
International Journal of iRobotics

Vol. 5, No. 2, 2022

29

Abstract—The probabilistic flow control method (PFC) can
generates behaviors of robots that compensate information
uncertainty in POMDP (partially observable Markov decision
process) problems. We improve PFC and verify it on an actual

robot in this paper. The original PFC is a modification of the QMDP

value method. The QMDP value method guides a robot based on the
expected values of cost reduction under the probability
distribution of state estimation. PFC biases the expected value
“optimistically.” This bias makes a robot behave as if searching a
goal of a task. In this paper, we make the intensity of bias
adjustable. With appropriate parameters of the intensity, we find
that robots behave more effectively than the original PFC method.
Then the improved PFC method is implemented on an actual
mobile robot that has poor self-localization ability. The robot
shows goal search behavior that compensates the uncertainty of
self-localization with the improved method.

 Index Terms—probabilistic flow control, uncertainty
compensation, Bayes estimation, optimal control

I. INTRODUCTION

 lack or uncertainty of information is an unfavorable thing
to robots and creatures. However, it is interesting that the

uncertainty produces a huge variety of behaviors of creatures.
For example, a person who wants to go to his/her bedroom in
darkness may walk along a wall carefully by checking the
location with his/her hands. As another example, we can grasp a
can on a table without looking at it by sweeping the table with a
hand.

In robotics, a good example of this behavior can be seen in
the work of Roy et al. [1]. By using the method named the
coastal navigation, a mobile robot with a range sensor goes to a
destination along walls so as not to lost its location. This method
is a solution of a problem in partially observable Markov
decision processes (POMDPs) [2]. We can also find some
behaviors of robots that deal with uncertainty in the studies of
POMDPs [3], [4], [5].

As a solver of POMDPs, we have also proposed the
probabilistic flow control method (hereinafter called PFC). As
mentioned later, this method generates behaviors of a mobile
robot that compensate a lack of information [6]. PFC enables
robots to perform tasks that demand more accuracy of
information than that provided by their sensors. For example, it
is usable to generate adjustment motion of a robot after it cannot
stop a target position. PFC uses a modified formula of the QMDP
value method (hereinafter called QMDP) proposed in [7] by
Littman et al. It was a discovery that the behavior of a robot
changed drastically though the modification was small.

In this paper, we tackle with the following two issues. The
former is an improvement and generalization of PFC. We

This work is supported by JSPS KAKENHI Grant Number 20K04382.

introduce a parameter that unifies QMDP, PFC and its extensions.
This improvement increases the cases where PFC works
effectively. The latter is to verify that PFC and its extensions
work on an actual robot. In our previous works, PFC is only
verified on simulations. We observe the phenomena caused by
PFC and its extensions in the actual world.

The contents of this paper are as follows. Related studies are
introduced in Sec. II. A problem that belongs to POMDPs is
given in Sec. III. The extended PFC is applied to the problem in
Sec. IV. We have experiments in a simulator and an actual
environment respectively in Secs. V and VI. We conclude this
paper in Sec. VII.

A part of this work has been already published in our
conference paper [8]. In this previous paper, a manipulator is
simulated with the extended PFC. In this paper, the extended
PFC is precisely defined and applied to an actual mobile robot.
We discuss the characteristics of the proposed method with the
simulation and experimental results in [8] and this paper.

II. RELATED WORKS

The main issue on POMDPs is how to handle a huge search
space of a system [9]. A decision making method for POMDPs
must provide a map Π: ℬ → 𝒜 to a robot. The set ℬ contains all
patterns of how the robot recognizes the state of the system. The
pattern is usually represented by a belief state, which is a
probability distribution in the state space. ℬ becomes an
uncountable set that contains all patterns of the probability
distributions. 𝒜 is a set of available actions. Π is called a policy.
It is a map from a belief state in ℬ to an action in 𝒜.

In such a huge space as ℬ, search methods are effective for
obtaining a partial policy [10], [5]. In search methods, a finite
number of nodes are chosen from ℬ. They are connected from a
current state of the robot to a goal.

When we want to calculate beforehand a global policy that
answers an action in response to any belief state, we need to use
something other than search methods. For this case, AMDP
(augmented Markov decision process) methods [11] are
available. The coastal navigation [1] mentioned in the
introduction is classified in this approach. In AMDP methods,
the dimension of ℬ is reduced for calculation within a time limit.
The probability distribution of a belief is parameterized and ℬ is
represented by some variables. In [12], ℬ is reduced by
sampling of belief states and used the value iteration algorithm
[13], [14] for planning. In [15], [16], [17], sampling of belief
states is done in the middle of value iteration.

