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 Abstract—Nowadays, milling stability is one of the most 
concerns in the manufacturing industry in order to reduce the 
cost of tool replacement, increase the productivity as well as 
increase precision and surface quality of the metal cutting 
process. One of the most critical components of the machining 
process is to identify chatter during the cutting process. This 
paper proposed a cutting signal processing methodology to create, 
analyze, and select relevant features for the chatter identification. 
An effective technique based on feature learning was proposed to 
monitor the cutting stability using vibration signals. The 
technique of signal transformation such as Fourier Transform 
(FT) is an effective tool to determine the frequencies related to 
machining operation and cutting stability. Machine learning 
models such as Random Forest, Decision Tree, and eXtreme 
Gradient Boosting were applied for selected features as the step of 
classification. The success of this proposed method was proved by 
solid statistical support for the features selection method and the 
performance of Random Forest achieved 98% of accuracy at two 
states of milling process including stable, and unstable conditions. 

Keyword: Milling process, cutting stability, cutting signal and 

analysis, machine learning. 

I.  INTRODUCTION 

NC machines are prevalent in the manufacturing industry. 

Along the cutting process, the combination of cutting 

parameters and a large amount of material removal cause a 

self-excited vibration called chatter [1]. The prevention of 

chatter is a major concern in the modern industry not only to 

reduce tool damage but also to avoid poor quality of product 

such as poor surface, scraps, inaccuracy, and noise [2]. 

Furthermore, modern manufacturing enterprises are 

transforming to the automation system and a reliable 

monitoring process should be proposed [3]. Without a doubt, 

chatter investigation has become the most crucial part of 

improving the performance of CNC machines. There are 

several reasons to make this become an uneasy task. First of all, 

the nonlinearity of unstable cutting vibration complicates the 

investigation [4,5]. Besides, the sensitivity and dependability of 

sensors used to acquire data under various cutting parameters 

such as spindle speed, depth of cut, and feed rate have to be 

controlled and optimized in order to perform a good result.  
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Many analytical, numerical, and experimental methods have 
been proposed in several previous researches to predict the 
milling stability. Sridhar et al. [6] created a mathematical model 
to explain the dynamic milling process and used a numerical 
approach to solve it. Smith and Tlusty [7] demonstrated a 
method for generating stability lobes using time domain 
simulations of chatter vibrations in the milling process. Altintas 
and Budak [8] proposed an analytical technique called zeroth 
order approximation (ZOA) for estimating milling stability 
lobes using the mean of the Fourier series of dynamic milling 
coefficients. Minis and Yanushevsky [9] introduced the idea of 
periodic differential equations to provide a complete analytic 
technique for solving the two-dimensional milling issue. 
Insperger and Stépán's [10,11] introduced a semi-discretization 
(SD) approach which is an effective numerical method for 
analyzing the stability of linear delayed systems. It can be used 
to forecast milling stability. All of the techniques mentioned 
above have their advantages and disadvantages. The ZOA 
method so far is the quickest method for resolving the 
chatter-free cutting situation. It is, nevertheless, unsuitable for 
the low radial immersion problem. Numerical simulation 
approaches in the time domain are extremely powerful. They 
consider real milling kinematics, cutting mechanics, the impact 
of inner and outer modulation, cutter geometry, runout, and 
other nonlinearities, but their computing costs are too high [12]. 
Some others proposed dynamic cutting force techniques as a 
method to diagnose the degradation of the machine [13]. 
However, using the dynamometer and acoustic emission is a 
drawback because they require a huge computational time. In 
addition, these sensors themselves are way too expensive and 
make it hard to scale to industry size. 

