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 Abstract— Object detection technology is an essential aspect of 

the development of autonomous vehicles. The crucial first step of 

any autonomous driving system is to understand the surrounding 

environment. In this study, we present an analysis of object 

detection models on the Duckietown robot based on You Only 

Look Once version 5 (YOLOv5) architectures. YOLO model is 

commonly used for neural network training to enhance the 

performance of object detection models. In a case study of 

Duckietown, the duckies and cones present hazardous obstacles 

that vehicles must not drive into. This study implements the 

popular autonomous vehicles learning platform, Duckietown's 

data architecture and classification dataset, to analyze object 

detection models using different YOLOv5 architectures. 

Moreover, the performances of different optimizers are also 

evaluated and optimized for object detection. The experiment 

results show that the pre-trained of large size of YOLOv5 model 

using the Stochastic Gradient Decent (SGD) performs the best 

accuracy, in which a mean average precision (mAP) reaches 

97.78%. The testing results can provide objective modeling 

references for relevant object detection studies. 

Index Terms— Object detection, Duckietown robot, YOLOv5 
architectures, optimization functions.  

I. INTRODUCTION 

ECENTLY, the intelligence of Autonomous Guided 

Vehicles (AGVs) has attracted much attention from the 
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industry. An autonomous driving vehicle of a self-driving 

vehicle is a highly complicated system, which builds upon a 

diversity of inputs from sensors including radars, cameras, and 

recently LiDAR sensors [2]. The system needs to detect objects 

in their vicinity, distinguish one object from another, and predict 

their possible motions with corresponding uncertainty. 

Numerous works were recently proposed to optimize object 

detection from raw sensor data, as well as to distinctively 

classify them from one another, where the objects themselves 

are the inputs [3]. The two tasks are completed individually and 

consecutively using a single algorithm, with the detection and 

discrimination modules being trained separately. However, as a 

result of lacking feature sharing, such stacked systems may 

experience excessive system latency as well as cascading errors, 

where gradients can be continuously transmitted back to the 

sensor data  flow from output trajectories to the detection 

modules. 

The AGV must be able to detect and distinguish obstacles that 

enabling for path planning with no human required. Therefore, 

reliable object detection is a crucial contributor to autonomous 

driving [4]. Object detection is regarded as a crucial branch in 

the area of computer vision and image processing with its 

algorithm has been focused recently in the field of deep 

learning. It has been witnessed the tremendous growth of 

machine learning and deep learning in recent years and taken 

real-time object identification to the next level [5], such that 

deep learning approaches unveiled promising performance in 

comparison with the traditional methods in regard to detection 

accuracy. Deep learning object detection consists of two types: 

one-stage object detection [6] and two-state object detection [7]. 

Among those two deep learning techniques, YOLO is 

considered as a practical algorithm for online object detection

since bounding boxes and confidences for various categories 

may be created directly from complete photos by using a proper 

neural network. 

Overall visual object detection is categorized into two types: 

the region proposal method. The first one is the region proposal 

method with convolutional neural networks (R-CNNs) [8], Fast 

R-CNN [9], Faster R-CNN [10], and Faster R-CNN model [10], 

and the second is the end-to-end method with the YOLO model 

[11], Single-Shot Detector (SSD) method and RetinaNet 

network [12], and so on. Speaking of object detection speed, the 

end-to-end method shows superior performance compared to 

the region proposal methods [13]. Due to the development of 

visual object recognition technology, the YOLO series of 

algorithms have been used in various scene detection tasks and 

it performs at very high precision and speed [14]. Additionally, 
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the YOLO system has the ability to process all of the image's 

features and the majority of the objects can be predicted. [15]. 

