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Abstract—Position-based visual servo (PBVS) control and 

image-based visual servo (IBVS) control have been the viable 

approaches to control of autonomous mobile robots and 

manipulators in an eye-in-hand manner. However, PBVS suffers 

from the sensitivity to model for position calculation, and IBVS 

is limited to the field of view (FOV) covered. In this paper, a 

hybrid visual servo control (HVSC) integrating PBVS and IBVS 

was proposed for tradeoff of both performances. To achieve the 

visual servo control, a fixed depth camera is mounted to an 

autonomous wheeled mobile robot (WMR) for visual feedback 

information. Point-to-point localization tasks were executed for 

the WMR. Experimental results demonstrate the feasibility and 

effectiveness of the proposed hybrid visual feedback schemes.  

I. INTRODUCTION 

WMRs possess a simple structure, flexible navigation, and 
low cost [1], and have been widely applied to in real 
environment such as industry, home and military, etc. 
Recently, to improve the autonomy of WMR, the visual servo 
control of WMR has become an active research topic in the 
control and robotics communities [2]. 

The visual servo control for WMR is designed by 
integrating feedback information from vision sensors or 
cameras into the control loop. Cameras have small size and 
high resolution, and can provide abundant information about 
the environment. For applications of autonomous WMR, the 
eye-in-hand configuration is always taken as the installation 
manner of camera, where the camera is mounted on the WMR 
body. In addition, according to the error signal, the visual 
servo controls are classified as PBVS, IBVS and HVSC [3, 4].    

In the PBVS algorithm, a 3D model of environment and 
camera parameters are required. The reverent 3D parameters 
are computed through the pose of the camera within a 

reference frame.  The absolute or relative positions of WMR 

with respect to target objects can thus be determined using the 
visual 3D parameter information. The controllers are then 
designed based on the position errors such that the WMR can 
navigate to a desired point, or execute a target searching like 
the leader–follower action. Sharma et al. [5] implemented 
PBVS for a mobile robot using gradient descent-based 
estimation for online parameter estimation for a desired 
position and orientation. The proposed adaptive technique   
achieved both estimation and control tasks.  Chen et al. [6] 
used PBVS for robot pose estimation to avoid obstacles. The 
work comprises of feature extraction for PBVS and collision 
avoidance within the task space. The PBVS control is used for 
the robot motion. Deng et al. [7] summarized the various 
implementations of the PBVS methods according to the 
dynamic performance in the Cartesian and image spaces. The 

results show that straight line Cartesian trajectories can be 
guaranteed in the desired static end-effector frame, but the 
image trajectories are not controlled and may leave the FOV 
of camera. However, in PBVS, exact knowledge of intrinsic 
parameters of camera is required for control performance. 
Even very small errors in the camera calibration may largely 
affect the control accuracy of robots. 

IBVS directly uses image features that are converted from 
pixels-expressed image by the camera system to design 
controllers. Visual features are first extracted from the image 
space. The errors are computed from points or vectors by the 
visual features. Aliakbarpour et al. [8] presented the radial 
model with a non-central catadioptric camera to allow 
effective IBVS of a mobile robot. The new visual features can 
control the motion of a mobile robot moving on plane. Zhang 
et al. [9] took advantage of the image features in the IBVS to 
achieve a direct and fast motion planning solution, in which 
surplus features and image-based constraints are incorporated. 
Shi et al. [10] presented an adaptive control method in IBVS 
using RL for WMR. The real-time adjustment of the image 
Jacobian matrix by fuzzy state coding accelerates learning at 
the training phase. Although the IBVS schemes are robust to 
the calibration errors in camera, large calibration errors may 
cause the closed-loop system to be instable [11]. As a result, 
an advanced control design is required for stability. Moreover, 
the IBVS by the fixed camera on WMR is limited to a field of 
view. That is, the target may always move out of the field of 
view as the WMR turns, and the IBVS controller will fail to 
control the WMR. 

