
International Journal of iRobotics
Vol. 5, No. 3, 2022

1

Abstract—The requirement for service robots has grown in
many industries recently. Traditionally, Simultaneous
Localization and Mapping (SLAM) is used for localization.
However, it is not an efficient way since particles are needed to
scatter every time. And it takes a lot of time for particles to
calculate the position of the robot. Also, GPS has poor signal in
indoor environments. In this paper, an indoor localization
algorithm based on a deep neural network is proposed. In the deep
neural network model, the inputs are the distance to obstacles and
the angle of the robot gotten by LiDAR and compass. The output
is the robot position. Since we are familiar with the indoor
environment, the data is collected, and the model is trained in
advance. Furthermore, a model that combines GoogleNet and
Random Forest is used for prediction. In the path planning section,
Probabilistic Roadmap (PRM) algorithm is used. Finally, the
proposed localization algorithm is reliable and efficient shown in
the experimental results.

 Index Terms—Indoor Localization, Path Planning, Deep Neural
Network, GoogleNet, Random Forest

I. INTRODUCTION

n recent years, the localization algorithm has attracted many
researchers due to the development of mobile robots and
autonomous vehicles. Traditionally, Simultaneous

Localization and Mapping (SLAM) based on particle filter [1]
and Kalman filter [2] is used to deal with localization problems
[3]. In [4], Nak Yong Ko1 and Tae Gyun Kim compared the
Kalman filter and particle filter used for underwater vehicle
localization. Another SLAM involves cameras, known as visual
SLAM [5], which lower the cost and generate numerous
information. Furthermore, deep learning is also utilized for
localization. In [6], the DDL-SLAM (Dynamic Deep learning
SLAM) is proposed. Background Inpainting is used to improve
the localization accuracy. Also, in [7], the robot localization
problem is seen as a classification problem by using a
convolution neural network (CNN).

The difference between outdoor and indoor localization is
that GPS can be used outdoors. However, receiving poor GPS
signals in indoors makes it a big challenge for localization.
Therefore, Wi-Fi-based [8], [9], [10], [11] or RF-based [12],
[13], [14], [15] localization systems are proposed by
researchers.

However, since SLAM uses particles and keeps iterating to
calculate the position of the robot, which may spend excessive
time. In [16], the time complexity of SLAM is discussed and a
square root unscented Kalman filter (SRUKF) is developed.
This paper proposes an indoor localization algorithm based on
a deep neural network. In an indoor environment, the data is

This work was supported by the Ministry of Science and Technology,

Taiwan, under Grants MOST 109-2221-E-194-053-MY3.
1 Department of Mechanical Engineering, National Chung Cheng University,

Chiayi 62102, Taiwan (e-mail: jcwccu@gmail.com, phkuo@ccu.edu.tw)

collected, and the model is trained in advance. The algorithm of
the deep neural network can immediately predict the position
instead of spending a great time calculating particles and
building a map.

The paper is organized as follows. Section II presents the
system architecture to introduce the PR2 robot and the structure
of the algorithm. Section III presents the proposed methods to
show the deep learning model and path planning algorithm. In
Section IV, experimental results are presented and discussed.
Finally, section V shows the conclusion.

II. SYSTEM ARCHITECTURE

A PR2 robot is used in this research. The PR2 has a variety
of sensors. It has 2 LiDARs called base laser and tilting laser.
Also, there are 3 cameras on the head and 2 cameras on the left
and right hand. For gripper sensors, accelerometer and fingertip
pressure sensors are installed. An inertial measurement unit
(IMU) and a speaker are located next to the tilting laser. The
PR2 robot is shown in Fig. 1. An indoor environment is built in
the simulator shown in Fig. 2.

Fig. 1. PR2 robot.

Fig. 2. The environment in the robot simulator.