In both cases of search methods and AMDP methods, how
to define a state transition model in a belief space is a problem.

Ryuichi Ueda is with Department of Advanced Robotics, Faculty of
Advanced Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma,

Narashino, Chiba, Japan (ryuichi.ueda@p.chibakoudai.jp)

Ryuichi Ueda, Chiba Institute of Technology

Generation of search behavior of robots by an

extended probabilistic flow control

A

mailto:ryuichi.ueda@p.chibakoudai.jp

Ueda
Generation of search behavior of robots by an extended probabilistic flow control

30

If we can define it in ℬ, a POMDP problem can be solved as a
Markov decision making (MDP) problem. In general, however,
when or where information for state estimation can be obtained
is unknown. The coastal navigation is an exceptional case where
the statistical nature of range sensors in each belief state is
relatively predictable.

As a different approach, a decomposition of a POMDP
problem into the following sub-problems is worth considering:

• an offline planning problem in which a policy is
obtained under the assumption that a state is certainly
known, and

• an online decision making problem in which
appropriate actions are solved under uncertainty based
on the policy obtained in the offline problem.

In short, we do not care the uncertainty at the offline phase,
whereas it is considered when the robot is working. Though this
approach can be applied only to a subset of POMDPs, a certain
number of problems on robotics belong to this category.

We handle this decomposed POMDP problem in this paper.
As a solver of this problem, QMDP has been proposed by Littman
et al. three decades ago [7]. Then we have effectively used QMDP
in real-time environments of robot soccer with particle filters [4],
[18]. QMDP cannot perform multi-step decision making for
dealing with uncertainty. It only gives one step reflective action.
In [6], however, we have generated multi-step decision by PFC,
which is a small modification of QMDP.

In state-of-the-art research, more complex problems are
discussed. When there are more than one agents in a system, the
problem is referred to as Dec-POMDP (decentralized POMDP)
[19]. If conflicts of interest exist among agents, the problem
belongs to a more difficult category called Partially Observable
Stochastic Games (POSGs) [20]. These problems are too
difficult to solve with a general method. A problem in these
classes may be solved based on special conditions of the
problem or may be solved with combinations of methods in the
lower classes as POMDPs or MDPs. In those cases, there is a
possibility that the methods discussed in this paper can be used
as a part of the solver.

III. PROBLEM DEFINITION

A. A system with state uncertainty

We assume a time-invariant system in which a robot decides
its action for finishing a task. A state of the system is
represented as 𝒙. We define a set of states: 𝒳 and a set of final
states: 𝒳f ⊂ 𝒳. The state 𝒙 is not directly observable from the
robot. The robot must estimate it through its perception.
However, there is an exception that the robot is notified or can
sense whether the task is finished (𝒙 ∈ 𝒳f) or not.

We define a set of actions: 𝒜 = {𝑎1, 𝑎2, . . . , 𝑎ℎ} . The
number of actions ℎ is finite. A robot can choose one of them at
each time step 𝑡 = 0,1,2, . . . , 𝑡f − 1. Here 𝑡 = 0 and 𝑡f are the
start and the end time steps of the task respectively. 𝑡f is not
fixed.

When an action 𝑎(𝑡) is chosen by the robot at time 𝑡, the
state is changed from 𝒙(𝑡) to 𝒙(𝑡 + 1). Since we handle a time-
invariant system, the concrete value of 𝑡 is not important in
many cases for discussion. In that case, the three symbols

𝒙(𝑡), 𝑎(𝑡) and 𝒙(𝑡 + 1) related to a state transition are written
as 𝒙, 𝑎 and 𝒙′ respectively.

We assume that each state transition is noisy. If a state
transition occurs from 𝒙 by 𝑎, the posterior state 𝒙′ is different
in each case. We assume that we can know the tendency of
differences as the following probability distribution:

𝑝(𝒙′ | 𝒙, 𝑎),

which is called the state transition pdf (probability distribution
function). We abbreviate this function or its value as 𝑝𝒙𝒙′

𝑎 .