HVSC improves PBVS and IBVS without camera 
calibration or a target model, and may perform better stability 
[12]. HVSC combines the Cartesian and image measurements 
for error functions [13]. The rotation and the scaled 
translation of camera between the current and desired views 
of an object are estimated as the displacement of camera. Lots 
et al. [14] presented hybrid visual servoing for station-keeping 
an underwater vehicle. The restrictive controllability of the 
vehicle was considered because of the thruster’s configuration. 
However, the proposed HVSC are susceptible to image noise. 
Li and Xiong [15] proposed an HVS-based control method for 
a mobile manipulation robot. The HVS control was developed 
using the whole Jacobian matrix combined with position and 
visual image information. However, a Kalman filter was 
introduced to correct the positions and orientations of the end 
of the manipulator to avoid the observed position error. 
Sharma et al. [16] presented a hybrid approach to robust 
servoing for WMR. The heading restoration method was 
designed based on an optical flow to deal with the visual 
marker disappearing from the FOV of the camera. However, 
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the arduous reinforcement learning was used to solve this 
visibility problem. The efficacy of proposed scheme was 
proven by simulation and experimental results.  

Although HVSC has been proposed for the localization 
and navigation control of WMR, almost the HVSC 
simultaneously applied the PBVS and IBVS to formulate the 
vision Jacobian to design the feedback control. In this paper, 
the HVSC alternatively integrating PBVS and IBVS was 
proposed for tradeoff to implement the point-to-point 
localization of WMR. 

II. MOBILE ROBOT MODEL WITH NONHOLONOMIC 

CONSTRAINT 

A. Wheel mobile robot building 

The mechanical structure of WMR is shown in Fig. 1. The 
mobile robot is driven by a differential drive system, which 
uses the difference speed between left and right wheel speed 
to execute longitudinal and lateral movements. The mobile 
robot consists of driving wheels and driven wheels, and the PC 
sends instructions to the motor drivers for driving wheels 
(ELVDR-K020CQ). As shown in Fig. 2, the hardware design 
of this research includes two DC brushless motors (BL60L, 
∅54mm, 120W), each motor is mounted with a planetary gear 
reduction mechanism (2GB23M). The Hall sensor uses a 
magnetic field to convert the voltage, and calculates the left 
and right wheel speeds through external interruption of timer 
integration and negative edge triggering. The spatial 
coordinate information of the target extracted by the depth 
camera (Intel realsense2 D435i) is used to realize the visual 
servo feedback position control. Finally, the control 
algorithms and measurements were developed in Python.  

B.  Kinematics Model  

The kinematics of the simplified WMR with differential 
drives is shown in Fig. 3, in which the inertial frame O_XY is 
fixed to the ground. The body-fixed frame C_xy is mounted 
to the WMR with the origin C being assigned to the center of 
mass (CM), where the x axis is defined as the heading 
direction of WMR, and the y axis is directed to the side 
direction. It is assumed that the kinematics of WMR satisfies 
the non-holonomic constraint, i.e. the left and right driving 
wheels cannot slide sideways, and thus the side velocity vy 

=𝑌̇ 𝑐𝑜𝑠 𝜃 − 𝑋̇ 𝑠𝑖𝑛 𝜃 is zero. Moreover, the heading velocity vc 
of WMR, being the velocity of CM along the x direction, can 
be expressed by the average of the right/left wheel velocities 
as      

𝑣𝑐 = 𝑣𝑥 = (𝑣𝑅,𝑥 + 𝑣𝐿,𝑥)/2 = 𝑟(𝜔𝑅 + 𝜔𝐿)/2                 (1) 

in which r is wheel radius, 𝜔𝑅 , 𝜔𝐿 are the respective rotational 
speed of the right/left wheel. 

           
(a)                                                 (b) 

 

Figure 1. (a) Proposed WMR design. (b) Autonomous system building. 

