
International Journal of iRobotics 

Vol. 5, No. 2, 2022 

29 

Abstract—The probabilistic flow control method (PFC) can 
generates behaviors of robots that compensate information 
uncertainty in POMDP (partially observable Markov decision 
process) problems. We improve PFC and verify it on an actual 

robot in this paper. The original PFC is a modification of the QMDP 

value method. The QMDP value method guides a robot based on the 
expected values of cost reduction under the probability 
distribution of state estimation. PFC biases the expected value 
“optimistically.” This bias makes a robot behave as if searching a 
goal of a task. In this paper, we make the intensity of bias 
adjustable. With appropriate parameters of the intensity, we find 
that robots behave more effectively than the original PFC method. 
Then the improved PFC method is implemented on an actual 
mobile robot that has poor self-localization ability. The robot 
shows goal search behavior that compensates the uncertainty of 
self-localization with the improved method. 

 Index Terms—probabilistic flow control, uncertainty 
compensation, Bayes estimation, optimal control 

I. INTRODUCTION 

 lack or uncertainty of information is an unfavorable thing 
to robots and creatures. However, it is interesting that the 

uncertainty produces a huge variety of behaviors of creatures. 
For example, a person who wants to go to his/her bedroom in 
darkness may walk along a wall carefully by checking the 
location with his/her hands. As another example, we can grasp a 
can on a table without looking at it by sweeping the table with a 
hand. 

In robotics, a good example of this behavior can be seen in 
the work of Roy et al. [1]. By using the method named the 
coastal navigation, a mobile robot with a range sensor goes to a 
destination along walls so as not to lost its location. This method 
is a solution of a problem in partially observable Markov 
decision processes (POMDPs) [2]. We can also find some 
behaviors of robots that deal with uncertainty in the studies of 
POMDPs [3], [4], [5]. 

As a solver of POMDPs, we have also proposed the 
probabilistic flow control method (hereinafter called PFC). As 
mentioned later, this method generates behaviors of a mobile 
robot that compensate a lack of information [6]. PFC enables 
robots to perform tasks that demand more accuracy of 
information than that provided by their sensors. For example, it 
is usable to generate adjustment motion of a robot after it cannot 
stop a target position. PFC uses a modified formula of the QMDP 
value method (hereinafter called QMDP) proposed in [7] by 
Littman et al. It was a discovery that the behavior of a robot 
changed drastically though the modification was small. 

In this paper, we tackle with the following two issues. The 
former is an improvement and generalization of PFC. We 
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introduce a parameter that unifies QMDP, PFC and its extensions. 
This improvement increases the cases where PFC works 
effectively. The latter is to verify that PFC and its extensions 
work on an actual robot. In our previous works, PFC is only 
verified on simulations. We observe the phenomena caused by 
PFC and its extensions in the actual world. 

The contents of this paper are as follows. Related studies are 
introduced in Sec. II. A problem that belongs to POMDPs is 
given in Sec. III. The extended PFC is applied to the problem in 
Sec. IV. We have experiments in a simulator and an actual 
environment respectively in Secs. V and VI. We conclude this 
paper in Sec. VII. 

A part of this work has been already published in our 
conference paper [8]. In this previous paper, a manipulator is 
simulated with the extended PFC. In this paper, the extended 
PFC is precisely defined and applied to an actual mobile robot. 
We discuss the characteristics of the proposed method with the 
simulation and experimental results in [8] and this paper. 

II.  RELATED WORKS 

The main issue on POMDPs is how to handle a huge search 
space of a system [9]. A decision making method for POMDPs 
must provide a map Π: ℬ → 𝒜 to a robot. The set ℬ contains all 
patterns of how the robot recognizes the state of the system. The 
pattern is usually represented by a belief state, which is a 
probability distribution in the state space. ℬ  becomes an 
uncountable set that contains all patterns of the probability 
distributions. 𝒜 is a set of available actions. Π is called a policy. 
It is a map from a belief state in ℬ to an action in 𝒜. 

In such a huge space as ℬ, search methods are effective for 
obtaining a partial policy [10], [5]. In search methods, a finite 
number of nodes are chosen from ℬ. They are connected from a 
current state of the robot to a goal. 