B. Control

The purpose of the task is given by the following
summation:

𝐽[𝒙(0), 𝑎(0), 𝒙(1), 𝑎(1), . . . , 𝒙(𝑡f − 1), 𝑎(𝑡f − 1), 𝒙(𝑡f)]

= 𝑉(𝒙(𝑡f)) + ∑ 𝑟𝒙𝒙′
𝑎𝑡f −1

𝑡=0 , (1)

where 𝑟𝒙𝒙′
𝑎 ∈ ℝ is the cost of a state transition. The sequence of

state transitions that minimizes 𝐽 is regarded as an optimal
control. 𝑉(𝒙) (𝒙 ∈ 𝒳f) is a value of a final state. All tasks
discussed in this paper are formulated as a basic control
problem in which the number of time steps 𝑡f is minimized. The
cost 𝑟𝒙𝒙′

𝑎 and the value of final states are fixed to one step and
zero respectively.

Under the conditions, we can expect the existence of the
optimal policy:

 Π∗: 𝒳 → 𝒜 (2)

toward (1). Π∗gives the best action 𝑎∗ = Π∗(𝒙) at any state 𝒙 to
minimize 𝐽. There also exists the function 𝑉∗: 𝒳 → ℝ giving
the expected value of 𝐽 for each state. 𝑉∗ is called the optimal
value function. The value 𝑉∗(𝒙) is not changed whether 𝒙 is
the initial state or a halfway state. The values of final states
𝑉∗(𝒙) (𝒙 ∈ 𝒳f) are included in this function.

In this paper, we assume that the robot knows the optimal
value function 𝑉∗. Moreover, it knows the state transition pdf
𝑝𝒙𝒙′

𝑎 and the cost 𝑟𝒙𝒙′
𝑎 of the task. In this case, the optimal policy

can be derived as

 Π∗(𝒙) = argmin
𝑎∈𝒜

∫ 𝑝𝒙𝒙′
𝑎 {𝑉∗(𝒙′) + 𝑟𝒙𝒙′

𝑎 }d𝒙′
𝒙′∈𝒳

. (3)

C. State recognition

The robot imperfectly recognizes the state through the
belief 𝑏: 𝒳 → ℝ, which is a probability density function. In this
paper, the imperfectness or uncertainty of information means
that 𝑏 is a multi-modal distribution, or that its variance is too
large for decision making.

We assume that the belief 𝑏 is calculated by a Bayes filter
[11]. In a self-localization problem, a particle filter [21] is
typically used as a Bayes filter.

A Bayes filter changes the belief when the robot takes an
action or when it obtains sensor measurement. After the robot
takes an action, the belief is updated by

 𝑏(𝒙′) = ∫ 𝑝𝒙𝒙′
𝑎 𝑏(𝒙)𝑑𝒙.

𝒙∈𝒳

 (4)

This equation represents the flow of the belief 𝑏 caused by the

International Journal of iRobotics

Vol. 5, No. 2, 2022

31

action 𝑎.

When the robot obtains sensor measurement or useful
information 𝒛 for the state estimation, the belief 𝑏 is updated
based on the Bayes theorem [22]:

 𝑏(𝒙|𝒛) = 𝑃(𝒛|𝒙)𝑏(𝒙). (5)

𝑏(𝒙|𝒛) is the belief after 𝒛 is known. 𝑃(𝒛|𝒙) is a likelihood
function, which translates information 𝒛 to information in the
state space. Likelihood functions are implemented to the robot
as previous knowledge.  is a constant that makes the
summation of 𝑏(𝒙|𝒛) to one. After the calculation of (4) or (5),
𝑏(𝒙) is replaced by 𝑏(𝒙′) or 𝑏(𝒙|𝒛) respectively as the latest
belief.

As mentioned in Sec. III-A, moreover, the robot can
observe whether the task is finished or not. This information can
be also defined as a likelihood function. When the robot
observes that the task is not finished, this information can be
reflected to 𝑏(𝒙) with the following likelihood function:

 𝑃(𝒛 | 𝒙) = {
0 (𝒙 ∈ 𝒳f)
1 (otherwise)

. (6)

IV. GENERALIZATION OF THE PROBABILISTIC FLOW CONTROL

METHOD

A. QMDP and PFC

The value used for decision making in the QMDP value
method is calculated by

𝑄MDP(𝑎, 𝑏)

= ∫ 𝑏(𝒙) ∫ 𝑝𝒙𝒙′
𝑎 {𝑉∗(𝒙′) + 𝑟𝒙𝒙′

𝑎 }d𝒙′d𝒙.
𝒙′∈𝒳𝒙∈𝒳−𝒳f

 (7)

This value is an expected sum of posterior values and rewards
by an action 𝑎 when the belief is 𝑏. The robot chooses an action
that minimizes this value.