 

 
Figure 2. Control circuit and peripherals. 

  

      The yaw rate of WMR is resulted from the velocity 
difference between the right and left wheels, and can be 
written as  

                            𝜔𝑐 = 𝑟(𝜔𝑅 − 𝜔𝐿)/𝑏                              (2) 

in which b is the width of WMR. Eqs.(1)(2) implies that the  
right/left wheel speeds dominate the heading velocity and 
yaw rate of WMR.  

      In addition, the general velocities in the inertial frame 
shown in Fig. 3 are related to the heading velocity and yaw 
rate, and also to the rotation speeds of the two wheels of the 
WMR as 

 𝒒̇ = [𝑋̇ 𝑌̇ 𝜃̇𝑧]𝑇 =
[𝑣𝑐 𝑐𝑜𝑠 𝜃 𝑣𝑐 𝑠𝑖𝑛 𝜃 𝜔𝑐]𝑇 = 𝑱  

 

(3) 

in which J=[

(𝑟𝑐𝑜𝑠 𝜃)/2

(𝑟𝑠𝑖𝑛 𝜃)/2
𝑟/𝑏

(𝑟𝑐𝑜𝑠 𝜃)/2

(𝑟𝑠𝑖𝑛 𝜃)/2
−𝑟/𝑏

]  means the Jacobian 

matrix,  = [𝜔𝑅 𝜔𝐿]𝑇   The kinematic equation implies a 

relation of the state of WMR to the heading velocity and 

heading angles, and hence the control on the wheel velocities 

of WMR can localize the global position.  
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Figure 3. Kinematics of WMR and defined coordinate systems. 

III. VISUAL SERVO CONTROL DESIGN 

The WMR aims to search for the target, and then will be 

driven to the desired location for the ensuing actions. 

Therefore, a machine vision must be installed for visual servo 

control to realize the point-to-point localization. As such, this 

section will present the visual servo control designs combing 

with a cascade inner-loop control.    

A.  PBVS Cascade Control 

In the PBVS control method, the target is identified by the 
color depth camera with respect to the global frame. The 
image-expressed information is first processed, and then      
converted to the position of the camera plane relative to the 
WMR in the inertial frame. As shown in Fig. 4, it is supposed 
that the position of the WMR is (𝑥𝑐, 𝑦𝑐), the coordinate of the 
desired target point P is (𝑥𝑝 , 𝑦𝑝), the distance between the 

desired target and the WMR is defined as the distance error  
𝑑𝑒, and can be expressed as 

 
   

2 2

e p c p cd x x y y     (4) 

      The desired final heading direction β can be specified. If 
the final heading direction is not specified, the direction of the 
position of the desired target position P with respect to the 
initial position C will be designated as the desired posture. 
Using the arctangent trigonometric function, the final posture 
is determined as 

𝛽 = 𝑎𝑡𝑎𝑛(
𝑦𝑝−𝑦𝑐

𝑥𝑝−𝑥𝑐
)                            (5) 

The heading direction error is then defined as the difference of 
the final heading angle and the initial heading angle as 𝜃𝑒 =
𝛽 − 𝜃. These two polar coordinate values serve as the visual 
feedback for control of the WMR. And the reference heading 
velocity 𝑣𝑐  and yaw rate 𝜔𝑐 are synthesized as the control 
commands based on the Lyapunov stability theory. 

If a Lyapunov candidate function is chosen as [17] 

                   𝑉 =
1

2
𝜆𝑑𝑒

2 +
1

2
(𝜃𝑒

2 + ℎ𝛽2)                     (6) 

which is positive and differentiable. Taking derivative on V 
and combining with Eqs. (3-5) lead to  

𝑉̇ = 𝜆𝑑𝑒(−𝑣𝑐𝑐𝑜𝑠𝜃𝑒) + (𝜃𝑒 (
𝑣𝑐𝑠𝑖𝑛𝜃𝑒

𝑑𝑒
− 𝜔𝑐) +

ℎ𝛽𝑣𝑐𝑠𝑖𝑛𝜃𝑒

𝑑𝑒
)  (7) 

 

Figure 4. Positions and heading directions of WMR. 