2 Advanced Institute of Manufacturing with High-tech Innovations (AIM-
HI), National Chung Cheng University, Chiayi 62102, Taiwan (e-mail:
phkuo@ccu.edu.tw)

* Corresponding author: Ping-Huan Kuo (e-mail: phkuo@ccu.edu.tw)

Chia-Wei Jan 1, Ping-Huan Kuo 1,2,*

Indoor Localization Algorithm for Service
Robot by Using Deep Neural Network

I

Jan et. al.
Journal of Robotics Society of Taiwan (International Journal of iRobotics)

2

The distance to obstacles and the angle of the robot gotten by
LiDAR and compass installed on the robot. These data are used
to be the input of the deep learning model. Robot position is the
output. The LiDAR installed on the base of PR2 has 270
degrees and 30 meters scanning range. And the output of the
model is the position of the robot. Before training the model,
the robot was controlled to move in the environment and stored
the values of the LiDAR, compass, and position. Finally, 7,458
data was collected from the simulator.

In the proposed algorithm, values are gotten from LiDAR
and compass first. Second, the data is used as input for deep
learning models. Third, the output of models is gotten as the
current position and the robot is moved to the next position.
Finally, check whether the current position equal to the target
position. If true, end the program; otherwise, values are kept
getting from LiDAR and compass. The structure of the
algorithm is shown in Fig. 3.

Fig. 3. Structure of the algorithm.

III. PROPOSED METHOD

Before training a model, we need to prevent the bias from
relying on one particular way of training and testing datasets.
For example, if the testing data same as the training data, we
can not prove the model can predict well other data even if the
accuracy is 100%. Therefore, we need to use a stricter way to
access the model.

Cross-validation uses several ways to partition the original
dataset into training and testing data and calculate the average
result of different partitions. K-fold and leave-one-out are both
common ways of cross-validation. Here I choose k-fold cross-
validation to evaluate the performance.

K-fold cross-validation means the original dataset is split into
k sets. Using k-1 folds for training and one fold for testing the

model, and then iteration for k times. Finally, average the results
of each iteration. Fig. 4 shows K-fold cross-validation.

Decision Tree (DT) is like a tree structure, including a root
node, internal node, and leaf node. Each branch holds a result
of the test and each leaf node has a class label. It starts from the
root node and divides the dataset into more accurate subsets.
Fig. 5 shows the structure of DT.

Fig. 4. K-fold cross-validation.

Fig. 5. Decision Tree.

Random Forest (RF) is constructed by several decision trees
and the final result is determined by the output of each tree. By
iterative calculation, the target will converge. Finally, the
majority voting or average method is used to get the final result
of the random forest model. Fig. 6 shows the structure of RF.

Fig. 6. Random Forest.

International Journal of iRobotics
Vol. 5, No. 3, 2022

3

Support Vector Regression (SVR) is based on Support
Vector Machine (SVM). If the distance between f(x) and y is
short, the prediction will be considered correct. An ε is added
to the left and right of f(x) as the model tolerance interval.
Therefore, only the errors outside the dotted line will be
calculated during the training process. Fig. 7 shows SVM.

Fig. 7. Support Vector Machine.

 AdaBoost is the abbreviation of “Adaptive Boosting.”

The wrong samples of the previous basic learner will be
strengthened, and the weighted whole samples will be used to
train the next basic learner again. At the same time, a new weak
learner is added to each round until it reaches a predetermined
sufficiently small error rate or reaches the pre-specified
maximum number of iterations. Fig. 8 shows AdaBoost.

Fig. 8. AdaBoost.

ResNet is a network based on residual learning. More layers

are added to increase the performance, but Degradation may
happen. ResNet solved this issue and add more layers
successfully. Having skip connections allows the network to
learn identity mappings more easily. (Fig. 9) Therefore, with a
residual block, the model will not degrade. Instead of
convolution layers, dense layers are used to build a ResNet-like
model in this paper. Fig. 10 shows the ResNet-like block.

Fig. 9. Skip Connection.

Fig. 10. ResNet-like block.

GoogleNet was proposed in 2014. Its structure is based on

Inception Net. Due to over parameters in Inception Net,
GoogleNet uses techniques such as 1×1 convolutions in the
middle of the architecture and global average pooling to
decrease the number of parameters. Instead of convolution
layers, dense layers are used to build a GoogleNet-like model
in this paper. Fig. 11 shows the GoogleNet-like block.

Fig. 11. GoogleNet-like block.

Since Random Forest and GoogleNet-like models have better
performance, the voting method is used in this paper to get
characteristics from both models. The voting formula is shown
in (1).