YOLOv5 model is the fifth and also the latest generation of 
YOLO. According to various experiments, it outperforms the 
rest of the YOLO model in terms of both speed and accuracy. 
Previous studies in the literature show that the YOLOv5 model 
has been recently successfully used to detect mold on food 
surfaces for the first time in the present study [15]. Moreover, in 
some recent studies, YOLOv5 has even been utilized to detect a 
variety of objects such as apples, mushrooms, marine ships, face 
masks, vehicles, safety helmets, and, etc. Therefore, it can detect 
and distinct obstacles from the captured images [16].  

This study implements the popular autonomous vehicle 
learning platform which is Duckietown’s platform and dataset 
[17] to demonstrate the comparison of different object 
detection models and optimizers in order to give a detailed 

analysis in object detection and classification tasks. In which, 

the latest version of the YOLO model, YOLOv5, is 
implemented to test object detection models. Various YOLOv5 
architectures with different sizes are utilized to analyze object 
detection models on the Duckietown’s platform and dataset. 
Moreover, the performances of different optimizers are also 
evaluated and optimized for object detection. Furthermore, we 
explore the major parameters to improve the performance of the 
object detection model using YOLOv5. 

II.MATERIALS AND METHODS 

Duckietown robots are fully autonomous, in which every 

decision making is processed onboard using Raspberry 

Pi and NVIDIA Jetson Nano boards [18]. The configuration of a 

Duckietown robot is shown in Fig. 1 (a). It is equipped with a 

fish-eye lens camera in the front, two DC motors, a 32GB 

memory card, and an onboard battery with a power of 5V. A 

Python-based Robotic Operating System (ROS) is included and 

utilized to support the communication between the perception, 

planning, and control functions on the Duckietown robots. 

Fig. 1. (a) Duckietown robot, (b) cones, and (c) duckies. 

Duckietown dataset is known as an object detection 
benchmark dataset from AI Driving Olympics. In this study, the 
collected datasets consist of duckies and cones classes, as 
illustrated in Fig. 1 (b) and (c). The total of 1006 samples in the 

dataset are then separated into the training and testing set with 
the split percentage of 80:20, respectively. The training process 
was implemented using NVIDIA Tesla V100 on the Industry 
4.0 Center, Taiwan Tech. Several YOLOv5 models, including 
with and without pre-trained models using Stochastic Gradient 
Descent (SGD) and Adam optimizers, are deployed to perform 
the object detection for the Duckietown robot. The difference 
between pre-trained model and the ordinary model is the 
pre-trained model is already trained on one or multi public 
benchmarks and has optimal weights compared to the ordinary 
model is just an architecture with initial random weights. 

YOLOv5 architecture for the object detection is 

composed of three important pieces: backbone piece for 

extracting feature, neck piece for fusing feature, and head piece. 

The first part of YOLOv5 architecture is a convolutional 

network that aggregates and forms image features at different 

granularities from the original images using various layers of 

convolution and pooling [19]. It can be seen in Figure 2, the 

backbone network comprises four generated layers of feature 

maps with different feature sizes. Therefore, the neck network 

has a series of layers to mix and combine image features to 

achieve more contextual information and avoid information 

loss, and to pass them forward to prediction. In addition, in the 

fusion process of YOLOv5 architecture, the feature pyramid 

structures of the feature pyramid network (FPN) [20] and the 

pixel aggregation network (PAN) [21] are utilized. Then the 

important semantic features from the top feature maps are 

passed down through the FPN structure to the lower feature 

maps. Simultaneously, the PAN structure delivers strong 

localization features from lower to higher feature maps. The 

feature fusion capability of the neck network is leveraged by the 

combination of two structures. In detail, three feature fusion 

layers create the new feature maps. The larger the area of the 

image that each grid unit in the feature map corresponds to, the 

smaller the size of the feature maps. Finally from these new 

feature maps, the head network detects and classifies objects. 