A problem of QMDP is that the function 𝑄MDP(𝑎, 𝑏) has local
minima. The optimal value function 𝑉∗ calculated precisely in
all parts of a state space has no local minimum. It means that
every part of 𝑉∗ is descending to the goal and the robot always
know in which direction to go. Whereas 𝑄MDP(𝑎, 𝑏) is not
optimal in the belief space. When 𝑏 is uncertain, the gradient of
𝑄MDP(𝑎, 𝑏) disappears and the robot easily strands.

Differently from QMDP, PFC [6] uses the following value:

𝑄PFC(𝑎, 𝑏) =

∫ 𝑤(𝒙) ∫ 𝑝𝒙𝒙′
𝑎 {𝑉∗(𝒙′) + 𝑟𝒙𝒙′

𝑎 }d𝒙′d𝒙
𝒙′∈𝒳𝒙∈𝒳−𝒳f

 (8)

where 𝑤(𝒙) = 𝑏(𝒙)/{𝑉∗(𝒙) − 𝑉min}. (9)

𝑉min is the smallest value of 𝑉∗(𝒙) in 𝒳f. The value of 𝑉∗(𝒙) at
every non-final state must be larger than 𝑉min.

It has been confirmed in [6] that the local minima problem
with QMDP goes into remission by PFC. The smaller 𝑉∗(𝒙) a
state 𝒙 has, the larger weight (8) gives to 𝒙. In the case of a
simple navigation problem, for example, the nearer part to the
goal in the distribution of 𝑏 takes a priority for decision making.
This priority makes a robot take searching behavior as
mentioned later.

B. Generalized probabilistic flow control method

We extend the definition of QPFC from (8) to

𝑄PFC𝑚(𝑎, 𝑏) =

∫ 𝑤𝑚(𝒙) ∫ 𝑝𝒙𝒙′
𝑎 {𝑉∗(𝒙′) + 𝑟𝒙𝒙′

𝑎 }d𝒙′d𝒙
𝒙′∈𝒳𝒙∈𝒳−𝒳f

, (10)

where 𝑤𝑚(𝒙) = 𝑏(𝒙)/{𝑉∗(𝒙) − 𝑉min}𝑚. (11)

QMDP and QPFC can be redefined to QPFC0 and QPFC1 respectively
with this formulation. When 𝑚 > 1, 𝑤𝑚 in (11) gives larger
priority to the states with small (good) 𝑉∗ values than the
original function in (9). With (11), the policy is defined as

 ΠPFC𝑚(𝑏) = argmin
𝑎∈𝒜

𝑄PFC𝑚(𝑎, 𝑏). (12)

The extended PFC with 𝑄PFC𝑚 is called PFCm in this paper.
PFCm with 𝑚 > 1 will make the robot more speculative than
QMDP and the original PFC. It will prevent the robot from the
local minima more effectively. However, we should also
consider its ill effects.

V. COMPARISON AND OBSERVATION OF BEHAVIORS

GENERATED BY PF𝐶𝑚

QMDP, the original PFC and PFCm (𝑚 > 1) are compared
with a simulation in this section.

A. Mobile robot navigation with only one landmark

We use the first simulation in [6] for the comparison at first.

Since its detail can be seen in [6], we only describe its important

features.

A mobile robot is given a navigation task in an environment

shown in Fig. 1, where only one landmark exists. The robot can

measure its relative distance and direction. The task of the robot

is to step on the goal point with its body.

Fig. 1. Environment for the simulation with a mobile robot (modified from a
figure in [6])

The robot has a particle filter [21] for self-localization. A

distribution of particles shown in a trial is illustrated in Fig. 2.

This distribution approximately represents a belief 𝑏.

The belief in Fig. 2 has the “uncertain” handled in this paper.

Since the robot cannot detect its three-dimensional state

(𝑥, 𝑦, 𝜃) through observations of the landmark with two-

dimensional parameters, particles draw a circular ring. This

Ueda
Generation of search behavior of robots by an extended probabilistic flow control

32

symmetric property is slightly broken when some particles

enter the goal by the update with (6). In the figure, the upper

part of the ring is lacked by this update.

In [6], the robot with the original PFC can reach the goal by

behaviors that make particles drop into the goal. Figure 3 shows

a trajectory obtained with an experiment in [6].

Fig. 2. An example of particle distribution

Fig. 3. A trajectory of the robot obtained by PFC method

(obtained in the simulation for [6])

We examine PFCm with 𝑚 = 0, 1, 2, . . . , 9. The robot takes

100 trials for each 𝑚. In each trial, the robot starts from one of

100 initial states chosen beforehand. The number of steps in each

trial is recorded. When the robot cannot finish the task within

1000[step], the trial is regarded as a failure.