When we want to calculate beforehand a global policy that 
answers an action in response to any belief state, we need to use 
something other than search methods. For this case, AMDP 
(augmented Markov decision process) methods [11] are 
available. The coastal navigation [1] mentioned in the 
introduction is classified in this approach. In AMDP methods, 
the dimension of ℬ is reduced for calculation within a time limit. 
The probability distribution of a belief is parameterized and ℬ is 
represented by some variables. In [12], ℬ  is reduced by 
sampling of belief states and used the value iteration algorithm 
[13], [14] for planning. In [15], [16], [17], sampling of belief 
states is done in the middle of value iteration. 

In both cases of search methods and AMDP methods, how 
to define a state transition model in a belief space is a problem. 
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If we can define it in ℬ, a POMDP problem can be solved as a 
Markov decision making (MDP) problem. In general, however, 
when or where information for state estimation can be obtained 
is unknown. The coastal navigation is an exceptional case where 
the statistical nature of range sensors in each belief state is 
relatively predictable. 

As a different approach, a decomposition of a POMDP 
problem into the following sub-problems is worth considering: 

• an offline planning problem in which a policy is 
obtained under the assumption that a state is certainly 
known, and 

• an online decision making problem in which 
appropriate actions are solved under uncertainty based 
on the policy obtained in the offline problem. 

In short, we do not care the uncertainty at the offline phase, 
whereas it is considered when the robot is working. Though this 
approach can be applied only to a subset of POMDPs, a certain 
number of problems on robotics belong to this category. 

We handle this decomposed POMDP problem in this paper. 
As a solver of this problem, QMDP has been proposed by Littman 
et al. three decades ago [7]. Then we have effectively used QMDP 
in real-time environments of robot soccer with particle filters [4], 
[18]. QMDP cannot perform multi-step decision making for 
dealing with uncertainty. It only gives one step reflective action. 
In [6], however, we have generated multi-step decision by PFC, 
which is a small modification of QMDP. 

In state-of-the-art research, more complex problems are 
discussed. When there are more than one agents in a system, the 
problem is referred to as Dec-POMDP (decentralized POMDP) 
[19]. If conflicts of interest exist among agents, the problem 
belongs to a more difficult category called Partially Observable 
Stochastic Games (POSGs) [20]. These problems are too 
difficult to solve with a general method. A problem in these 
classes may be solved based on special conditions of the 
problem or may be solved with combinations of methods in the 
lower classes as POMDPs or MDPs. In those cases, there is a 
possibility that the methods discussed in this paper can be used 
as a part of the solver. 

III. PROBLEM DEFINITION 

A. A system with state uncertainty 

We assume a time-invariant system in which a robot decides 
its action for finishing a task. A state of the system is 
represented as 𝒙. We define a set of states: 𝒳 and a set of final 
states: 𝒳f ⊂ 𝒳. The state 𝒙 is not directly observable from the 
robot. The robot must estimate it through its perception. 
However, there is an exception that the robot is notified or can 
sense whether the task is finished (𝒙 ∈ 𝒳f) or not. 

We define a set of actions: 𝒜 = {𝑎1, 𝑎2, . . . , 𝑎ℎ} . The 
number of actions ℎ is finite. A robot can choose one of them at 
each time step 𝑡 = 0,1,2, . . . , 𝑡f  − 1. Here 𝑡 = 0 and 𝑡f are the 
start and the end time steps of the task respectively. 𝑡f is not 
fixed. 

When an action 𝑎(𝑡) is chosen by the robot at time 𝑡, the 
state is changed from 𝒙(𝑡) to 𝒙(𝑡 + 1). Since we handle a time-
invariant system, the concrete value of 𝑡  is not important in 
many cases for discussion. In that case, the three symbols 

𝒙(𝑡), 𝑎(𝑡) and 𝒙(𝑡 + 1) related to a state transition are written 
as 𝒙, 𝑎 and 𝒙′ respectively. 

We assume that each state transition is noisy. If a state 
transition occurs from 𝒙 by 𝑎, the posterior state 𝒙′ is different 
in each case. We assume that we can know the tendency of 
differences as the following probability distribution: 

𝑝(𝒙′ | 𝒙, 𝑎), 

which is called the state transition pdf (probability distribution 
function). We abbreviate this function or its value as 𝑝𝒙𝒙′

𝑎 . 