This paper develops a method of using an accelerometer 
(ACC) and a microphone (MIC) to collect vibration and sound 
signals for predicting the milling stability. Accelerometer and 
microphone are used in this case due to their high sensitivity to 
chatter vibration and ease to set up in different cutting 
conditions. The detection of milling stability in this study is 
achieved by conducting the following procedures: data 
collection, data processing, features extraction, features 
selection, model training, optimization, and milling stability 
prediction. At the stage of data processing, some advanced 
transformations are the requirement [14]. Time domain method 
sometimes gives the advantage to diagnose the fault of machine 
part. However, it is not enough in this case [15]. This is where 
the application of Discrete Fourier Transform (DFT) starts to 
show its effectiveness in transforming the time domain signal to 
the frequency domain [16]. One of the benefit of Fourier 
analysis is very little information lost from the signal during the 
transformation. It maintains the information on the amplitude, 
harmonics, and phase. The Fourier spectrum decomposes 
signal into discrete frequency components. This is a very good 
method to observe the change in cutting conditions. Feature 
extraction is then applied to both the time domain and the 
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frequency domain. Features are extracted based on some 
common statistical indexes. Due to a huge amount of data 
during the experiment and monitor the cutting vibration in 
real-time, it makes traditional approaches almost impossible to 
succeed [17]. A machine learning technique is evaluated based 
on the amount of data it can process, the training speed, and its 
precision and accuracy. There are several classification models 
developed in recent years, and this study exploited some 
different machine learning models. The decision tree is a 
supervised learning algorithm that is commonly used to solve 
classification problems. This is achieved by creating as many 
cases as possible based on the most important attributes or 
independent variables [18]. However, the weakness of the 
decision tree is that its model relies on high importance to a 
particular set of features and it sometimes deals with the 
overfitting as well as errors during the training process [19]. In 
this case, The Random Forest – a model built from a collection 
of decision trees – will be added to deal with those problems 
[20]. An eXtreme Gradient Boosting (XGBoost) and Support 
Vector Machine (SVM) model were also used to achieve 
chatter detection in the milling process [21].  

This paper investigates the influence of feature selection and 
hyparameters optimization to the determination of cutting 
stability in different cutting conditions. The result indicates that 
the accuracy of the classification model can be greatly 
improved. The proposed method can reduce the unqualified 
product outcomes and protect the machine tool. The rest of the 
paper is organized as follows. Section 2 explains research 
methods in detail. Following that, the experimental data 
acquisition is described in section 3. Various aspects of signal 
analysis and features selection are elaborated in section 4. 
Classification results are exhibited in section 5. Optimization 
and conclusion are put forward in section 6 and 7, respectively. 

II.  RESEARCH METHODOLOGY 

A. Fast Fourier Transform. 

The Discrete Fourier Transform (DFT) is the most common 
method by mapping the time or space domain signal to the 
frequency domain. By observing the result from the DFT, the 
difference in frequency can be pointed out clearly. This paper 
used the Fast Fourier Transform which is a fast and efficient 
computation of DFT. Computer programing algorithm for FFT 
is commonly known as “split-radix” decomposition [22]. The 

algorithm computes the operation instead of  
floating point multiplication of DFT. Good frequency 
resolution, fast computing speed, and removal of redundant 
features are some of the benefits of using FFT. The function of 
DFT is defined in Eq. (1):  

                              (1) 

Where k is an integer ranking from 0 to N-1 and  denotes the 
primitive root of unity: 

                                           (2) 

B. Machine Learning Approach 

In order to predict milling stability, Karandikar, Jaydeep, et 
al [23] introduced a method of chatter identification using 
Bayesian model. However, the Bayesian model assumes that all 

features are independent which is rarely happened in the real 
world. It makes the computing time of the model faster than 
other models but also reduces the accuracy of prediction. In this 
study, several classification models such as decision tree, 
random forest, and XGBoost were used and their performances 
were compared. In this case, the most important reason to use 
decision tree is that we have a lot of features in the dataset. This 
is really crucial to make a decision based on the build of the 
decision tree algorithm. Especially, that the dataset only has 
two class labels that are stable and unstable makes the decision 
tree become very suitable in this case. Furthermore, a decision 
tree model is also an effective way when there is limited 
computational power. However, it also has some problems, 
such as the high probability of overfitting and the lower 
accuracy when the model itself has high variance during the 
training process [24]. In order to improve the classification 
accuracy, this paper exploited the random forest model. The 
random forest is an algorithm that builds multiple decision trees 
and merges them together to achieve a more accurate and stable 
prediction [25]. By using random forest algorithm, we can 
avoid almost all of the problems that the decision tree has. In 
addition, the XGBoost model is also a well perform model 
which can handle normalizing data and missing values very 
well. One more reason for choosing these three models above is 
they all have the ability to find out important features through 
recursive features elimination at the step of features selection. 
These models are suitable for large datasets, especially in this 
case. To produce the massive training and testing datasets, a 
window size of 1028 samples was employed to glide along with 
each signal [26]. Moreover, there is very little pre-processing to 
be done when applying the proposed model. On the other hand, 
support vector machine was also applied to see the difference in 
performance when using an inappropriate classification model. 
All of these models use the same dataset extracted from the 
time domain and frequency domain through the feature 
extraction step based on 14 statistical indexes. The calculation 
of indexes in the time domain are presented from Eq. (3) to Eq. 
(10) and indexes in the frequency domain are from Eq. (11) to 
Eq. (16). 

