球

  =-4.5   =-2.59   =1.23   =3.14

  =         

(b)
Fig. 4  Statistical Shape Model of the Tumor (a) The First Component, (b) The 

Second Component 

However, the raw data’s dimension is huge, useful data has to 

be determined and the data set are then simplified because it is 

impossible to fabricate all kinds of tumors. Tumors’ shapes are 

irregular and involved many details, however which have little 

impact on biomechanical forces during palpation. The 
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dimension reduction can be effectively fulfilled by using PCA 

(principal component analysis) method. The first and second 

principal components were chosen to adequately represents 

tumor shape on them in biomechanics aspect. As shown in Fig. 

4, the first and second components of the statistical shape model 

represents the tumor’s outlooks and details. 

Therefore the morphology factors (two components with 5 

coefficients: -2, -, 0, , 2 where  is the standard 

deviation), size (6mm, 9mm, 12mm, 15mm), stiffness ratio to 

surrounding tissue (5, 10, 15) are chosen to fabricate the tumor 

phantoms [12] as shown in Fig. 5. 

Fig. 5 The Fabricated Tumor Phantom Modules 

B. Computer Assisted Tumor Detection and Stiffness 

Prediction 

An industrial robot arm (IRB-140, ABB Inc., Sweden) was 

equipped with a palpation probe with a load cell (LM-100N, 

Jihsense Inc., Taiwan) in between as shown in Fig. 6. The 

palpation probe with smooth and semicircular indentation side 

which is 10mm width and 40mm thick is mounted to the end-

effector of the ABB robot arm.  

Fig. 6 The ABB Robot Equipped with Force Sensor and Palpation Probe 

Error! Reference source not found. shows that the robot was 

commanded to palpate a phantom with an embedded inclusion 

inside by moving along a predefined path, and at the same time, 

the resistant force versus the moving distance were recorded. 

The probe moved in constant velocity 5mm/s and the load cell 

measured forces that were orthogonal to the direction of 

movement. The silicon phantoms are soft, so we define the 

contact point when the voltage measured is 10mV higher than 

no load to avoid height errors. The data were utilized for two 

purposes. One is to study whether an underlying inclusion could 

be detected, and subsequently, the other is to determine the 

stiffness of the inclusion.  

A typical measured force curve is shown in Error! Reference 

source not found.ig. 7. Signal processing and feature 

extraction for the measured data are necessary. The process is 

proceeded as follows: 
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Fig. 7 The Measured Contact Forces During Palpating the Tumor 

(1) Elimination of the background force 

A background force related to pushing the surrounding tissue is 

subtracted from the measured force so that the force only 

reflects the pushing force to the tumor. After subtraction, the 

force signal displayed an increasing to the peak value then 

decreasing signal after passing through the tumor as shown in 

Fig. 8.  
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Fig. 8 A Typical Contact Force Curve When the Probe Passing over the Tumor 

(2) Examination the peak value and slope property 

If the peak value in the force curve is higher than the preset 

threshold value, there is a potential of tumor existence at the 

location.  A subsequent calculation of slope property will be 

followed.  The slope property at this location will be examined 

to reduce the false positive possibility for tumor existence. The 

slope property is obtained by differentiating the force curve 

with step size of 3mm. Then the obtained slope will be checked 

whether processes the feature of a positive value followed by a 

negative one (as the red dots shown in Fig. 9) corresponding to 

the movement of the probe passing through a tumor.  
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Fig. 9 The Slope Property of the Force Curve When Passing over a Tumor 

(3) Shape correlation of the force curve shape 

The correlation formula in Eq. (2) is further used to confirm the 

shape similarity of the measured force curve and the nominal 

one such as shown in Fig. 8.   

 =
∑(𝑓𝑖−𝑓̄)(𝑓0,𝑖−𝑓̄0)

√∑(𝑓𝑖−𝑓̄)2√∑(𝑓0,𝑖−𝑓̄0)
2
           (2) 

where fi and fo,i are the measured and nominal force curve 

respectively; 𝑓̄ and 𝑓̄0 are the mean values of the measured and

nominal forces respectively. If the correlation r at the potential 

location of tumor existence is larger than a threshold value, then 

the tumor existence is finally confirmed. In summary, tumor 

detection algorithm will firstly locate where the force peaks 

arise from the measured force data. Then both the force slope 

property and shape correlation of the force curves will be 

further checked at these locations. If both features are satisfied, 

the screening outcome will confirm the existence of tumors at 

these locations. 