B. Control 

The purpose of the task is given by the following 
summation: 

𝐽[𝒙(0), 𝑎(0), 𝒙(1), 𝑎(1), . . . , 𝒙(𝑡f  − 1), 𝑎(𝑡f  − 1), 𝒙(𝑡f)]   

= 𝑉(𝒙(𝑡f))  + ∑ 𝑟𝒙𝒙′
𝑎𝑡f −1

𝑡=0 ,                                                     (1)  

where 𝑟𝒙𝒙′
𝑎 ∈ ℝ is the cost of a state transition. The sequence of 

state transitions that minimizes 𝐽  is regarded as an optimal 
control. 𝑉(𝒙)  (𝒙 ∈ 𝒳f ) is a value of a final state. All tasks 
discussed in this paper are formulated as a basic control 
problem in which the number of time steps 𝑡f is minimized. The 
cost 𝑟𝒙𝒙′

𝑎  and the value of final states are fixed to one step and 
zero respectively. 

Under the conditions, we can expect the existence of the 
optimal policy:  

                                                Π∗: 𝒳 → 𝒜                                      (2)     

toward (1). Π∗gives the best action 𝑎∗ = Π∗(𝒙) at any state 𝒙 to 
minimize 𝐽. There also exists the function 𝑉∗: 𝒳 → ℝ giving 
the expected value of 𝐽 for each state. 𝑉∗ is called the optimal 
value function. The value 𝑉∗(𝒙) is not changed whether 𝒙 is 
the initial state or a halfway state. The values of final states 
𝑉∗(𝒙) (𝒙 ∈ 𝒳f) are included in this function.  

In this paper, we assume that the robot knows the optimal 
value function 𝑉∗. Moreover, it knows the state transition pdf 
𝑝𝒙𝒙′

𝑎  and the cost 𝑟𝒙𝒙′
𝑎  of the task. In this case, the optimal policy 

can be derived as 

          Π∗(𝒙) = argmin
𝑎∈𝒜

∫ 𝑝𝒙𝒙′
𝑎 {𝑉∗(𝒙′) + 𝑟𝒙𝒙′

𝑎 }d𝒙′
𝒙′∈𝒳

.            (3) 

C. State recognition 

The robot imperfectly recognizes the state through the 
belief 𝑏: 𝒳 → ℝ, which is a probability density function. In this 
paper, the imperfectness or uncertainty of information means 
that 𝑏 is a multi-modal distribution, or that its variance is too 
large for decision making. 

We assume that the belief 𝑏 is calculated by a Bayes filter 
[11]. In a self-localization problem, a particle filter [21] is 
typically used as a Bayes filter. 

A Bayes filter changes the belief when the robot takes an 
action or when it obtains sensor measurement. After the robot 
takes an action, the belief is updated by 

                          𝑏(𝒙′) = ∫ 𝑝𝒙𝒙′
𝑎 𝑏(𝒙)𝑑𝒙.

𝒙∈𝒳

                                 (4) 

This equation represents the flow of the belief 𝑏 caused by the 
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action 𝑎. 

When the robot obtains sensor measurement or useful 
information 𝒛 for the state estimation, the belief 𝑏 is updated 
based on the Bayes theorem [22]: 

                   𝑏(𝒙|𝒛) = 𝑃(𝒛|𝒙)𝑏(𝒙).                                   (5)                  

𝑏(𝒙|𝒛) is the belief after 𝒛 is known. 𝑃(𝒛|𝒙) is a likelihood 
function, which translates information 𝒛 to information in the 
state space. Likelihood functions are implemented to the robot 
as previous knowledge.   is a constant that makes the 
summation of 𝑏(𝒙|𝒛) to one. After the calculation of (4) or (5), 
𝑏(𝒙) is replaced by 𝑏(𝒙′) or 𝑏(𝒙|𝒛) respectively as the latest 
belief. 