B. Result of the trials

Figure 4 shows the success rates and the average numbers of

the trials. First of all, PFCm with 𝑚 > 1 achieved high success

rates when compared to QMDP (= PFC0). The advantage of PFC

compared to QMDP has already reported in [6]. PFCm with 𝑚 >
1 also has the advantage in this simulation.

Fig. 4. Success rates and average steps on the mobile robot task

When 𝑚 > 1, all of their success rates and average steps are

better than those of the original PFC (= PFC1). This tendency

has also been reported on the manipulation task in [8].

While at the same time, the larger 𝑚 is, the more steps are

required when 𝑚  5 as shown in Fig. 4(b). In [8] also, this

increase has been observed when 𝑚  2. This tendency can be

understood if we imagine an extreme case with 𝑚 = . In this

case, the robot ignores all particles other than the nearest particle

to the goal. This extreme strategy sometimes makes the robots

detour, while it is a good strategy for avoidance of deadlock.

VI. SYMMETRIC MAZE TASK

We examine PFCm with an actual robot, which is a

micromouse type [23] robot shown in Fig. 5. The robot moves a

symmetric environment in Fig. 6. This environment consists of

eight square regions as illustrated in Fig. (b). Each square area is

named “a block” in this paper. The task of this robot is to step

into the goal block designated in Fig. (b) with the minimum

number of steps from an initial pose. When the robot touches the

coin shown in Fig. (a), we regard that the robot has entered in

the goal block.

We set a robot coordinate system Σrobot as shown in

Fig. 6(b). Its origin is set at the midpoint of the axis of

the wheels. The state of the system is the pose (𝑥, 𝑦, 𝜃) of

Σrobot in the environment coordinate system Σenv.

Fig. 5. A micromouse type robot (Raspberry Pi Mouse [24])

Fig. 6. Environment and coordinate systems

A. Motion of the robot

The robot has two stepper motors directly connected to the

right wheel and left one respectively. It can choose three kinds

of actions: 𝒜 = {ccw, cw, fw}, where
• ccw: rotation of 5[deg],

• cw: rotation of −5[deg], and

• fw: forward movement of 40[mm].

Execution of one of these actions is counted as one time step.

The robot can know its direction 𝜃 within one degree

accuracy through the IMU (inertial measurement unit) sensor

shown in Fig. 5. Whereas the robot cannot use any sensor to

directly know the change of the position (𝑥, 𝑦).

International Journal of iRobotics

Vol. 5, No. 2, 2022

33

B. Uncertainty and perceptual aliasing of self-localization

To estimate the position (𝑥, 𝑦), the robot uses four range

sensors shown in Fig. 5 and dead reckoning. Their information

is converted to the position by a particle filter. We explain the

implementation in Appendix A. The number of particles is 1000.

Figure 7 illustrates some distributions of particles shown in
trials. Particles never converge in most of the time due to the
symmetric environment. They make some clusters as shown in
Fig. 7. In Figs. (b) and (c), we can observe the perceptual aliasing.
Moreover, the position of the robot in a cluster is also inaccurate
since the robot frequently collides with the wall and skids on the
smooth floor.

To measure how long the robot cannot specify its pose in this
environment, we count the number of blocks in which one or
more particles exist at each moment from the log files of a set of
the trials in Sec. VI-D. In the case of distributions in Figs. 7(a)-
(c), for example, the numbers are eight, four and two
respectively. The result is shown in Fig. 8. In more than 50[%]
of the time span, the number is seven or eight, whereas the
moments in which the number is two or less are only 13[%].
When the number is more than three (80[%] of the time span),
the robot must decide its action under perceptual aliasing or
shortage of its pose information.

C. Obtaining an optimal value function of the task

We use a value iteration algorithm for obtaining the optimal
value function 𝑉∗. The detail of the implementation is described
in Appendix B.

To apply value iteration, the 𝑥𝑦𝜃 -space is divided into a
three-dimensional grid as shown in Fig. 9. The region 0 ≤ x <
720[mm], 0 ≤ y < 540[mm], −2.5 ≤ 𝜃 < 357.5[deg] of the
environment is divided into a cell with 20[mm]×20[mm]×5[deg]
size. Though the whole area in the goal block is the final state of
this task, we set a non-final state area at the entrance of the goal
block as shown in Fig. 9. This area helps the robot to enter the
goal block surely.