���� =
�����

�� × ������ + ����
�� × �����

�����
�� + ����

�� (1)

����� and ������ are mean square error (MSE) and

prediction of training data using Random Forest. ���� and
����� are MSE and prediction of training data using
GoogleNet.

Before doing path planning, it is required to get the position
of obstacles. The map is built to imitate the top view of the
indoor. The black blocks are the obstacles. The top view of the
indoor environment is shown in Fig. 12.

Jan et. al.
Journal of Robotics Society of Taiwan (International Journal of iRobotics)

4

Fig. 12. Indoor Environment.

Path planning is a computational problem that makes a robot

find an optimal path between two positions and avoids colliding
with obstacles. Most path planning algorithm is based on a data
structure called a Graph consisting of nodes and edges. In this
paper, Probabilistic Roadmap (PRM) algorithm is used for path
planning. Before implementing PRM, the map mentioned
above is read in the program. The black areas will be
transformed into obstacles.

After getting the position of obstacles, the PRM algorithm
generates random nodes in the configuration space. (Fig. 13)
Add the node that does not intersect with obstacles into the
graph. Then, connect the new node with the closest node
through an edge. Add the edge that does not intersect with
obstacles into the graph. Finally, a graph is constructed by the
above step. After building a complete graph, the shortest path
can be found using the Dijkstra algorithm. The PRM algorithm
is shown in Fig. 14.

Compare with the general A* and Dijkstra algorithm which
computes all the points in the map, Probabilistic Roadmap only
samples a bunch of points so that it is more efficient.

Fig. 13. Random nodes in the environment.

Fig. 14. Probabilistic Roadmap Algorithm.

Forward kinematics determines the end of a kinematics chain,

which end effector. There is only one solution to the forward
kinematic equation. Inverse kinematics calculates the joint
positions that are needed to place the end effector of the robot
at a specific position and orientation. The forward kinematics
formula is shown in (2).

T = f(θ�, θ�, … , θ�) (2)

The inverse kinematics formula is shown in (3).

[θ�, θ�, … , θ�] = ���(T) (3)

Homogeneous Transformation Matrix (HTM) combines both

rotation and displacement into a matrix. It can be expressed as
a 4×4 matrix, including a 3×3 rotation matrix and a vector of 3
dimensions. HTM is shown in Fig. 15.

Fig. 15. Homogeneous transformation matrix.

International Journal of iRobotics
Vol. 5, No. 3, 2022

5

The rotation of HTM around the x-axis is shown in (4).

�(��) = �

1 0 0 0
0 cos �� −sin �� 0
0 sin �� cos �� 0
0 0 0 1

� (4)

The rotation of HTM around the y-axis is shown in (5).

�(��) = �

cos �� 0 sin �� 0

0 1 0 0
− sin �� 0 cos �� 0

0 0 0 1

�

(5)

The rotation of HTM around the z-axis is shown in (6).

�(��) = �

cos �� − sin �� 0 0
sin �� cos �� 0 0

0 0 1 0
0 0 0 1

�

(6)

IV. EXPERIMENTAL RESULTS

The mean absolute error (MAE) and mean square error (MSE)
are two model evaluation metrics for regression models. MAE
uses absolute value which can avoid to offset positive and
negative numbers. The MAE formula is shown in (7).

��� =
1

�
�|�� − ���|

�

���

 (7)

 Compared with MAE, MSE can amplify the value with larger
prediction deviation and compare the stability of various
prediction models; in addition, it can be differentiated, so it is
often used as a loss function. RMSE is the square of MSE,
which is the same unit as data.

���� = �
1

�
�(�� − ���)�

�

���

 (8)

 Table I use MAE and RMSE to compare the performance of
the models mentioned above.

TABLE I.
PERFORMANCE OF THE MODELS

Model MAE RMSE
Decision Tree 0.155 0.6
Random Forest 0.142 0.341

SVM 0.548 0.753
AdaBoost 1.62 1.86

MLP 0.249 0.44
ResNet 0.213 0.41

GoogleNet 0.131 0.344
Random Forest & GoogleNet 0.117 0.283

The process of the robot grasping an object is shown in Fig.

16. Inverse kinematics is used to calculate the angle of the robot
arm.

(a)

(b)

(c)

(d)

(e)

Fig. 16. Experimental result. (grasp an object)

The path of the PRM algorithm is shown in Fig. 17. Also, Fig.
18 shows the process of localization. The robot starts from the
corner of the environment, and the target position is close to the
sofa.