As mentioned in Sec. III-A, moreover, the robot can 
observe whether the task is finished or not. This information can 
be also defined as a likelihood function. When the robot 
observes that the task is not finished, this information can be 
reflected to 𝑏(𝒙) with the following likelihood function: 

                  𝑃(𝒛 | 𝒙) = {
0          (𝒙 ∈ 𝒳f)
1   (otherwise)

.                                 (6)                                 

IV. GENERALIZATION OF THE PROBABILISTIC FLOW CONTROL 

METHOD 

A. QMDP and PFC 

The value used for decision making in the QMDP value 
method is calculated by 

𝑄MDP(𝑎, 𝑏)

= ∫ 𝑏(𝒙) ∫ 𝑝𝒙𝒙′
𝑎 {𝑉∗(𝒙′) + 𝑟𝒙𝒙′

𝑎 }d𝒙′d𝒙.
𝒙′∈𝒳𝒙∈𝒳−𝒳f

                   (7) 

This value is an expected sum of posterior values and rewards 
by an action 𝑎 when the belief is 𝑏. The robot chooses an action 
that minimizes this value. 

A problem of QMDP is that the function 𝑄MDP(𝑎, 𝑏) has local 
minima. The optimal value function 𝑉∗ calculated precisely in 
all parts of a state space has no local minimum. It means that 
every part of 𝑉∗ is descending to the goal and the robot always 
know in which direction to go. Whereas 𝑄MDP(𝑎, 𝑏)  is not 
optimal in the belief space. When 𝑏 is uncertain, the gradient of 
𝑄MDP(𝑎, 𝑏) disappears and the robot easily strands. 

Differently from QMDP, PFC [6] uses the following value: 

𝑄PFC(𝑎, 𝑏) = 

∫ 𝑤(𝒙) ∫ 𝑝𝒙𝒙′
𝑎 {𝑉∗(𝒙′) + 𝑟𝒙𝒙′

𝑎 }d𝒙′d𝒙
𝒙′∈𝒳𝒙∈𝒳−𝒳f

                       (8) 

where 𝑤(𝒙) = 𝑏(𝒙)/{𝑉∗(𝒙) − 𝑉min}.                                       (9)                                         

𝑉min is the smallest value of 𝑉∗(𝒙) in 𝒳f. The value of 𝑉∗(𝒙) at 
every non-final state must be larger than 𝑉min. 

It has been confirmed in [6] that the local minima problem 
with QMDP goes into remission by PFC. The smaller 𝑉∗(𝒙) a 
state 𝒙 has, the larger weight (8) gives to 𝒙. In the case of a 
simple navigation problem, for example, the nearer part to the 
goal in the distribution of 𝑏 takes a priority for decision making. 
This priority makes a robot take searching behavior as 
mentioned later. 

B. Generalized probabilistic flow control method 

We extend the definition of QPFC from (8) to 

𝑄PFC𝑚(𝑎, 𝑏) = 

∫ 𝑤𝑚(𝒙) ∫ 𝑝𝒙𝒙′
𝑎 {𝑉∗(𝒙′) + 𝑟𝒙𝒙′

𝑎 }d𝒙′d𝒙
𝒙′∈𝒳𝒙∈𝒳−𝒳f

,                  (10) 

where 𝑤𝑚(𝒙) = 𝑏(𝒙)/{𝑉∗(𝒙) − 𝑉min}𝑚.                               (11) 

QMDP and QPFC can be redefined to QPFC0 and QPFC1 respectively 
with this formulation. When 𝑚 > 1, 𝑤𝑚  in (11) gives larger 
priority to the states with small (good) 𝑉∗  values than the 
original function in (9). With (11), the policy is defined as 

                   ΠPFC𝑚(𝑏) = argmin
𝑎∈𝒜

𝑄PFC𝑚(𝑎, 𝑏).                       (12) 

The extended PFC with 𝑄PFC𝑚  is called PFCm in this paper. 
PFCm with 𝑚 > 1 will make the robot more speculative than 
QMDP and the original PFC. It will prevent the robot from the 
local minima more effectively. However, we should also 
consider its ill effects. 

V.  COMPARISON AND OBSERVATION OF BEHAVIORS 

GENERATED BY PF𝐶𝑚 

QMDP, the original PFC and PFCm (𝑚 > 1) are compared 
with a simulation in this section. 

A. Mobile robot navigation with only one landmark 

We use the first simulation in [6] for the comparison at first. 

Since its detail can be seen in [6], we only describe its important 

features. 

A mobile robot is given a navigation task in an environment 

shown in Fig. 1, where only one landmark exists. The robot can 

measure its relative distance and direction. The task of the robot 

is to step on the goal point with its body.  

 

 

Fig. 1. Environment for the simulation with a mobile robot (modified from a 
figure in [6]) 

 

The robot has a particle filter [21] for self-localization. A 

distribution of particles shown in a trial is illustrated in Fig. 2. 