Figure 10 shows the optimal value function obtained by the
value iteration. It is calculated as a three-dimensional look-up
table. This function returns the excepted number of steps from
every cell to a final state.

Fig. 7. Examples of particle distributions

Fig. 8. The severity of self-localization uncertainty in trials with 𝑚 =4

Fig. 9. Discretization

Fig. 10. Obtained value function represented as gray scale images (black:
100[step], white: 0[step]). (a) values of cells with 𝜃 ∈ [−2.5, 2.5) [deg]. (b)
values with 𝜃 ∈[132.5, 137.5) [deg]. (c) values with 𝜃 ∈ [267.5, 272.5) [deg].

D. Trials and the results

We have 14 trials for each value of 𝑚 = 0, 1, 2, . . . , 9. In a
trial, the robot starts from the center position of a non-goal block.
𝜃 of the initial pose is 90[deg] or 270[deg]. A trial is cut off at
500[step] in consideration of the battery life. Additionally, we
should note that the IMU sensor occasionally did not return a
value and the robot stopped due to the halt. In that case, we
reconnected the USB connector of the IMU sensor and reran the
robot in the middle of a trial.

When 𝑚  3, we could observe that the robot moved from
block to block as it searched the goal even though particles were
not converged most of the time. The robot frequently got stuck
with walls due to the uncertainty of self-localization, and the
collisions gave off an awkward impression on the robot.
However, the robot could go to the goal block with some
reasonable behaviors.

Fig. 11. Behavior of the robot in a trial (𝑚 =4, 292[step])

Figure 11 illustrates a typical successful trial. In (a), the
robot visited the counter block of the goal. Subsequently, the
robot went to the goal block in (b). However, the robot got stuck
with the corner marked with a star and got away from the goal
shown in (c). After that, the robot went back to the goal block as

Ueda
Generation of search behavior of robots by an extended probabilistic flow control

34

shown in (d). Though the robot was disturbed by the corner also
in this time, it could slide into the goal block.

In Fig. 12, we show the numbers of trials finished within
500[step] for each value of m. When m ≤ 2, the robot frequently
fell into repeating choices of cw and ccw. The numbers of these
repeating choices are shown in Fig. 13. As with the case of the
simulations, an increment of m reduced the frequency of
deadlocks.

E. Discussion of a problem for future work

We found that the robot frequently collided with the corners
of the environment as shown in Fig. 11(b) and (d). Figure 14
illustrates the reason. In the case of this figure, particles near the
goal try to the robot turn left, whereas the other particles
correctly suggest the robot to go forward. When m is large, the
particles near the goal are given high weights. Therefore, the
robot tends to get around a corner before a sufficient forward
movement.

Fig. 12. Numbers of successful trials that finished within 500[step]

Fig. 13. Average numbers of steps in which cw/ccw is chosen after ccw/cw
per trial

Fig. 14. A typical case where the robot collides with a wall

PFCm does not consider the existence of obstacles as it is
now. To solve this problem, we should add PFCm to an

algorithm to forecast the interference with obstacles. This will
be the future work that should be tackled.

VII. CONCLUSION

We have proposed an extension of PFC in this paper. This

extension unifies the QMDP value method, the original PFC

method and newly derived methods as PFCm. PFC0 and PFC1

are the QMDP value method and the original PFC method

respectively. PFCms (𝑚  2) are the newly defined.

We have examined PFCm in a simulation and an
experiment. Another simulation has also been held in [8]. In
all these tasks, the robot achieves the best performance when

m > 1. These results suggest that the extension is effective.
Meanwhile, a problem explained with Fig. 14 is found. We try
solving this problem in future. Moreover, we found that a
larger m is not always better. We will try changing m
dynamically to an appropriate value.

APPENDIX

A. Implementation of a particle filter for the task in the

symmetric environment

The particle filter used in Sec. VI is explained here. The

particle filter is implemented based on [25] with sensor resetting

[26] and expansion resetting [27]. The number of particles is

1000. At the beginning of each trial, the particles are distributed

uniformly in the maze. Though the robot can receive absolute

𝜃 information from the IMU sensor, we define the particle filter

in the 𝑥𝑦𝜃-space since we handle the initial direction of the

robot as unknown.