In the proposed model, the focus module in the architecture 

slices and concatenates images in order to generate the 

important features. The CBL module is made up of the 

convolution, normalization, and Leaky relu activation function 

modules [22]. YOLOv5 model has two types of cross-stage 

partial networks (CSP) [23]. One is applied to the backbone 

network, while the other is used in the neck. The CSP network 

uses cross-layer connectivity to connect the network's front and 

back layers, it helps to enhance the inference speed and remain 

the precision. The structure of the two types of CSP networks 

differs only slightly. The CSP network in the backbone is made 

up of one or more residual units, whereas the CSP network in 

the neck is made up of CBL modules that replace the residual 

units. Furthermore, the SPP module refers to the spatial pyramid 

pooling module, which performs maximum pooling with 

various kernel sizes and fuses the features by concatenating 

them together. The image features can be presented at a higher 

level of abstraction based on dimensionality reduction 

operations through the pooling layers to mimic the human visual 

system. 
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Fig. 2.  The architecture of the YOLOv5 method. The network consists of three important pieces: backbone, neck, and head. The backbone network aggregates and 

forms image features at different granularities, the neck network mixes and combines image features to pass them forward to prediction, and the head network 

consumes features from the neck and takes box and class prediction steps. 

It is primarily concerned with the compression of the input 

feature map. On the one hand, it shrinks the feature map and 

reduces the network's computational complexity; on the other 

hand, it performs feature compression and extracts the main 

features. In the end, the concat module performs tensor 

concatenation. In this work, the SGD algorithm [24] and Adam 

optimization algorithm [25] are implemented as optimizer 

functions to update the weights in the network iteratively based 

on training data in order to examine the performance of the 

YOLOv5 models. The weight update rule of the Adam 

optimization algorithm is formulated in Eq. (1) [26], 

                (1) 

                            (2) 

                                (3) 

                                  (4) 

                                    (5) 

in which  presents the model weights at time t;  is the 

learning rate;  describes a small term preventing division by 

zero;  presents the aggregate of gradients at time t;  is the 

squared gradient where the hyper-parameters ,  

control the exponential decay rates of these moving averages 
and ;  denotes the gradient at subsequent timestep t and 

with the objective function . 

Whereas the SGD algorithm is described in Eq. (6), it 

examines one by one sample at each iteration and updates the 

weight vector  iteratively using a time-dependent weighting 

factor, as shown in Eq. (6). 

1 ,t t t t tl f x y
t

                             (6) 

in which xt is training example, and yt is the label,  η presents the 

update factor or step size utilized to update the solution t at 

step t. f is the function that is linearly parameterized, and l 

presents the loss function. The weight update of the network 
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based on the SGD algorithm is usually much faster because of 

one update at a time, thus it can be used to learn online. 

In this study, different sizes of YOLOv5 structure including 

small size (YOLOv5s), medium size (YOLOv5m), large size 

(YOLOv5l), and extra-large size (YOLOv5x) are used. The 

difference between small-sized (YOLOv5s), medium-sized 

(YOLOv5m), large-sized (YOLOv5l), and extra-large-size 

(YOLOv5x) is the number of parameters of the architecture. 
Different types of pre-trained YOLOv5 models and their 

parameters,  as described in Table I. 

TABLE I 

DESCRIPTION OF  YOLOV5 ARCHITECTURES 

YOLOV5 MODEL Model Size 
No. of parameters 

(M) 

YOLOV5S Small size 7.2 

YOLOv5m Medium size 21.2 

YOLOv5l Large size 46.5 

YOLOv5x Extra-large size 86.7 

III. RESULTS AND DISCUSSIONS 

With regard to calculating the efficiency of different 

YOLOv5 architectures for the object detection on Duckietown 

robot, several indexes including precision, recall, and average 

precision (AP) are used, they are formulated in Eqs. (7)-(9), 

TP
Precision

TP FP
                                       (7) 

TP
Recall

TP FN
                                                (8) 

( )

1
( )

11
iRecall i

AP Precision Recall                     (9) 

where TP is True Positives (Predicted as positive as was 

correct), FP is False Positives (Predicted as positive but was 

incorrect), and FN is False Negatives (Failed to predict an 

object that was there). 

