
International Journal of iRobotics 

Vol. 5, No. 2, 2022 

1 

Abstract—Simultaneous Localization and Mapping (SLAM) is 
widely used in Autonomous Mobile Robot (AMR) applications. 
Most SLAM methods are applied in a static environment, which 
significantly limits their application in real-world settings. This 
study proposes an RGB-D SLAM based on ORB-SLAM2 that is 
more robust to dynamic environments and is implemented in real-
time. Object detection and multi-view geometry is used to detect 
and prevent moving objects impacting system, our SLAM system 
without the need for special hardware such as GPU. In order to 
verify the proposed method, this study conducts experiments using 
the public TUM dataset and real environment also compares the 
system time cost with that for other SLAM applications in 
dynamic environments. 

 Index Terms—simultaneous localization and mapping (SLAM), 
dynamic environment, object detection, multi-view geometry. 

I. INTRODUCTION 

imultaneous Localization and Mapping (SLAM) is a process 
by which a robot uses different sensors to construct a map of 

the environment and, calculate its position in the environment. 
The low cost of visual sensors, means that many SLAM is use 
visual sensors give good result, such as the LSD-SLAM [1], the 
ORB-SLAM2 [2], and the RTAB-MAP [3].  

Depending on whether to visual odometry is used to extract 
the feature points [4], visual SLAM is classified as direct and 
indirect. The direct method is assumes that the gray level for a 
three-dimensional point that is measured at each angle of view 
does not change. The indirect method, which is also called 
feature-based method, is currently the most commonly used 
method. The feature-based method selects representative points 
from the image and uses these feature points to represent the 
description in the image. The change in the pose of the camera 
per unit time is calculated using the displacement of the feature 
points in the continuous image. 

Most Visual SLAM apply to a static environment [5] [6]. For 
the localization process for Visual SLAM, feature points are 
landmarks, so landmarks must be static for SLAM. However, 
this assumption is not valid for a real environment. There are 
many moving objects in the world, such as walking people and 
moving cars, and moving landmarks in dynamic environments 
affect the accuracy of localization and mapping. 

In order to increase the accuracy of SLAM in dynamic 
environments, dynamic objects in the scene must be detected, 
prevented from being tracked. Some dynamic SLAM relies on 
purely geometrical approaches to detect moving objects but 
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these usually fail to detect the previous dynamic object, such as 
sitting people or parked car, if their initial state is stationary, so 
the odometry drifts or there are wrong loop closures. We can 
rely neural networks, such as object detection and semantic 
segmentation, to give information about the objects in the scene. 
This study proposes a RGB-D SLAM framework for dynamic 
environments and runs it in the robot operating system (ROS) 
[7]. This method selects reliable feature points to adapt to a 
dynamic environment. The main contributions of this paper are: 

 The proposed SLAM method is more accurate than ORB-
SLAM2 in highly dynamic environments. 

 The proposed method runs in real-time and performs well in 
a dynamic environment. 

In this paper, Section II reviews the advantages and 
disadvantages of related SLAM work. Section III introduces the 
proposed system in detail. Section IV gives the results of 
experiments using this method for a public dataset. The 
conclusion is present in section V. 

II. THE ADVANTAGES AND DISADVANTAGES OF RELATED 

VISUAL SLAM 

A. Visual SLAM 

Davision et al. developed the first Visual SLAM system that 
used a monocular camera: MonoSLAM [8]. Klein et al. [9] 
developed the first Visual SLAM that that uses keyframe bundle 
adjustment in 2007, using two independent threads for mapping 
and tracking. This was also the first time that visual SLAM 
dissociated the concept of front and back ends. Mur-Artal et al. 
[10] proposed a system with three threads, which is called ORB-
SLAM, and can be use with monocular, stereo, and RGB-D 
camera. 