1) Motion update: After the robot takes an action, the

particles change their poses based on the dead-reckoning. The

displacement is ±5[deg] at action cw or ccw, and 40[mm] at

action fw. Gaussian noises are added to the displacement on 𝜃

-axis and the 𝑥𝑦-plain independently. The standard deviations

of the noises 0.1[%] toward the change on 𝜃 and 10[%] toward

the change of position on the 𝑥𝑦-plain. After that, 𝜃 is corrected

by the values from the IMU. When some particles collide with

the wall by the motion update, they do not move at the

procedure.

2) Sensor update: The values of the range sensors are used

for judging whether a wall exists or not in front of the robot. If

both forward-looking range sensors return values over a

threshold, it is judged that no wall exists. If all the four sensors

return values under a threshold, it is judged that a wall exists.

When one of these conditions is fulfilled, the weights of the

particles that contradict the judgment are multiplied by a near

zero number (10−10 in the implementation).

3) Reset: When the sum of weights before normalization is

smaller than 0.2 by the sensor update, the particle filter resets

the particles. At first, the expansion resetting method is used

[27]. When another reset is required by the subsequent sensor

update, the sensor resetting [26] is executed. In this reset, all the

particles are replaced randomly at the poses that are consistent

with the wall judgement.

B. Value iteration for the symmetric maze task

As shown in Fig. 9, the 𝑥𝑦𝜃 -space is divided into

36×27×72=69,984 cells. We chose the width of a cell

International Journal of iRobotics

Vol. 5, No. 2, 2022

35

(20[mm]×20[mm]×5[deg]) in relation to the amount of

displacement by the actions. Each cell is regarded as a discrete

state 𝑠𝑖 (𝑖 = 1,2, . . . ,69,984). We use 𝑆 to represent the set of

these states hereafter.

A state transition is treated as deterministic one for

simplification. When the state is changed from 𝑠 ∈ 𝑆 to 𝑠′ ∈ 𝑆,

we assume that the robot always starts at the center point of 𝑠

in a state transition. Then the state 𝑠′ that contains the posterior

pose by an action 𝑎 is regarded as the only posterior state. When

𝑠′ contains a wall or it is outside of the maze, we assume that

the robot stays at 𝑠.

Since the purpose of this task is to make the robot go to the

goal block as small number of steps as possible, we give 1[step]

penalty for each state transition. The optimal value function

𝑉: 𝑆 → ℝ obtained with this penalty gives the number of

required steps from any state 𝑠 to the goal.

It takes 6.5[s] with two chips of Intel Xeon CPU E5-2670

v2. 20 threads are used for this calculation. Some parts of the

result have been shown in Fig. 10.

REFERENCES

[1] N. Roy, W. Burgard, D. Fox, and S. Thrun, “Coastal Navigation -
Mobile Robot Navigation with Uncertainty in Dynamic Environments,”
in Proc. of IEEE International Conference on Robotics and
Automation, pp. 35–40, 1999.

[2] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in
partially observable stochastic domains,” Artificial Intelligence, vol.
101, no. 1-2, pp. 99–134, 1998.

[3] J. Pineau and G. J. Gordon, “POMDP planning for robust robot
control,” in Robotics Research, Springer Berlin Heidelberg, pp. 69–
82, 2007.

[4] R. Ueda, T. Arai, K. Sakamoto, Y. Jitsukawa, K. Umeda, H. Osumi,
T. Kikuchi, and M. Komura, “Real-Time Decision Making with State-
Value Function under Uncertainty of State Estimation,” in Proc. of
ICRA, pp. 3475–3480, 2005.

[5] S.-Y. Chung and H.-P. Huang, “Robot Motion Planning in Dynamic
Uncertain Environments,” Advanced Robotics, vol. 25, no. 6-7, pp.
849–870, 2011.

[6] R. Ueda, “Generation of Compensation Behavior of Autonomous
Robot for Uncertainty of Information with Probabilistic Flow Control,”
Advanced Robotics, vol. 29, no. 11, pp. 721–734, 2015.

[7] M. L. Littman et al., “Learning Policies for Partially Observable
Environments: Scaling Up,” in Proc. of International Conference on
Machine Learning, pp. 362–370, 1995.

[8] R. Ueda, “Searching behavior of a simple manipulator only with sense
of touch generated by probabilistic flow control,” in Proc. of IEEE
ROBIO, pp. 594–599, 2018.

[9] B. Bonet and H. Geffner, “Solving pomdps: Rtdp-bel vs. point-based
algorithms,” in Proc. of IJCAI, pp. 1641–1646, 2009.

[10] B. Bonet, “Deterministic POMDPs Revisited,” in Proc. of the Twenty-
Fifth Conference on Uncertainty in Artificial Intelligence, pp. 59–66,
2009.