The outcomes of the training model are presented in Fig. 3, 

in which the input image size is 416 x 416, and the batch size of 

16 and 100 epochs are utilized. The performance of the 

YOLOv5 for the object detection is very effective in terms of the 

mean precision average at 0.5 (mAP@0.5).  

An analysis of object detection models on the Duckietown 

robot based on different YOLOv5 architectures is also 

described in Table II. The pre-trained YOLOv5m with SGD 

optimizer achieved 96.90% in terms of accuracy and 97.10% in 

terms of mAP@0.5. In addition, the pre-trained YOLOv5l with 

SGD optimizer achieved 95% in terms of accuracy and 97.80% 

in terms of mAP@0.5 (mAP with Intersection over Union

(IoU) threshold of 0.5), and 66.6% in terms of mAP@0.5:0.9 

(average mAP over different IoU thresholds, from 0.5 to 0.90). 

The testing results show that the uses of the pre-trained model 

have better performance than the training model within the 

collected dataset. It also confirms that the SGD optimizer can 

enhance the performance of the model compared to the Adam 

optimizer on our specific dataset, as clearly presented in Fig. 4. 

In this paper, the parameters are not fine-tuned to get the 

optimal ones to achieve the best performance on the 

Duckietown dataset. 

Moreover, Zhou et al. [27] showed that SGD has a smaller 

escaping time than Adam for the same basin and whose local 

basins have larger Radon measure tends to converge to flatter 

minima, this demonstrates that its better generalization 

performance. Overall, the pre-trained model with a larger 

YOLOv5 architecture using SGD optimizer has the best 

performance for object detection models on the Duckietown 

dataset. 

TABLE II 

COMPARISON OF DIFFERENT YOLOV5 MODLES FOR OBJECT DETECTION 

Model 

Architectures 
Precision Recall 

mAP

@0.5 

mAP@

0.5:0.9 

Pre-trained_YOLO

v5s_Adam 
0.884 0.908 0.946 0.601 

Pre-trained_YOLO

v5m_ Adam 
0.899 0.843 0.91 0.569 

Pre-trained_YOLO

v5l_ Adam 
0.811 0.868 0.879 0.531 

Pre-trained_YOLO

v5x_ Adam 
0.819 0.748 0.798 0.453 

YOLOv5s_SGD 0.93 0.928 0.961 0.65 

YOLOv5m_SGD 0.902 0.84 0.909 0.553 

YOLOv5l_SGD 0.878 0.883 0.92 0.583 

YOLOv5x_SGD 0.865 0.814 0.881 0.544 

Pre-trained_YOLO

v5s_SGD 
0.929 0.939 0.969 0.654 

Pre-trained_YOLO

v5m_SGD 
0.969 0.914 0.971 0.666 

Pre-trained_YOLO

v5l_SGD 
0.95 0.944 0.978 0.671 

Pre-trained_YOLO

v5x_SGD 
0.941 0.945 0.972 0.661 

IV. CONCLUSION 

This paper presents an analysis of object detection models 

on the Duckietown robot based on YOLOv5 architectures. The 

YOLOv5 model has been successfully used to recognize the 

duckies and cones on the Duckietown. Moreover, the 

performances of different YOLOv5 architectures are analyzed 

and compared. The results indicate that using the pre-trained 

model of YOLOv5 architecture with the SGD optimizer can 

provide excellent accuracy for object detection. The higher 

accuracy can also be obtained even with the medium size of the 

YOLOv5 model that enables to accelerate the computation of 

the system. Furthermore, once the object detection model is 
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optimized, it is integrated into the ROS in the Duckietown robot. 

In future works, it is potential to investigate the YOLOv5 with 

Layer-wise Adaptive Moments Based (LAMB) optimizer 

instead of SGD, applying repeated augmentation with Binary 

Cross-Entropy (BCE), and using domain adaptation technique.  

Fig. 3. Training model results of pre-trained YOLOv5s for object detection. (a) Coordinate Loss (b) Objectness Loss (c) Classification Loss (d) Precision (e) Recall. 