  Root mean square (RMS) =                        (3) 

  Mean (ME) =                                          (4) 

  Standard deviation (SD) =          (5) 

  Max Value (MAX) =                               (6)                  

  Kurtosis (KU) =                       (7) 

      Skewness (SKE) =                       (8) 

Crest factor (CRE) =                         (9) 

Variance (VAR) =                           (10) 
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Energy =                                          (11)    

Spectral Skewness (SS) =                             (12)      

Spectral Kurtosis (SK) =                              (13) 

Root variance frequency (RVF) =      (14)  

Root mean square frequency (RMSF) =           (15) 

Frequency center (FC) =                                       (16) 

After feature extraction, the feature selection step was applied 
to eliminate the redundant features. This study applied the 
feature recursive elimination (RFE) method to rank the feature 
importance for the prediction model [27]. This is an old but fine 
approach to eliminate a small number of features per loop. RFE 
tries to eliminate dependencies and collinearity that may exist in 
the model. The final dataset was then randomly split into 2 
subsets, test data (30% of the dataset) and training data (70% of 
the dataset). All of the working processes of this study are 
briefly represented in Figure 1. 

III. EXPERIMENT SETUP 

A high accuracy 5-Axis trunnion table machining center 
(Tongtai CT-350) with maximum spindle speed of 
15000-20000 rpm was used for the experiment. The workpiece 
was a block of Al6061-T6 which is commonly used in the 
automobile and aerospace industries owing to its high strength 
to weight. An end mill cutter with a diameter of 12 mm, helix 
angle of 26 °, and two flutes was utilized. An accelerometer 
was installed on the support of the spindle assembly to record 
the vibration signal, and also a microphone was fixed near the 
spindle to receive the sound signal. During the experiment, 10 
measurements were carried out in which the CNC machine 
worked in two different modes: stable and unstable cutting 
modes. Figure 2 shows the configuration of the experimental 
setup, and Table I shows the values of the cutting parameters 
for different cutting conditions. The stability lobe diagram 
(SLD) diagram illustrates the relationship between spindle 
speed and cutting depth [28]. It is divided into two regions: 
stable zones and unstable zones, which are separated by a 
barrier formed by a succession of overlapping stability lobes. 
By observing the SLD, we know that the higher depth of cut 
and material removal rate, the more likely the chatter occurs. 
This provides the first realization about cutting conditions and 
it is completely helpful for the signal analysis step. 

Figure 1. Flow chart of proposed milling stability prediction methodology. 

Figure 2. Experiment setup. 

TABLE I 

CUTTING CONDITION 

Spindle speed 

(rpm) 

Cutting depth 

(mm) 

Cutting  

condition 

3000 0.6 stable 

3000 0.8 stable 

3000 1.4 unstable 

3500 0.6 stable 

3500 0.8 stable 

3500 1.4 unstable 

4000 0.6 stable 

4000 0.8 stable 

4000 1.2 unstable 

4000 1.4 unstable 
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IV. SIGNAL ANALYSIS AND FEATURES SELECTION 

Figures 3 to 6 show the sound and vibration signals measured 
under the stable and unstable cutting conditions, respectively. 
Figure 3 (a) to Figure 6 (a) contain the cutting signals collected 
in the time domain, whereas Figure 3 (b) to Figure 6 (b) show 
their Fourier spectra. By observing the signals in the time 
domain, we can realize the difference in amplitude change 
between the stable and unstable conditions. The phenomenon 
of frequency modulation can be clearly observed, but it is hard 
to know the exact frequency that occurs during the cutting 
process. It causes trouble to the feature extraction process 
where we are only able to extract features from the time domain 
and it leads to a low prediction accuracy. Fortunately, the FFT 
illustrates the burst on both sound and vibration spectra which 
show clear signs of change in the cutting condition as well as 
the increase of energy between 5000Hz and 6000Hz. This is 
really effective because from that we know exactly where we 
need to extract features on the frequency domain. The 
improvement of final prediction accuracy by extracting features 
from both the time and frequency domains in section 6 is a 
proof which shows using FFT is absolutely necessary. 