Visual SLAM uses either direct or feature-based methods. 
Feature-based methods use image feature extraction and 
matching to calculate the pose, loop closing and bundle 
adjustment. Examples of feature point Visual SLAM methods 
include RGB-D SLAM [11] and ORB-SLAM. Direct methods 
optimize the image pixel intensity. Kinect-Fusion [12], used 
only depth data to create a dense model and used ICP to track 
the camera pose. DSO [13] combines photometric error 
minimization with camera motion optimization to obtain visual 
odometry. There are also semi-direct systems, such as LSD-
SLAM, which apply the direct method to a semi-direct 
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monocular SLAM. Features need not be calculated and a semi-
dense map is constructed. 

B. Visual SLAM in Dynamic Environments 

 Most visual SLAM systems assumed that the environment 
is static, so they cannot be used in a dynamic environment. 
Processing dynamic objects in the scene usually involve treating 
them as noise and using direct or feature-based filtering methods. 
ReFusion and StaticFusion are two direct methods for RGB-D 
cameras [14, 15]. ReFusion combines the TSDF model 
representation of KineticFusion with pure geometric methods to 
filter dynamic content. 

Dib et al. proposed a dense visual odometry system for RGB-
D cameras in dynamic environments using RANSAC [16]. Kim 
et al. determined the static part of the scene by computing the 
difference between the continuous depth image that is projected 
over the same plane [17]. Feature-based methods include that of 
the study by Li and Lee, which used depth edge points. These 
have an associated weight representing the probability of 
belonging to dynamic objects [18]. 

However, this method cannot detect a priori dynamic objects 
in a scene if they are static, such as cars or people. DS-SLAM 
addresses the problem of detecting dynamic objects by 
combining optical flow and semantic segmentation [19]. SOF-
SLAM is a feature-based method developing ORB-SLAM2, 
which combines semantic segmentation and epipolar geometry 
to filter outliers [20]. 

DynaSLAM uses Mask R-CNN instance segmentation to 

obtain pixel-wise information for prior dynamic objects, in order 

to remove outliers in the scene [21, 22]. DynaSLAM is highly 

accurate and robust, but it does not perform in real-time because 

it involves a high computational burden. 

Object detection can be performed in real-time. A previous 

study compared instance segmentation and object detection to 

filter priori dynamic features, in order to determine which is 

fastesr and most accurate [23]. A Mask R-CNN and YOLO were 

respectively used for instance segmentation and object detection, 

which is much improved.  

C. Octomap 

A octomap is a flexible map that can be updated at any time. 

An octree is shown in Fig. 1. A large cube is continuously 

divided equally into eight pieces until it becomes the smallest 

square. The entire large square is regarded as the root node and 

the smallest block is considered the leaf node. The node in the 

octree stores information about whether it is occupied, and 0 

indicates blank status, and 1 indicates occupation status. 

  

Fig. 1 Schematic diagram of an octree 

III. SLAM SYSTEM AND ALGORITHM INTRODUCTION 

This section details the proposed SLAM system. The 
framework for the method and the object detection network are 
described, and the implementation is detailed. 

A. Overall workflow 

The proposed method uses an object detector into the 
system and outputs include a bounding box and an object 
category. Our approach is based on ORB-SLAM2. ORB-
SLAM2 is a 3D localization and mapping algorithm that uses 
ORB features. The advantage of ORB-SLAM2 is that it has 
good results in processing speed tracking and mapping 
accuracy. Compared to the original ORB-SLAM2, we have 
added three modules:  

1). Object detection is added to determine the categories 

of objects in an image before tracking  

2). A module to determine whether the feature points are 

dynamic is used to determine if these feature points can 

be used when tracking. 

3). An octomap is constructed and used for more advanced 

tasks, such as navigation. 

The framework for the proposed system is shown in Fig. 2, 
which mainly includes five threads. The object detection thread 
is used to calculate the object’s category in the image. The 
object is detected first for each input frame. The tracking thread 
firstly extracts the ORB feature points, and feature points are 
associated with the category information. Using the category of 
the feature points and multi-view geometry, the feature points 
on dynamic objects are define and culled. When the tracking 
module determines whether the frame is a key frame, the system 
creates the a dense map. 
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Fig. 2 The framework for the proposed method. Compared to the original ORB-SLAM2, a tracking thread, an object detection thread are added and a dense 

map thread is created (White words on blue background). The feature points considered dynamic will not be used for tracking. 