[11] S. Thrun, W. Burgard, and D. Fox, Probabilistic ROBOTICS. MIT
Press, 2005.

[12] T. Fukase, M. Yokoi, Y. Kobayashi, H. Yuasa, and T. Arai, “Quadruped
Robot Navigation Considering the Observation Cost,” in RoboCup
2001: Robot Soccer World Cup V, A. Birk, S. Coradeschi, and
S.Tadokoro, Eds., pp. 350–355, 2002.

[13] R. Bellman, Dynamic Programming. Princeton, NJ: Princeton
University Press, 1957.

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-

tion. Cambridge, MA: The MIT Press, 1998.

[15] S. C. Ong, S. W. Png, D. Hsu, and W. S. Lee, “Planning under
uncertainty for robotic tasks with mixed observability,” in The
International Journal of Robotics Research, vol. 29, no. 8, pp. 1053–
1068, 2010.

[16] D. Silver and J. Veness, “Monte-Carlo Planning in Large POMDPs,”
in NIPS, vol. 23, pp. 2164–2172, 2010.

[17] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa, “Online Planning
Algorithms for POMDPs,” in Journal of Artificial Intelligence
Research, vol. 2008, no. 32, pp. 663–704, 2008.

[18] Y. Jitsukawa et al., “Fast Decision Making of Autonomous Robot
under Dynamic Environment by Sampling Real-Time Q-MDP Value
Method,” in Proc. of IROS, pp. 1644–1650, 2007.

[19] O. Aşık and L. Akın, “Solving multi-agent decision problems modeled
as dec-pomdp: A robot soccer case study,” in Randy Goebel and
Yuzuru Tanaka and Wolfgang Wahlster (Eds.): RoboCup 2012: Robot
Soccer World Cup XVI, pp. 130–140, 2013.

[20] R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun, “Ap-
proximate Solutions for Partially Observable Stochastic Games with
Common Payoffs,” in Proc. of the Third International Joint Conference
on Autonomous Agents and Multiagent Systems, vol. 1, pp. 136– 143,
2011.

[21] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte Carlo Localization:
Efficient Position Estimation for Mobile Robots,” in Proc. of AAAI, pp.
343–349, 1999.

[22] A. Doucet, N. de Freitas, and N. Gordon, Eds., Sequential Monte Carlo
Methods in Practice. New York, NY: Springer-Verlag, 2001.

[23] R. Allan, “Three amazing micromice: hitherto undisclosed details,” IEEE
Spectrum, vol. 15, no. 11, pp. 62–65, 1978.

[24] Y. Nakagawa, M. Aoki, S. Sakura, N. Nakagawa, R. Ueda, and A. Eguchi,
“Raspberry Pi Mouse: A Micromouse with Full Linux Environment,” in
Proc. of 2015 JSME/RMD International Conference on Advanced
Mechatronics (ICAM), pp. 14–15, 2015.

[25] D. Fox, S. Thrun, W. Burgard, and F. Dellaert, “Particle Filters for Mobile
Robot Localization,” A. Doucet, N. de Freitas, and N. Gordon, editors,
Sequential Monte Carlo Methods in Practice, pp. 470–498, 2000.

[26] S. Lenser and M. Veloso, “Sensor resetting localization for poorly
modelled robots,” in Proc. of IEEE ICRA, pp. 1225–1232, 2000.

[27] R. Ueda, T. Arai, K. Sakamoto, T. Kikuchi, and S. Kamiya, “Expansion
Resetting for Recovery from Fatal Error in Monte Carlo Localization –
Comparison with Sensor Resetting Methods,” in Proc. of IROS, pp. 2481–
2486, 2004.

Ryuichi Ueda received his BE, ME, and Ph.D. in

Engineering from University of Tokyo, in 2001,

2003, and 2007 respectively. He worked in
University of Tokyo as an assistant professor from

2004 to 2009, in Universal Shell Programming

(USP) Laboratory Ltd. as a researcher from 2009 to
2013, and Advanced Institute of Industrial

Technology as an assistant professor from 2013 to

2015. He is an associate professor at Chiba Institute
of Technology from 2015. His research interests are

in probabilistic estimation and decision making in

robotics. He received JSME (The Japan Society of Mechanical Engineers)
Education Award for his translation and publication of textbooks on

probabilistic robotics in 2020. He has been also known as a master of shell one-

liner on Unix/Linux and has published several articles and books.