The reference commands are assigned as 

                            𝑣𝑐 = (𝛼 𝑐𝑜𝑠𝜃𝑒) 𝑑𝑒                               (8) 

             𝜔𝑐 = 𝑘𝜃𝑒 + 𝛼
𝑐𝑜𝑠(𝜃𝑒) 𝑠𝑖𝑛(𝜃𝑒)

𝜃𝑒
(𝜃𝑒 + ℎ𝛽)              (9) 

the derivative of the Lyapunov function becomes 

                        𝑉̇ = −𝛼𝜆𝑑𝑒
2 𝑐𝑜𝑠2(𝜃𝑒) − 𝑘𝜃𝑒

2 ≤ 0           (10) 

The asymptotically stability of the system is thus guaranteed  

      Because in the kinematic model the rotational speeds of 
wheels are the control inputs to the WMR, the reference 
commands 𝑣𝑐 , 𝜔𝑐  are further converted to the desired 
rotational speeds of wheels. From the simultaneous Eqs. 
(1)(2), the rotational speeds of the right/left wheel are 
determined as 

       = [(2𝑣𝑐 + 𝐵𝜔𝑐)/2𝑟 (2𝑣𝑐 − 𝐵𝜔𝑐)/2𝑟]𝑇           (11) 

Furthermore, both wheels of the WMR are driven by motors. 
The control inputs u to the corresponding motors must ensure 
that the actual rotational speeds of wheels can track the desired 
rotational speeds. In this regard, the PI controller is employed 
for the feedback control of the wheels, in which the actual 
rotational speeds of wheels are measured by the Hall sensors 
that are connected to electric motors.   

The proposed PBVS cascade controller is composed of two 
controllers connected in series to achieve the point-to-point 
localization. The cascade control structure, consisting of a 
heading direction error controller and a distance error 
controller, is proposed for the high level to drive the WMR to 
the target point [18]. As shown in Fig. 5, in the outer loop the 
reference heading velocity 𝑣𝑐 and yaw rate 𝜔𝑐 are synthesized 
as the control commands by the position error feedback. The 
inner loop is a PI controller for the wheel control of WMR. It 
is noted that the position of the WMR is calculated by the 
kinematic model. Additionally, the dead reckoning method 
that is called the odometry was employed to calculate the 
relative state with respect to the initial posture based on data 
from incremental wheel encoders. The advantage of the 
cascade structure is that the inner loop directly regulates the 
distance and heading direction errors under external 
disturbances. That ensures a stable localization. To reduce the 
localization error, the position of target point with respect to 
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the WMR is modified through the vision feedback every 
execution time until the target is out of FOV.  

 

B. IBVS Fuzzy Cascade Control  

IBVS is based on the images captured from a camera to 
acquire the characteristics information of targets. Needing not 
a conversion from the 2D pixel coordinates to the 3D space 
coordinates, IBVS is designed based on the pixel errors on the 
image plane.   

Supposed that a target appears in the image plane with the 
pixel coordinate up=(up vp). The pixel coordinates of principal 
point is uc =(uc vc). When the WMR moves, the abscissa u of 
the target in the image plane is considered for localization 
control since the ordinate v of the image plane varies with u. 
As a consequence, the depth error is further considered for the 
control design of the differential driven WMR. The errors of 
the abscissa u and the depth value Z are respectively defined 
as 

               𝒆 = [𝑒𝑢 𝑒𝑑]𝑇 = [𝑢𝑝−𝑢𝑐 𝑧𝑝−𝑧𝑐]𝑇,            (12) 

These two error values from the image taken by the depth 
camera will be used for the determination of reference heading 
velocity 𝑣𝑐 and yaw rate 𝜔𝑐.  In this study, the fuzzy theory is 
applied to synthesize the reference commands.  