A set of feature list selected from 28 features of vibration and 

sound signals shows the output of feature extraction. RFE 

approach was used to rank the feature importance for the 

classification model. Figure 7 shows the change in accuracy 

based on the number of input features for each model. As 

observed, random forest has the best performance. Its accuracy 

increases to 96,3% at the point of 25 features and it remains 

stable. In the meantime, the XGBoost requires 15 features to 

reach an accuracy around 95,1%, and the decision tree needs 9 

features to reach an accuracy around 94,5%. The SVM has the 

worst performance, which needs 21 features to reach an 

accuracy of 87,4%. There is a thing we can consider that the 

change in accuracy from 10 input features to 28 input features is 

relative small which around 0.01 % to 0.02%. In this case, in 

order to significantly increase the computation time, we can 

trade a little model accuracy. From Figure 7, it is clearly see 

that we can cut off around a half of the input features of 

Random Forest to get the accuracy around 96,0% at 13 features. 

We also can apply the same thing to SVM with 87,1% accuracy 

at 16 features. Figure 7 is a proof to show the necessity of 

feature selection. This is completely effective to reduce 

redundant features that have less contribution to the model. 

Table II shows the feature ranking of each classification model 

by using RFE. Although each model has a different sequence of 

feature ranking, there are a few things in common that can be 

pointed out. Firstly, we can see that features extracted from 

vibration signals always exist on the top of the ranking list. This 

means that the vibration signal (ACC) are more significant than 

the sound signals (MIC) in terms of stability prediction. Time 

domain features such as kurtosis (KU), skewness (SKE), and 

max value (MAX) are always on the top ranking of all 

classification models. However, frequency domain features are 

also necessary to further improve the classification accuracy. 

Figure 3. (a) Time domain response and (b) Fourier spectrum of the vibration signal under the stable cutting condition. 

Figure 4. (a) Time domain response and (b) Fourier spectrum of the vibration signal under the unstable cutting condition. 
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V.CLASSIFICATION RESULT 

Table III shows the difference in classification results of the 
models when extracting features from the time domain and 

combination features from both the time and frequency domain. 
It is observable that the list features extracted from the time and 
frequency domain performed better prediction. The SVM had a 
change in accuracy with an increase from 85% to 87%. The 
average accuracy difference between two set features in 
Decision Tree, Random Forest, and XGBoost are around 1% to 
2%. Table IV illustrate various aspect of classification perform 
measurement. By examining Table IV, we can see that most of 
the measure index of Decision Tree, Random Forest and 
XGBoost achieved above 95%. Random Forest shows the best 
result in most of the prediction result include precision, recall, 
f1-score, and accuracy. Eventhough the accuracy of Random 
Forest and XGBoost shows the same number, we can say that 
Random Forest has better result in milling stability prediction. 
In milling stability, in order to improve the surface quality and  

reduce the tool breakage, we need to reduce the False Negative 
Rate (Miss Detection Rate). Based on that reason, we know that 
recall is the measure index that we need to focus on to evaluate 
which model perform better than others. Eq. (17) shows the 
calculation of recall. 

Figure 5. (a) Time domain response and (b) Fourier spectrum of the sound signal under the stable cutting condition. 

Figure 6. (a) Time domain response and (b) Fourier spectrum of the sound signal under the unstable cutting condition. 

Figure 7. Accuracy change based on number of features selection. 
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where TP means true positive and FN means false negative, 

It is clearly visible from the Figure 9 that the Random Forest 
model has the lowest false negative rate with 0.05% that is 
higher than XGBoost with 0.09%. From Figure 9 The ROC 
curve of Random Forest almost reaches to the perpendicular 
line – the ideal ROC. Corresponding to that is the area under 
curve (AUC) of 0.99 with a low false positive rate and high true 
positive rate. Decision Tree and XGBoost ROC curve illustrate 
the same thing. The SVM (Linear kernel) performed the 
poorest result with 87% of accuracy. The reason for this 
problem is that the dataset has a lot of noise due to the cutting 
process. Furthermore, the data processing method using the 
sliding window method with overlaps 50% makes the dataset 
become larger and target class overlapping. These reasons 
make the computing time of the model is time consuming and 
affect the accuracy of the SVM model. 