This distribution approximately represents a belief 𝑏.  

The belief in Fig. 2 has the “uncertain” handled in this paper. 

Since the robot cannot detect its three-dimensional state 

(𝑥, 𝑦, 𝜃)  through observations of the landmark with two-

dimensional parameters, particles draw a circular ring. This 



Ueda  
Generation of search behavior of robots by an extended probabilistic flow control 

 

32 

symmetric property is slightly broken when some particles 

enter the goal by the update with (6). In the figure, the upper 

part of the ring is lacked by this update. 

In [6], the robot with the original PFC can reach the goal by 

behaviors that make particles drop into the goal. Figure 3 shows 

a trajectory obtained with an experiment in [6]. 

 

 
 

Fig. 2.  An example of particle distribution 

 

 
Fig. 3. A trajectory of the robot obtained by PFC method  

(obtained in the simulation for [6]) 

 

We examine PFCm with 𝑚 = 0, 1, 2, . . . , 9. The robot takes 

100 trials for each 𝑚. In each trial, the robot starts from one of 

100 initial states chosen beforehand. The number of steps in each 

trial is recorded. When the robot cannot finish the task within 

1000[step], the trial is regarded as a failure. 

B. Result of the trials 

Figure 4 shows the success rates and the average numbers of 

the trials. First of all, PFCm with 𝑚 > 1 achieved high success 

rates when compared to QMDP (= PFC0). The advantage of PFC 

compared to QMDP has already reported in [6]. PFCm with 𝑚 >
1 also has the advantage in this simulation. 

 

Fig. 4.  Success rates and average steps on the mobile robot task 
 

When 𝑚 > 1, all of their success rates and average steps are 

better than those of the original PFC (= PFC1). This tendency 

has also been reported on the manipulation task in [8].  

While at the same time, the larger 𝑚 is, the more steps are 

required when 𝑚  5 as shown in Fig. 4(b). In [8] also, this 

increase has been observed when 𝑚  2. This tendency can be 

understood if we imagine an extreme case with 𝑚 = . In this 

case, the robot ignores all particles other than the nearest particle 

to the goal. This extreme strategy sometimes makes the robots 

detour, while it is a good strategy for avoidance of deadlock. 

VI. SYMMETRIC MAZE TASK 

We examine PFCm with an actual robot, which is a 

micromouse type [23] robot shown in Fig. 5. The robot moves a 

symmetric environment in Fig. 6. This environment consists of 

eight square regions as illustrated in Fig. (b). Each square area is 

named “a block” in this paper. The task of this robot is to step 

into the goal block designated in Fig. (b) with the minimum 

number of steps from an initial pose. When the robot touches the 

coin shown in Fig. (a), we regard that the robot has entered in 

the goal block. 

We set a robot coordinate system Σrobot as shown in 

Fig. 6(b). Its origin is set at the midpoint of the axis of 

the wheels. The state of the system is the pose (𝑥, 𝑦, 𝜃) of 

Σrobot in the environment coordinate system Σenv. 

 

Fig. 5.  A micromouse type robot (Raspberry Pi Mouse [24]) 

 

 

Fig. 6.  Environment and coordinate systems 

 

A. Motion of the robot 

The robot has two stepper motors directly connected to the 

right wheel and left one respectively. It can choose three kinds 

of actions: 𝒜 = {ccw, cw, fw}, where 
• ccw: rotation of 5[deg], 

• cw: rotation of −5[deg], and 

• fw: forward movement of 40[mm].  

Execution of one of these actions is counted as one time step. 

The robot can know its direction 𝜃  within one degree 

accuracy through the IMU (inertial measurement unit) sensor 

shown in Fig. 5. Whereas the robot cannot use any sensor to 

directly know the change of the position (𝑥, 𝑦). 
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B. Uncertainty and perceptual aliasing of self-localization 

To estimate the position (𝑥, 𝑦), the robot uses four range 

sensors shown in Fig. 5 and dead reckoning. Their information 

is converted to the position by a particle filter. We explain the 

implementation in Appendix A. The number of particles is 1000. 