The fuzzy function FUZZY maps two linguistic input 
variables 𝑒𝑢, and 𝑒𝑑 to linguistic output based on the Mamdani 
inferred rules without a detailed input-output model. The fuzzy 
rules are shown in Table 1, in which seven fuzzy rules for 𝑒𝑢 
input are NB (Negative Big), NM (Negative Medium), NS 
(Negative Small), ZE (Zero), PS (Positive Small), PM 
(Positive Medium) and PB (Positive Big), and four fuzzy rules 
for 𝑒𝑑 are defined as ZE, PS, PM and PB. The fuzzy logic IF-
THEN rule base determines the input-output relationships in 
the fuzzy inference system which are typically used in the 
fuzzy inference system as shown in Table I, and is expressed 

as 𝑅(𝑖𝑗) ::IF 𝑒𝑢  is 𝐴1
𝑖  and 𝑒𝑑  is 𝐴2

𝑗
 THEN 𝐹𝑆𝑀𝐶𝑖𝑗  is 𝐵𝑖𝑗 , 

i=1,…,4; j=1,…7, in which  𝐴1
𝑖 , and 𝐴2

𝑗
 are the input fuzzy sets;  

 

 

𝐵𝑖𝑗  is the output fuzzy set. The normalized membership 
functions of input and output linguistic variables are chosen as 
in Fig. 6. Correlation-minimum inference with centroid 
defuzzification method is used for the fuzzy implications, and 
thus the reference heading velocity 𝑣𝑐 and yaw rate 𝜔𝑐 can be 
adjusted adaptively according to the pixel error 𝑒𝑢 of abscissa 
and the depth error 𝑒𝑑. 

Identical to the PBVS cascade control, the reference 
commands 𝑣𝑐 , 𝜔𝑐  are converted to the desired rotational 
speeds of wheels, and then the control inputs u to the 
corresponding motors are designed by the PI controller with 
the feedback of rotational speed errors between the desired 
rotational speed and the actual rotational speeds of wheels. The 
proposed IBVS fuzzy cascade control is shown in Fig. 7. 

TABLE I.   FUZZY RULES FOR IBVS 

         𝑒𝑑   

𝑒𝑢 

ZE PS PM PB 

NB PS PM PM PB 

NM PS PS PM PB 

NS ZE PS PM PM 

ZE ZE PS PM PM 

PS ZE PS PM PM 

PM PS PS PM PB 

PB PS PM PM PB 

 

 

 

 

 

 

 

 

 

Figure 5. PBVS-based cascade control. 
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(a) 

 
(b) 

Figure 6. Membership functions of input and output linguistic variables. 

C.  Hybrid Visual Servo Control 

As mentioned above, PBVS cascade controller makes use 
of the depth stereo camera to identify the target, and then the 
associated position is calculated by converting the desired 
point in image frame to the space coordinates. However, the 
conversion may result in the uncertain error because of the 
intrinsic and external camera parameters. Also, in the process 
of traveling, the errors of WMR’s position will cause serious 
localization deviation due to unexpected external disturbance 
such as friction and slip. The errors of position even are 
accumulated more and more with the traveling distance. 

IBVS takes advantage of pixel coordinates in image plane 
for feedback control without conversion to space coordinates, 

and thus the required calculation loading is comparatively 
lessened. Moreover, the target information is constantly 
returned for feedback control while traveling, it has higher 
localization accuracy than PBVS under the identical 
disturbances. But the pixel-based control may cause the WMR 
to generate a larger response in space. The main drawback of 
IBVS by the fixed camera is the limited field of view. When 
the WMR turns, the target is always out of the field of view, 
and the IBVS will fail to control the WMR. Therefore, a 
HVSC integrating PBVS and IBVS was proposed for tradeoff.      