C. Tumor stiffness prediction 

The force curve, at the same time, is utilized for tumor 

stiffness prediction. The force data curves (force versus 

position) from the training sets were utilized to extract the 

features by PCA. The first 5 principal components held 99.8% 

descriptive level and could effectively represent the force curve 

features. All the samples are separated into training set (with 

305 samples) and testing set (with 18 samples). Then the SVR 

model has been proposed to find the stiffness ratio of the tumor 

[13-14]. SVR with Radius Basis Function (RBF) kernel has the 

advantages of fitting the small amount of experiment data to the 

high nonlinear complex relationships between the tumor 

stiffness and the features of force data, palpation parameters 

and tumor morphology. Let (qi, ki) denote the training set data 

with the input features qi, output stiffness ki, i=1, …, n. The 

RBF kernel was chosen as: 

𝐾(𝑞𝑖, 𝒒) =  
−𝛾‖𝑞𝑖−𝒒‖

2
                     (3) 

 

where  is the kernel parameter. The optimal coefficients such 

as the  in Eq. (3) and the cost function parameter which 

determines the tradeoff between minimizing training errors and 

minimizing the model-complexity [14] were under grid 

searching and a hyperplane was properly found to fit the 

training set data. 

III. RESULTS AND DISCUSSIONS 

A silicon phantom (18cm x 30cm) embedded 8 inclusions was 

designed as a breast tumor phantom for robot-assisted tumor 

detection experiment. These tumors were arranged as shown in 

Fig. 10. The robot moved the palpation probe along the 

designated path (indicate as the red lines) to scan the whole 

surface of the phantom. 
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Probe

Fig. 10 The Phantom with Designated underlying Tumor and the Robot-held 

Probe Moving Path 

At the same time, the computer will record the moving position 

of the probe and the contact forces. After processing the 

measured signal by eliminating the ground force of the soft 

tissue, the force data displayed as shown in Fig. 11. The 

threshold method was applied to find the force peak of the force 

data and identified peak number 1~8 and FP1~3.  
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Fig. 11 Detection of Force Peaks 

The force peaks may be also produced by fake noise, the slope 

property was then applied to screen out these false features. As 

shown in Fig. 12, tumor 1~8 was all displayed the pattern of 

increasing to positive value followed by decreasing to negative 

valley. Whereas the FP1~3 was not able to show the slope 

pattern and judged to be false features for tumor existence. 
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Fig. 12 Confirmation of the Slope Property of the Force Curve 
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Last to confirm the tumor existence was to check the shape 

similarity by calculating the correlation of the measured force 

curve with the nominal force curve as Fig. 8. As shown in Table  

1, the correlation numerical for tumor 1~8 was more than 90%. 

The result (in Fig. 13) demonstrates that the robot-assisted 

palpation approach could reliably detect the tumor existence 

underneath soft tissue.  

Table 1. Confirmation of the force shape correlation 

Tumor 

Location 
1 2 3 4 5 6,7 8 

Shape 

Correlation 

(%) 

91.8 99.2 99.1 96.1 98.6 93.6 91.0 

Fig. 13 The location of tumor existence by robot detection 

It was also observed that the size of the probe affected the 

detection sensitivity of tumor existence. Large size of probe 

could detect the tumor existence, however can’t distinguish 

whether it is single or multiple case. Although small size of 

probe could exhibit better sensitivity of tumor detection, the 

examination time could be obviously increased. 

The other experiment is to verify the effectiveness of tumor 

stiffness prediction. In addition to the tumors with trained 

stiffness 5, 10, 15, tumors with two interpolated stiffness 7 and 

12 were also under study. The results are shown in Table 2. As 

observed from the results, the predicted errors for tumor 

stiffness were 8% for the group with the same values of stiffness 

as the training data, and 15% for those with interpolated values 

of stiffness. The errors are acceptable for most of diagnostic 

cases, in which the stiffness information can assist the physician 

to differentiate the ambiguity of benignity and malignancy 

when single image modality is used. For example the 

ultrasound image features of fibroderoma and IDC are not easy 

to differentiate, but the tumor’s stiffness are significantly 

different. Therefore such mechanics information becomes very 

useful.  

Table 2. Tumor Stiffness Prediction of the Trained SVR Model 

RMSE (%) 

Training Set 1 

Testing Set with trained stiffness (5, 10, 15) 8 

Testing Set with interpolated stiffness (7, 12) 15 

IV. CONCLUSION AND FUTURE WORK 

A robot-assisted palpation system for breast tumor detection 

and further identification of the bimechanical property has been 

demonstrated. The robot-assisted palpation could carry out a 

stable palpation behavior and subsequently achieved accurate 

outcomes. The results showed that the tumors could be detected 

if the tumor sizes not less than 5mm, which indicates to be in 

early stage. Moreover, the system can also predict the stiffness 

of the tumor and offer the second opinion for the physician to 

diagnose its benignity or malignancy. The future work may 

extend the current method to deal with non-flatness effect of the 

breast using the compliance control of the robot system, and 

then towards clinical validation. 
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