VI. OPTIMIZATION 

It is rare that the machine learning model can perform at the 
maximum level just for the first attempt. In order to solve this 
problem, the model has to go through an iterative cycle. The 

process may need to train and assess many models with various 
data setups and techniques, undertake feature engineering 
several times, or even supplement more data. To regulate the 
behavior of an ML algorithm, hyperparameters are knobs or 
settings that may be tweaked before performing a training 
operation. In other words, hyperparameter tuning is searching 
for the right set of features to achieve high accuracy and 
precision. The basic goal of hyperparameter tuning is to 
discover the sweet spot for the model's parameters in order to 
perform better. The world of hyperparameter tuning typically 
has two common approaches, grid search and random search. 
Each of them has its own advantages and drawbacks. The 

Figure 8. Confusion matrix; (a) Decision Tree, (b) Random Forest, (c) XGBoost, 
(d) SVM. 

TABLE II 

FEATURE RANKING BY RFE 

Ranking Decision 

Tree 

Random 

Forest 

XGBoost  SVM 

1 KU_ACC KU_ACC KU_ACC KU_ACC 

2 SKE_ACC RMS_ACC SKE_ACC SKE_ACC 

3 MAX_ACC VAR_ACC MAX_ACC FC_ACC 

4 MEAN_ACC SK_ACC CRE_ACC MAX_ACC 

5 SD_ACC MAX_ACC FC_ACC SS_ACC 

6 CRE_ACC SD_ACC RVF_ACC MEAN_ACC 

7 FC_ACC CRE_ACC SS_ACC SD_ACC 

8 RVF_ACC Energy_ACC SK_ACC Energy_ACC 

9 SS_ACC RMSF_ACC KU_MIC RVF_ACC 

10  RVF_ACC VAR_MIC  SK_ACC 

11  SS_ACC SKE_MIC  RMSF_ACC 

12  SK_ACC FC_MIC  SKE_MIC 

13  RMS_MIC RVF_MIC  FC_MIC 

14  SS_MIC  KU_MIC 

15  SK_MIC  VAR_MIC 

16  SS_MIC 

TABLE III 

ACCURACY COMPARISON BETWEEN TIME DOMAIN FEATURES AND ALL 

FEATURES 

Classification 

report 

Time Domain Features All 

Features 

Accuracy Accuracy 

Decision Tree 92% 94% 

Random Forest 95% 96% 

XGBoost 94% 96% 

SVM 85% 87% 
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random search in most cases outperforms the grid search and its 
computing time is faster, but it does not guarantee the best 
results. This paper used grid search as a tool for the optimization 
process based on the reason that the performance of model 
almost reaches the highest level as it can be, and the search 
space is relatively small. It is possible to make a complete search 
for a given subset of the hyperparameter space. Once all of the 
combinations are evaluated, the models will set parameters that 
give the highest accuracy. From Figure 10, it is clearly seen that 
all of the classification models reach better classification 
accuracy when applying the grid search algorithm. The average 
enhancement of accuracy is around 1%. This is a solid proof that 
the input features we used for the classification model does not 
lead to the best prediction accuracy and the addition of grid 
search is necessary for the model to reach a better result. Table 
V lists the set of features that perform the best accuracy for each 
model. The machine learning process reflects human 

interference as well. There are no predefined guidelines for 
selecting the hyperparameters. Parameters defined in Table.5 
are based on experience and the optimal performance cannot be 
guaranteed. The final accuracy might change due to the 
selection of hyperparameters as well as their search space. The 
more hyperparameter and search space considered for the 
model, the more computing time and power required and this 
will be dealt with in the future work. 