B. Object detection 

The most important task of object detection is to efficiently 
and accurately identify and locate objects in categories from 
images. Object detection is used in many fields, such as 
automatic driving, video surveillance, and intelligent and 
industrial defect detection in products. The proposed system 
uses the lightweight object detection YOLO-Fastest. The object 
detection network is trained on the MS COCO dataset and can 
detect 80 classes and acquire real-time, high quality, and 
persuasive object detection results. 

YOLO-Fastest runs in real-time on low-cost devices. An 
RGB frame is the input and a corresponding bounding box is 
the output. These bounding boxes label the area in the frame 
with several predefined categories, such as persons, cars or 
clocks. These bounding boxes are used by visual SLAM to 
separate dynamic objects. A person, car, or bicycle are regarded 
as prior dynamic objects for the proposed system. 

C. Feature point reprojection 

After object detection, all prior dynamic objects are detected, 
and the position of feature points in the bounding box is 
determined. If all of the feature points in the bounding box are 
removed directly, two problems ensue: 

1). Some feature points do not belong to dynamic objects, 

and reliable feature points are removed, show in Fig.  (a). 

2). The bounding box is huge if a dynamic object is too close 

to the camera. If all feature points are removed directly, 

too few feature points remain in the image, so the system 

fails to track, as shown in 3 (c). 

This method is not appropriate, so feature point reprojection 
is used. Fig. 4 shows the scheme for this method.  

The RGB frame is projected onto the depth image and the 
depth value for all feature points in the bounding box is 
calculated. Then we take the mode of the depth value after the 
statistics and treat the feature points with similar depth values 
as on the dynamic object, and the others are static. The result of 
feature point reprojection is shown in Fig. 3. 

  

(a) (b) 

  

(c) (d) 

Fig. 3 All feature points in the bounding box are removed so: (a) Reliable 

points are removed. (b) The detection bounding box. (C) Subjects are too 

close to the camera so tracking is lost (d) The detection bounding box. 
 

RGB RGB 

Depth

 

Fig. 4 Feature points reprojection. Green points are feature points that 

belong to a static object, and red points are feature points that belong to a 

dynamic object. 

 

 



Chen et. al.  
Journal of Robotics Society of Taiwan (International Journal of iRobotics) 

4 

  

(a) (b) 

Fig. 3 (a) Result after feature points reprojection and (b) The detection 

bounding box. 

D. Removal of dynamic feature points using multi-view 

geometry 

Most dynamic objects are removed and are not used for 
tracking and mapping using the YOLO-fastest. However, some 
objects cannot be detected because they are not prior dynamic 
objects that are movable. Examples include a chair that 
someone is moving. 

For each input frame, the previous keyframe is used. The 
method for selecting a keyframe is the same as that for ORB-
SLAM2. The projection of each keypoint x from the previous 
keyframe onto the current frame is calculated to determine the 
keypoint x' and the depth projection zproj. ORB-SLAM2 
determines the keypoint x using ORB feature extraction. For 
each keypoint x, the corresponding 3D point is X. The angle α 

between  𝑋𝑥  and 𝑋𝑥′ , which is the parallax angle, is then 
calculated. If this angle is greater than 15°, the point is obscured 
so it is ignored. For the TUM dataset, a static object with a 
parallax angle that is greater than 15° is mistaken for a dynamic 
object because there is a different viewpoint. The depth z’ of 
the keypoint x' of the current frame is measured using the depth 
and compared with zproj. If the difference Δz = zproj – z' exceeds 
a threshold τz, the keypoint x' is deemed to be a dynamic object. 
The architecture is shown in Fig. 4. A velue for τz = 0.6m is a 
reasonable choice, as shown by experiment. 

 

Fig. 4 Keypoint x from Key Frame (KF) is projected into Current Frame 

(CF) to give the result x' with depth z'. The project depth zproj is then 

calculated. If the difference Δz = zproj – z' is greater than threshold τz the 

feature points are deemed to be dynamic. 