Figure 7 illustrates some distributions of particles shown in 
trials. Particles never converge in most of the time due to the 
symmetric environment. They make some clusters as shown in 
Fig. 7. In Figs. (b) and (c), we can observe the perceptual aliasing. 
Moreover, the position of the robot in a cluster is also inaccurate 
since the robot frequently collides with the wall and skids on the 
smooth floor. 

To measure how long the robot cannot specify its pose in this 
environment, we count the number of blocks in which one or 
more particles exist at each moment from the log files of a set of 
the trials in Sec. VI-D. In the case of distributions in Figs. 7(a)-
(c), for example, the numbers are eight, four and two 
respectively. The result is shown in Fig. 8. In more than 50[%] 
of the time span, the number is seven or eight, whereas the 
moments in which the number is two or less are only 13[%]. 
When the number is more than three (80[%] of the time span), 
the robot must decide its action under perceptual aliasing or 
shortage of its pose information. 

C. Obtaining an optimal value function of the task 

We use a value iteration algorithm for obtaining the optimal 
value function 𝑉∗. The detail of the implementation is described 
in Appendix B. 

To apply value iteration, the 𝑥𝑦𝜃 -space is divided into a 
three-dimensional grid as shown in Fig. 9. The region 0 ≤ x < 
720[mm], 0 ≤ y < 540[mm], −2.5 ≤ 𝜃  < 357.5[deg] of the 
environment is divided into a cell with 20[mm]×20[mm]×5[deg] 
size. Though the whole area in the goal block is the final state of 
this task, we set a non-final state area at the entrance of the goal 
block as shown in Fig. 9. This area helps the robot to enter the 
goal block surely. 

Figure 10 shows the optimal value function obtained by the 
value iteration. It is calculated as a three-dimensional look-up 
table. This function returns the excepted number of steps from 
every cell to a final state. 

 

Fig. 7.  Examples of particle distributions 

 

Fig. 8.  The severity of self-localization uncertainty in trials with 𝑚 =4 

 

 

Fig. 9.  Discretization 

 

 

Fig. 10. Obtained value function represented as gray scale images (black: 
100[step], white: 0[step]). (a) values of cells with 𝜃 ∈ [−2.5, 2.5)  [deg]. (b) 
values with 𝜃 ∈[132.5, 137.5) [deg]. (c) values with 𝜃 ∈  [267.5, 272.5) [deg]. 

D. Trials and the results 

We have 14 trials for each value of 𝑚 = 0, 1, 2, . . . , 9. In a 
trial, the robot starts from the center position of a non-goal block. 
𝜃 of the initial pose is 90[deg] or 270[deg]. A trial is cut off at 
500[step] in consideration of the battery life. Additionally, we 
should note that the IMU sensor occasionally did not return a 
value and the robot stopped due to the halt. In that case, we 
reconnected the USB connector of the IMU sensor and reran the 
robot in the middle of a trial.  

When 𝑚  3, we could observe that the robot moved from 
block to block as it searched the goal even though particles were 
not converged most of the time. The robot frequently got stuck 
with walls due to the uncertainty of self-localization, and the 
collisions gave off an awkward impression on the robot. 
However, the robot could go to the goal block with some 
reasonable behaviors.  

 

Fig. 11.  Behavior of the robot in a trial (𝑚 =4, 292[step]) 

 

Figure 11 illustrates a typical successful trial. In (a), the 
robot visited the counter block of the goal. Subsequently, the 
robot went to the goal block in (b). However, the robot got stuck 
with the corner marked with a star and got away from the goal 
shown in (c). After that, the robot went back to the goal block as 
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shown in (d). Though the robot was disturbed by the corner also 
in this time, it could slide into the goal block. 

In Fig. 12, we show the numbers of trials finished within 
500[step] for each value of m. When m ≤ 2, the robot frequently 
fell into repeating choices of cw and ccw. The numbers of these 
repeating choices are shown in Fig. 13. As with the case of the 
simulations, an increment of m reduced the frequency of 
deadlocks. 

E. Discussion of a problem for future work 

We found that the robot frequently collided with the corners 
of the environment as shown in Fig. 11(b) and (d). Figure 14 
illustrates the reason. In the case of this figure, particles near the 
goal try to the robot turn left, whereas the other particles 
correctly suggest the robot to go forward. When m is large, the 
particles near the goal are given high weights. Therefore, the 
robot tends to get around a corner before a sufficient forward 
movement. 