VII. CONCLUSION 

The application of milling process monitoring throughout the 
cutting process can increase the productivity and the tool life. 
The milling process monitoring system not only prevents the 
transition from a stable to an unstable cutting condition in 
advance, but also forecasts the cutting process. This can reduce 

TABLE IV 

CLASSIFICATION MEASUREMENT INDEX WITH ALL FEATURES INPUT 

Classification 

report 

Decision Tree Random Forest XGBoost SVM 

Unstable Unstable Unstable Unstable 

Precision 0.94 0.98 0.97 0.81 

Recall 0.95 0.95 0.91 0.81 

F1-score 0.95 0.96 0.94 0.81 

Accuracy 0.94 0.96 0.96 0.87 

Figure 9. ROC; (a) Decision Tree, (b) Random Forest, (c) XGBoost, (d) SVM. 
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the excessive scrap production during the manufacturing 
process. Previously established milling process monitoring 
systems used complicated signal-processing techniques to 
create and select relevant features for classification. They 
generally created features around the system's resonant 
frequencies to indicate the incidence of chatter. Because the 
resonance frequencies of various CNC machines vary, this is not 
a generic method. In this work, a novel technique for milling 
chatter detection based on the conventional feature engineering 
was suggested. According to the research, we can draw certain 
important conclusions: 

• The traditional feature engineering method was 
designed to classify two states of the milling process: 
stable and unstable states. The features used in this 
research consists of amplitudes in several frequency 
ranges. These sets were determined using the Fourier 
transform. The proposed approach provides good 
accuracy (up to 98% by random forest). 

• Recursive feature elimination is an effective method to 
remove redundant features. This process truly helps to 

know the combination of features for the model to 
obtain the highest prediction accuracy as well as reduce 
the computation time. Based on the result of features 
selection, we also know that the vibration signal is more 
reliable than the sound signals in terms of predicting 
milling stability.  

• Future development of real-time milling process 
monitoring might incorporate a chatter suppression 
technique to create a smart system for chatter 
suppression. In such a case, the monitoring system may 
read the CNC controller information, collect and 
evaluate sensor data, and transmit the control command 
to the automated control interface. Furthermore, the 
milling process monitoring approach described in this 
work is applied to signals recorded by sensors such as 
accelerometers and microphones. These shop floor 
sensors are inexpensive and simple to install.  

• Future work of milling stability should consider the 
interaction between machine tool subsystem to increase 
the machine cutting performances and maximize the 

TABLE V 

THE BEST PARAMETER AFTER USING GRID SEARCH FOR ALL FEATURES INPUT 

Decision Tree Random Forest XGBoost SVM 

criterion: gini criterion:entropy learning_rate:0.25 C:10 

max_depth: 16 max_features:auto max_depth:5 Gamma:0.001  

min_samples_leaf: 2 n_estimator:600 min_child_weight:5  

min_samples_split:2  warm_start: true n_estimator:600  

Figure 10. Classification result. 
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removal rate. Moreover, the application of deep learning 
models [29] such as ANN, CNN has full potential in this 
case because it can handle noisy data without much 
pre-processing and save more time and computational 
power. An IOT architecture could also be applied [30]. 

APPENDIX 

Nomenclature 

Acronyms 

DFT    Discrete Fourier Transform 

FFT    Fast Fourier Transform 

ML    Machine Learning 

DT    Decision Tree 

RF    Random Forest 

XGBoost  Extreme Gradient Boost 

SVM   Support Vector Machine 

RMS   Root Mean Square 

ME    Mean Value 

SD    Standard Deviation 

MAX   Maximum Value  

KU    Kurtosis Value 

SKE    Skewness Value 

CRE   Crest Factor 

VAR   Variance 

SS    Spectral Skewness  

SK    Spectral Skewness 

RVF   Root Variance Frequency 

RMSF   Root Mean Square Frequency 

FC    Frequency Center 

RFE    Recursive Feature Elimination 

ACC   Accelerometer  

MIC    Microphone 

SLD    Stability Lobe Diagram 

ROC   Receiver Operating Characteristic 

AUC   Area Under Curve 

ANN   Artificial Neural Network  

CNN   Convolutional Neural Network 

TP    True Positive  

FN    False Negative 

Symbols 

ωN    The Primitive Root of Unity 

n     The sample size in time responses 

x̄     The mean value of observation 

xi     Element value 

fi     Frequency 

Xfc    Value of Frequency Center 

Xk  Function of the wave number k by carrying a 
Fourier Transform 
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