The HVSC is presented in Fig. 8 for visual servo control. 
IBVS is first applied to execute the point-to-point localization 
of WMR due to the better control accuracy. Afterwards, PBVS 
will continue the ensuing navigation to achieve the remaining 
localization task according to switching conditions. Based on 
several tests, in this study, one of the switching conditions is 
prescribed as 𝑒𝑢 ≤ 5, 𝑒𝑑 ≤ 0.2. The other switching condition 
is that the target is detected to be soon beyond the field of view. 
The shorten distance to the target may reduce the accumulated 
localization error for PBVS, and fasten the localization speed. 
The tradeoff by HVSC improves the point-to-point 
localization accuracy on WMR. It is noted that when the PBVS 
is first applied in HVSC, if the target moves out of the FOV, 
the PBVS can still achieve the localization by the final 
recorded position of the target  But IBVS can’t implement a 
localization without the target on the FOV of the fixed camera. 
As such, the HVSC will be equivalent to PBVS if PBVS is first 
applied. 

 

Figure 7. IBVS fuzzy cascade control. 
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Figure 8. HVSC structure.  

IV. EXPERIMENTS AND RESULTS  

As shown in Fig. 9, the proposed visual servo control 
algorithms were demonstrated by our built WMR with a depth 
camera being mounted to the end-effector. The experimental 
field is an indoor room paved with the wooden floor. The 
initial heading direction is θ=0. A cherry tomato located in 
front of the WMR is referred as the target whose position with 
respect to the WMR is (3.26, 1.267) m. This test field may 
simulate a greenhouse, and the point-to-point localization 
experiments may simulate a search for mature crops by the 
autonomous motion of WMR.  

In addition, the Ultra-Wide-Band (UWB) was used to 
measure and record the trajectory of WMR. In the tests, four 
anchors are put around the corners of the room, and a tag on 
the WMR. The distance from the four anchors can be 
measured by the tag according to a certain frequency. The 
position of WMR was thus calculated, and hence the 
trajectories of WMR can be recorded.  

The required parameters for the proposed controllers are 

taken the followings: in the PBVS cascade control, 𝛼 = 0.1,

𝑘 = 0.85, h=0.015. The switching conditions for HVSC are 

𝑒𝑑 =0.2m, 𝑒𝑢 =5pixels. And 𝐾𝑝 = 0.8 , 𝐾𝐼 = 0.3  for PI 

controller. 

 

Figure 9. Indoor positioning experiment with UWB. 

A.  Final Posture Is Not Specified 

In the experiment for non-specified , the final position of 
WMR is assigned as the distance error 𝑒𝑑 =0.2m from the 
target. The three visual feedback controllers were applied to 
implement the point-to-point localization of the WMR. The 
trajectories to the final stopping position are shown in Fig. 10. 
Because the target is always inside the field of view of the 

WMR in the experiment, the trajectories for IBVS and HVSC 
are very close. 

The error comparisons of final posture for the proposed 
visual feedback controllers are shown in Fig. 11, in which the 
distance from the final point to the target was measured by the 
laser displacement measurement. It is seen that the error by 
PBVS are larger than the other algorithms due to the 
cumulative errors while moving as well as the calculated 
position from the kinematic model. However, as shown in 
Table II, PBVS has a faster finishing time 8.68 sec. for the 
point-to-point localization since the IBVS and HVSC must 
frequently capture the image to serve as the feedback 
information such that the finishing time almost doubles than 
PBVS.     

The point-to-point motion of the WMR by HVSC is 
presented in Fig. 12. It can be seen the proposed visual servo 
control can smoothly drive the WMR to the desired position. 

 

Figure 10. Trajectories of WMR by PBVS, IBVS and HVSC for non-

specified . 