 

Fig. 12.  Numbers of successful trials that finished within 500[step] 

 

 

Fig. 13. Average numbers of steps in which cw/ccw is chosen after ccw/cw 
per trial 
 

 

Fig. 14.  A typical case where the robot collides with a wall 

PFCm does not consider the existence of obstacles as it is 
now. To solve this problem, we should add PFCm to an 

algorithm to forecast the interference with obstacles. This will 
be the future work that should be tackled. 

VII. CONCLUSION 

We have proposed an extension of PFC in this paper. This 

extension unifies the QMDP value method, the original PFC 

method and newly derived methods as PFCm. PFC0 and PFC1 

are the QMDP value method and the original PFC method 

respectively. PFCms (𝑚  2) are the newly defined. 

We have examined PFCm in a simulation and an 
experiment. Another simulation has also been held in [8]. In 
all these tasks, the robot achieves the best performance when 

m > 1. These results suggest that the extension is effective. 
Meanwhile, a problem explained with Fig. 14 is found. We try 
solving this problem in future. Moreover, we found that a 
larger m is not always better. We will try changing m 
dynamically to an appropriate value. 

APPENDIX 

A. Implementation of a particle filter for the task in the 

symmetric environment 

The particle filter used in Sec. VI is explained here. The 

particle filter is implemented based on [25] with sensor resetting 

[26] and expansion resetting [27]. The number of particles is 

1000. At the beginning of each trial, the particles are distributed 

uniformly in the maze. Though the robot can receive absolute 

𝜃 information from the IMU sensor, we define the particle filter 

in the 𝑥𝑦𝜃-space since we handle the initial direction of the 

robot as unknown. 

1) Motion update: After the robot takes an action, the 

particles change their poses based on the dead-reckoning. The 

displacement is ±5[deg] at action cw or ccw, and 40[mm] at 

action fw. Gaussian noises are added to the displacement on 𝜃 

-axis and the 𝑥𝑦-plain independently. The standard deviations 

of the noises 0.1[%] toward the change on 𝜃 and 10[%] toward 

the change of position on the 𝑥𝑦-plain. After that, 𝜃 is corrected 

by the values from the IMU. When some particles collide with 

the wall by the motion update, they do not move at the 

procedure. 

2) Sensor update: The values of the range sensors are used 

for judging whether a wall exists or not in front of the robot. If 

both forward-looking range sensors return values over a 

threshold, it is judged that no wall exists. If all the four sensors 

return values under a threshold, it is judged that a wall exists. 

When one of these conditions is fulfilled, the weights of the 

particles that contradict the judgment are multiplied by a near 

zero number (10−10 in the implementation). 

3) Reset: When the sum of weights before normalization is 

smaller than 0.2 by the sensor update, the particle filter resets 

the particles. At first, the expansion resetting method is used 

[27]. When another reset is required by the subsequent sensor 

update, the sensor resetting [26] is executed. In this reset, all the 

particles are replaced randomly at the poses that are consistent 

with the wall judgement. 

B. Value iteration for the symmetric maze task 

As shown in Fig. 9, the 𝑥𝑦𝜃 -space is divided into 

36×27×72=69,984 cells. We chose the width of a cell 
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(20[mm]×20[mm]×5[deg]) in relation to the amount of 

displacement by the actions. Each cell is regarded as a discrete 

state 𝑠𝑖  (𝑖 = 1,2, . . . ,69,984). We use 𝑆 to represent the set of 

these states hereafter. 

A state transition is treated as deterministic one for 

simplification. When the state is changed from 𝑠 ∈ 𝑆 to 𝑠′ ∈ 𝑆, 

we assume that the robot always starts at the center point of 𝑠 

in a state transition. Then the state 𝑠′ that contains the posterior 

pose by an action 𝑎 is regarded as the only posterior state. When 

𝑠′ contains a wall or it is outside of the maze, we assume that 

the robot stays at 𝑠. 

Since the purpose of this task is to make the robot go to the 

goal block as small number of steps as possible, we give 1[step] 

penalty for each state transition. The optimal value function 

𝑉: 𝑆 → ℝ  obtained with this penalty gives the number of 

required steps from any state 𝑠 to the goal.  

It takes 6.5[s] with two chips of Intel Xeon CPU E5-2670 

v2. 20 threads are used for this calculation. Some parts of the 

result have been shown in Fig. 10. 
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