E. Removal of Outliers 

Object detection and multi-view geometry address each 
other's disadvantages, so their combination allows accurate 
tracking and mapping. When the images pass through the object 
detection process and multi-view geometry, the keypoints for 
the dynamic object are removed from the image. The 
segmentation mask uses a geometric method if an object is 
detected using both methods. The result is shown in Fig. 5. 

  

Fig. 5 Comparison of the results :(a) ORB-SLAM2 and (b) the proposed 

method. 

F. Creating an Octomap 

The mapping system has three nodes, a driver node, a pose 
estimation, and a mapping node, as shown in Fig. 6. The first 
node is the driving node, which collects data from the camera. 
The second node uses the proposed method for pose estimation. 
The last node is used to construct a map by receiving the image 
and pose data from the first and second nodes to perform point 
cloud splicing and construct an octomap. 

Driver

Node

Mapping

Node

RGB Image

Depth Image

RGB Image

Depth Image

Pose

PointCloud Map

Pose

Estimated

Realsense

Octomap

 

Fig. 6 The architecture for creating an octomap 

IV. EXPERIMENT RESULTS 

This section details the experimental results to illustrate the 
accuracy of the proposed method. The system uses the public 
TUM dataset, and the results are compared with those for an 
open-source SLAM method that is also suited to dynamic 
environments: DynaSLAM. The system with the original ORB-
SLAM2 is used to illustrate the improvement using the 
proposed method in a dynamic environment. Each sequence is 
run five times and the median result is shown. The experiments 
are performed on a PC with an Intel i5 CPU, 16GB memory, 
without a GPU. 

A. TUM dataset 

TUM Computer Vision Lab features the TUM dataset. It is 
composed of 39 sequences that are recorded using a Microsoft 
RGB-D Kinetic camera for different indoor scenes. The camera 
moves along the xyz axis. For the sequence that is named sitting, 
two people are sitting in front of a desk and chatting, so the 
degree of motion is low. For the walking sequence, two people 
walk around a desk. This dataset is highly dynamic, so it is 
challenging for SLAM systems. The dataset provides the 
ground truth for the camera trajectory, which is used to 
determine the performance of the proposed method. 

The results for the TUM dynamic datasets are compared 
with those for ORB-SLAM2. The absolute translation error 
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(ATE) and relative pose error (RPE) are used to compare. The 
ATE measures the global consistency, and the RPE measures 
the translational and rotational drift. 

The RMSE, values are calculated as: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑒𝑠𝑡,𝑖 − 𝑃𝑔𝑡,𝑖)

2𝑛
𝑖=1

𝑛
 (1) 

 

where n represenst the number of sampling points; Pest is the 
calculated trajectory and Pgt is the trajectory ground truth. The 
RMSE value demonstrates the robustness of the system. This 
study also shows how better the proposed approach is than the 
original ORB-SLAM2.  

The values are calculated as: 

𝐼 = (
𝑒𝑜𝑟𝑏 − 𝑒𝑝𝑟𝑜𝑝𝑠𝑒𝑑

𝑒𝑜𝑟𝑏
) × 100% (2) 

where I represents the improvements due to the proposed 
method, compared to the ORB-SLAM2 result, 𝑒𝑜𝑟𝑏 is the 
RMSE value for ORB-SLAM2 and 𝑒𝑝𝑟𝑜𝑝𝑠𝑒𝑑 is the RMSE value 

for the proposed method. Table I -  

Table III show the experimental result for the experiment. Fig. 
9 - Fig. 11 show the ATE and RPE results compared to ORB-
SLAM2. The calculated trajectory is shown as a blue line in 
each figure, and the ground truth is shown as a black dashed 
line. 