Fig. 4.  Performances of difference YOLOv5 architectures for object detection. 



Toan-Khoa Nguyen et al. 
Journal of Robotics Society of Taiwan (International Journal of iRobotics) 

22 

REFERENCES 

[1] Khoa Nguyen Toan, Minh-Quang Tran, Shu-Hao Liang, An 

Analysis of Object Detection Models on Duckietown Robot 

based on YOLOv5 Architectures. 2021 International Automatic 

Control Conference (CACS), 1121,  Chiayi, Taiwan, 2021. 

[2] Yeong DJ, Velasco-Hernandez G, Barry J, Walsh J. Sensor and 

Sensor Fusion Technology in Autonomous Vehicles: A 

Review. Sensors. 21(6), 2140, 2021. 

https://doi.org/10.3390/s21062140. 

[3] Fadadu, S., Pandey, S., Hegde, D., Shi, Y., Chou, F. C., Djuric, N., 

Vallespi-Gonzalez, C. Multi-view fusion of sensor data for 

improved perception and prediction in autonomous driving. 

In Proceedings of the IEEE/CVF Winter Conference on 

Applications of Computer Vision, pp. 2349-2357, 2022. 

[4] J. Janai, F. Güney, A. Behl, and A. Geiger. Computer vision for 

autonomous vehicles: Problems, datasets and state of the art, 

Foundations and Trends® in Computer Graphics and Vision, vol. 

12, no. 1–3, pp. 1-308, 2020. 

[5] Zhao, Z. Q., Zheng, P., Xu, S. T., Wu, X.  Object detection with 

deep learning: A review. IEEE transactions on neural networks 

and learning systems, 30(11), pp. 3212-3232, 2019. 

https://doi.org/10.1109/TNNLS.2018.2876865. 

[6]  Chen, K., Li, J., Lin, W., See, J., Wang, J., Duan, L., ... Zou, J. 

Towards accurate one-stage object detection with ap-loss. In 

Proceedings of the IEEE/CVF Conference on Computer Vision 

and Pattern Recognition, pp. 5119-5127, 2019. 

[7] L. Du, R. Zhang, and X. Wang, Overview of two-stage object 

detection algorithms, Journal of Physics: Conference Series, vol. 

1544, no. 1, p. 012033, 2020/05/01 2020, doi: 

10.1088/1742-6596/1544/1/012033. 

[8]  Girshick, R., Donahue, J., Darrell, T., Malik, J. Rich feature 

hierarchies for accurate object detection and semantic 

segmentation. Proceedings of the IEEE conference on computer 

vision and pattern recognition, pp. 580–587, 2014. 

[9] Girshick, R. Fast r-cnn. Proceedings of the IEEE international 

conference on computer vision, pp. 1440–1448, 2015. 

[10] Ren, S., He, K., Girshick, R., Sun, J. Faster R-CNN: towards 

real-time object detection with region proposal networks. IEEE 

transactions on pattern analysis and machine intelligence, 39(6), 

pp. 1137-1149, 2016. 

https://doi.org/10.1109/TPAMI.2016.2577031. 

[11] Elsisi M, Tran M-Q, Mahmoud K, Lehtonen M, Darwish MMF. 

Deep Learning-Based Industry 4.0 and Internet of Things towards 

Effective Energy Management for Smart Buildings. Sensors. 

2021; 21(4):1038. https://doi.org/10.3390/s21041038. 

[12] Tan, L., Huangfu, T., Wu, L. et al. Comparison of RetinaNet, 

SSD, and YOLO v3 for real-time pill identification. BMC Med 

Inform Decis Mak, 21, 324, 2021. 

https://doi.org/10.1186/s12911-021-01691-8. 

[13] Srivastava, S., Divekar, A.V., Anilkumar, C. et al. Comparative 

analysis of deep learning image detection algorithms. J Big 

Data 8, 66 (2021). https://doi.org/10.1186/s40537-021-00434-w. 