 

Figure 11 Error comparisons of PBVS, IBVS and HVSC for non-

specified 

 

B.  Final Posture = 90°  

In the experiment, the final posture of WMR is assigned to 

be =90°, and it is implied the target will be out of the field 
of view after turning during the motion. Therefore, as shown 
in Fig. 13 for the trajectories, IBVS make the WMR fail to 
move to the desired destination. The proposed HVSC 
combining IBVS and PBVS drive the WMR first using IBVS 
fuzzy cascade control to the target position. Before the target 
exceeds the field of view of the camera, the hybrid visual servo 
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controller was switched to the PBVS cascade controller to 
continue the ensuing movement. The shorten distance from the 
target can reduce the error accumulation of the calculated 
position. The final localization error is 0.03±0.01m by the 
laser displacement measurement, and the final heading 
direction error is less than 5 ﾟ as shown in Fig. 14 for the 

localization error comparisons in PBVS, IBVS and HVSC.  
Table III presents the finishing time for the point-to-point 
localization by the three visual servo controllers. 

 

TABLE II.    FINISHING TIME FOR NON-SPECIFIED  

    Method 
  Time 

PBVS IBVS HVSC 

Time(s) 8.68 16.23 15.78 
 

 

Figure 12. Point-to-point motion by HVSC for non-specified  
 

Fig. 15 shows the point-to-point localization motion by 

HVSC for = 90°. The marked switching point means that the 
controller of the WMR is switched from the IBVS to PBVS at 
the position due to the disappearing target soon from the field 

of view. The results demonstrate the successful point-to-point 
localization by the proposed HVSC. 

 

 

Figure 13. Trajectories of WMR by PBVS, IBVS and HVSC for 90° 

 

Figure 14. Error comparison of PBVS, IBVS and HVSC for 90°

C.  Final Posture = 0° 

In the experiment, the WMR was assigned to stop beside the 

target with the final heading direction = 0°. The trajectories 
of WMR by PBVS, IBVS and HVSC are presented in Fig. 16, 
in which the point-to-point localization task failed by IBVS 
because the fixed eye-in-hand characteristics always have the 
camera capture no the target while turning. From the Fig. 17 
for the localization error comparisons, the HVSC has superior 
point-to-point localization performance.  However, HVSC still 
spent more time 24.53 sec to finish the task as depicted in 
Table IV.   

The successful point-to-point localization motion by HVSC 
is presented in Fig. 18, in which the switching condition at the 
switching point is based on the 𝑒𝑢=5pixels. 
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Figure 15. Point-to-point motion by HVSC for 90°

 

TABLE III.   FINISHING TIME FOR 90° 

         method 

 Time 
PBVS IBVS HVSC 

Time(s) 12.77 15.94 18.86 

 

Figure 16. Trajectories of WMR by PBVS, IBVS and HVSC for 0°. 

 
Figure 17. Error comparisons of PBVS, IBVS and HVSC for 0° 

TABLE IV.     FINISHING TIME FOR 0° 

         Method 

  Time 
PBVS IBVS HVSC 

Time(s) 18.97 15.31 24.53 
 

 

V. CONCLUSIONS 

This paper concludes with the realization of a hybrid 

visual servo controller for a proposed WMR on point-to-point 

localization. To perform smooth and accurate localization 

tasks, the IBVS fuzzy cascade control is first used to 

implement the tasks. If the target can’t be captured due to a 

turning, the controller is switched to the PBVS cascade 

control to continue the following movement. The point-to-

point localization experiments for different final heading 

directions by our built WMR show that HVSC gives the 

superior performance in localization accuracy over pure IBVS 

and PBVS. Besides, investigations on finishing time give a 

faster travelling but a poor localization precision.  

In the future, the visual servo algorithm will be further 

studied in agricultural fields for practical applications. In 

addition, a manipulator will be installed on the WMR to      

perform crop harvesting. It is expected that the efficacy of 

such an autonomous WMR system can be fully assessed in 

providing agricultural applications. 
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Figure 18. Point-to-point motion by HVSC for 0° 
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