TABLE I THE ABSOLUTE TRAJECTORY ERROR (ATE) FOR ORB-SLAM2 AND THE PROPOSED METHOD FOR THE TUM DATASET (UNITS: M) 

Sequences 
ORB-SLAM2 Proposed method Improvements 

RMSE RMSE RMSE 

fr3_walking_xyz 0.6868 0.0181 97.36% 

fr3_walking_rpy 3.1395 0.7704 75.46% 

fr3_walking_static 0.5190 0.0153 97.05% 

fr3_walking_half 0.6567 0.0578 91.19% 

fr3_sitting_xyz 0.0078 0.0075 3.84% 

TABLE II THE TRANSLATION DRIFT (RPE) FOR ORB-SLAM2 AND THE PROPOSED METHOD FOR THE TUM DATASET (UNITS: M/S) 

Sequences 
ORB-SLAM2 Proposed method Improvements 

RMSE RMSE RMSE 

fr3_walking_xyz 1.0001 0.0261 97.39% 

fr3_walking_rpy 0.9315 0.3312 64.44% 

fr3_walking_static 0.5190 0.0273 94.74% 

fr3_walking_half 1.0045 0.0844 91.60% 

fr3_sitting_xyz 0.0122 0.0109 10.66% 

 

TABLE III THE ROTATION DRIFT (RPE) FOR ORB-SLAM2 AND THE PROPOSED METHOD FOR THE TUM DATASET (UNITS: DEG/S) 

Sequences 
ORB-SLAM2 Proposed method Improvements 

RMSE RMSE RMSE 

fr3_walking_xyz 19.3829 0.6641 96.57% 

fr3_walking_rpy 15.2400 5.3749 64.73% 

fr3_walking_static 9.2761 0.5953 93.58% 

fr3_walking_half 22.7469 1.3020 94.28% 

fr3_sitting_xyz 0.3552 0.3319 6.56% 

Table I -  

Table III show that the proposed method gives significantly 
better results for highly dynamic scenes than ORB-SLAM2. 

However, the difference is less for a low dynamic scene 
(fr3_sitting_xyz). For low dynamic scenes, the feature points 
on the object are used, and they do not affect the accuracy of 
tracking, so the results for both methods are similar.
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(a) (b) 

Fig. 7 Ground truth and estimated trajectory for the sequence fr3_walking_xyz for: (a) ORB-SLAM2 and (b) the proposed method 

 

  
(a) (b) 

Fig. 8 Ground truth and estimated trajectory for the sequence fr3_walking_half for: (a) ORB-SLAM2 and (b) the proposed method 

 

  
(a) (b) 

Fig. 9 Ground truth and estimated trajectory for the sequence fr3_sitting_xyz for: (a) ORB-SLAM2 and (b) the proposed method 
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B. Real environment 

In Real Environment, We set two scenarios. One is straight 
another is rotated and use keyboard control the AMR for point-
to-point movement. The AMR we used is developed by TECO 
are shown in Fig. 10. First, we set the camera parameters, as 
shown in Table IV and then substitute the camera parameters 
into the parameters of the SLAM proposed in this study, as 
shown in Table V.  

 

Fig. 10 AMR used in real environment 

 
Table IV Camera parameters 

depth width 1280 

depth height 720 

depth fps 30 

color width 1280 

color height 720 

color fps 30 

 
Table V SLAM parameters 

scaleFactor 1.2 
nFeatures 1500 
nLevels 8 

iniThFAST 20 
minThFAST 7 
camera_fps 30 
color_fps 30 
TheDepth 40 

depth_map_factor 1000 
camera_fx 920.79 
camera_fy 921.10 
camera_cx 663.68 
camera_cy 374.82 

camera_baseline 15.50 

 

1) Scenario straight 
In scenario straight we use keyboard control AMR to move 

from point A to B as shown in Fig. 11 and there is a person 
walking back and forth in front of the AMR. The AMR’s 
perspective is shown in Fig. 12. Fig. 13 shows the comparison 
between the ORB-SLAM2(green line) and the poses of the 
proposed method (red line) and the groundtruth(blue line) in 
this scenario. The absolute trajectory error compared with 
ORB-SLAM2 as shown in Table VI. 