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only 

look once: Unified, real-time object detection," in Proceedings of 

the IEEE conference on computer vision and pattern recognition, 

2016, pp. 779-788.  

[15] F. Jubayer, J. A. Soeb , Mitun K. Paul , Pranta Barua , S. Kayshar , 

M. Rahman, A. Islam. Mold Detection on Food Surfaces Using 

YOLOv5. Preprints, doi:10.20944/preprints202105.0679.v1. 

[16] X. Wu, D. Sahoo, S. C. H. Hoi, Recent advances in deep learning 

for object detection, Neurocomputing, vol. 396, pp. 39-64, 

2020/07/05/ 2020, doi: 

https://doi.org/10.1016/j.neucom.2020.01.085. 

[17] "Duckietown gitbub of yolov5." 

https://github.com/duckietown/yolov5/tree/master/models. 

[18] L. Paull et al., "Duckietown: An open, inexpensive and flexible 

platform for autonomy education and research," 2017 IEEE 

International Conference on Robotics and Automation (ICRA), 

2017, pp. 1497-1504, doi: 10.1109/ICRA.2017.7989179. 

[19] Zeiler, Matthew D., Graham W. Taylor, Rob Fergus. Adaptive 

deconvolutional networks for mid and high level feature learning. 

In 2011 International Conference on Computer Vision, pp. 

2018-2025. IEEE, 2011. 

[20] Lin, Tsung-Yi, Piotr Dollár, Ross Girshick, Kaiming He, Bharath 

Hariharan, and Serge Belongie. Feature pyramid networks for 

object detection. In Proceedings of the IEEE conference on 

computer vision and pattern recognition, pp. 2117-2125. 2017. 

[21] Wang, Wenhai, Enze Xie, Xiaoge Song, Yuhang Zang, Wenjia 

Wang, Tong Lu, Gang Yu, Chunhua Shen. Efficient and accurate 

arbitrary-shaped text detection with pixel aggregation network. In 

Proceedings of the IEEE/CVF International Conference on 

Computer Vision, pp. 8440-8449. 2019. 

[22] Balagourouchetty, Lakshmipriya, Jayanthi K. Pragatheeswaran, 

Biju Pottakkat, and G. Ramkumar. GoogLeNet-based ensemble 

FCNet classifier for focal liver lesion diagnosis. IEEE journal of 

biomedical and health informatics 24, no. 6 (2019): 1686-1694. 

[23] Wang, Chien-Yao, Hong-Yuan Mark Liao, Yueh-Hua Wu, 

Ping-Yang Chen, Jun-Wei Hsieh, I-Hau Yeh. CSPNet: A new 

backbone that can enhance learning capability of CNN. In 

Proceedings of the IEEE/CVF conference on computer vision and 

pattern recognition workshops, pp. 390-391. 2020. 

[24] R. G. J. Wijnhoven, P. H. N. de With, Fast Training of Object 

Detection Using Stochastic Gradient Descent, 2010 20th 

International Conference on Pattern Recognition, 2010, pp. 

424-427, doi: 10.1109/ICPR.2010.112. 

[25] D. P. Kingma and J. Ba, Adam: A method for stochastic 

optimization, arXiv preprint arXiv:1412.6980, 2014. 

[26] M. -Q. Tran, M. -K. Liu, Q. -V. Tran, T. -K. Nguyen, Effective 

Fault Diagnosis Based on Wavelet and Convolutional Attention 

Neural Network for Induction Motors, IEEE Transactions on 

Instrumentation and Measurement, 2021. doi: 

10.1109/TIM.2021.3139706. 

[27] Zhou, P., Feng, J., Ma, C., Xiong, C., Hoi, S. C. H. Towards 

Theoretically Understanding Why Sgd Generalizes Better Than 

Adam in Deep Learning. Advances in Neural Information 

Processing Systems, 33, 2020. 