 

Fig. 11 AMR start point(A) and stop point(B) 
 

  

(a) (b) 

Fig. 12 AMR’s perspective at different times in scenario straight; (a)t=6s, 

(b)t=8s 
 

 
Fig. 13 ORB-SLAM2 and the proposed method for ground truth and 

estimated poses in scenario straight 

 

TABLE VI THE ABSOLUTE TRAJECTORY ERROR (ATE) FOR ORB-SLAM2 

AND THE PROPOSED METHOD FOR SCENARIO STRAIGHT 

Sequences 
ORB-SLAM2 

Proposed 

method 
Improvements 

RMSE RMSE RMSE 

Straight 18.47 2.06 88.85% 

 

2) Scenario rotate 
In scenario rotate, AMR is control by keyboard from point 

A to B and then turn left and walk to point C as shown in Fig. 
14. While AMR is walking, someone walk back and forth in 
front of the AMR. The AMR’s perspective is shown in Fig. 15. 
Fig. 16 shows the comparison between the ORB-SLAM2(green 
line) and the poses of the proposed method (red line) and the 
groundtruth(blue line) in this scenario. The absolute trajectory 
error compared with ORB-SLAM2 as shown in Table VII. 
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Fig. 14 AMR start point(A), rotation point(B) and stop point(C) 

 

  
(a) (b) 

 

 

(c)  
Fig. 15 AMR’s perspective at different times in scenario rotate; (a)t=15s, 

(b)t=25s, (c)t=40s 

 

 
Fig. 16 ORB-SLAM2 and the proposed method for ground truth and 

estimated poses in scenario rotate 

 

 

 

 

TABLE VII THE ABSOLUTE TRAJECTORY ERROR (ATE) FOR ORB-SLAM2 

AND THE PROPOSED METHOD FOR SCENARIO ROTATE 

Sequences 
ORB-SLAM2 

Proposed 

method 
Improvements 

RMSE RMSE RMSE 

Rotate 39.40 cm 4.04 cm 89.75% 

C. The trade-off between real-time and accuracy 

Most SLAM methods for a dynamic environment increase 
accuracy but cannot operate in real-time. This makes it 
challenging to perform on AMR. The proposed method 
maintains accuracy and operates in real-time. All tests are 
performed using a PC with an Intel Core i5 CPU and 16GB 
memory running on Ubuntu Linux 16.04LTS. The result for 
DynaSLAM are shown in Table VIII. The result in Table VIII., 
show that the proposed method gives a significantly better 
system tracking time without much sacrifice in accuracy. 

D. Build an octomap 

We used the method described in section III. And run on 
TUM dataset (fr1_room) to test our mapping effect. The result 
is shown in Fig. 17. The octomap, is used for more advanced 
tasks such as obstacle avoidance. 

 

Fig. 17 The octomap result running in the fr1_room 

 

V.  CONCLUSIONS 

This study proposes a SLAM method that is suited to a 
dynamic environment. The proposed system is based on ORB-
SLAM2. Object detection, feature points reprojection and 
multi-view geometry is added. The object detection and multi-
view geometry information is used to filter out and remove 
outliers. Only reliable feature points are used to calculate the 
trajectory. The result of experiments using a public dataset from 
TUM Computer Vision Lab and test in real environment 
demonstrate that the proposed system performs well in a highly 
dynamic environment. In the future, if we upgrade the 
hardware , we can try to use two-stage network to remove prior 
dynamic object. When building a map with two-stage networks, 
semantic information can be added to provide more information 
for the map to facilitate subsequent development and use. 
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TABLE VIII COMPARE TRACKING TIME AND ATE TO DYNASLAM. 

Sequences 

Proposed method DynaSLAM 

Track each frame time 

(s) 

RMSE 

(cm) 

Track each frame time 

(s) 

RMSE 

(cm) 

fr3_walking_xyz 0.1578 1.81 4.9089 1.51 

fr3_walking_rpy 0.1736 21.60 7.7722 15.12 

fr3_walking_static 0.2976 1.53 6.2772 0.71 

fr3_walking_half 0.3150 5.78 6.8157 2.87 

fr3_sitting_xyz 0.2223 0.75 5.4957 0.63 
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