Fig. 17. Path of PRM algorithm.

Jan et. al.
Journal of Robotics Society of Taiwan (International Journal of iRobotics)

6

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

 (j)

Fig. 18. Experimental result. (localization process)

V. CONCLUSION

In this paper, an algorithm of localization using a deep neural
network is proposed. We firstly collect the data in the indoor
environment, including the values of LiDAR, compass, and
robot position. A map is drawn to show the position of obstacles,
so that path planning can be done. For the localization, get the
values of LiDAR and compass as input, then get the output of
the model as the current position. In an indoor environment,
using a deep neural network is more efficient since a bunch of
particles does not need to be calculated. In the future, we plan
to implement a localization algorithm using the particle filter
and compare its performance with the deep neural network.

REFERENCES

[1] Chunlei Ji, Haijun Wang, and Qiang Sun, “Improved particle filter
algorithm for robot localization,” in 2010 2nd International Conference
on Education Technology and Computer, Jun. 2010, pp. V4-171-V4-174,
doi: 10.1109/ICETC.2010.5529710.

[2] I. Rhodes, “A tutorial introduction to estimation and filtering,” IEEE
Trans. Automat. Contr., vol. 16, no. 6, pp. 688–706, Dec. 1971, doi:
10.1109/TAC.1971.1099833.

[3] I. Ullah, Y. Shen, X. Su, C. Esposito, and C. Choi, “A Localization Based
on Unscented Kalman Filter and Particle Filter Localization Algorithms,”
IEEE Access, vol. 8, pp. 2233–2246, 2020, doi:
10.1109/ACCESS.2019.2961740.

[4] N. Y. Ko and T. G. Kim, “Comparison of Kalman filter and particle filter
used for localization of an underwater vehicle,” in 2012 9th International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Nov.
2012, pp. 350–352, doi: 10.1109/URAI.2012.6463013.

[5] H. Bavle, P. De La Puente, J. P. How, and P. Campoy, “VPS-SLAM:
Visual Planar Semantic SLAM for Aerial Robotic Systems,” IEEE Access,
vol. 8, pp. 60704–60718, 2020, doi: 10.1109/ACCESS.2020.2983121.

[6] Y. Ai, T. Rui, M. Lu, L. Fu, S. Liu, and S. Wang, “DDL-SLAM: A Robust
RGB-D SLAM in Dynamic Environments Combined With Deep
Learning,” IEEE Access, vol. 8, pp. 162335–162342, 2020, doi:
10.1109/ACCESS.2020.2991441.

[7] G. Kim, B. Park, and A. Kim, “1-Day Learning, 1-Year Localization:
Long-Term LiDAR Localization Using Scan Context Image,” IEEE
Robot. Autom. Lett., vol. 4, no. 2, pp. 1948–1955, Apr. 2019, doi:
10.1109/LRA.2019.2897340.

[8] H. Abdelnasser et al., “SemanticSLAM: Using Environment Landmarks
for Unsupervised Indoor Localization,” IEEE Trans. Mob. Comput., vol.
15, no. 7, pp. 1770–1782, Jul. 2016, doi: 10.1109/TMC.2015.2478451.

[9] M. Shu, G. Chen, and Z. Zhang, “3D Point Cloud-Based Indoor Mobile
Robot in 6-DoF Pose Localization Using a Wi-Fi-Aided Localization
System,” IEEE Access, vol. 9, pp. 38636–38648, 2021, doi:
10.1109/ACCESS.2021.3060760.

[10] M. Zhou, Y. Li, M. J. Tahir, X. Geng, Y. Wang, and W. He, “Integrated
Statistical Test of Signal Distributions and Access Point Contributions for
Wi-Fi Indoor Localization,” IEEE Trans. Veh. Technol., vol. 70, no. 5,
pp. 5057–5070, May 2021, doi: 10.1109/TVT.2021.3076269.

[11] L. Chen, K. Yang, and X. Wang, “Robust Cooperative Wi-Fi Fingerprint-
Based Indoor Localization,” IEEE Internet Things J., vol. 3, no. 6, pp.
1406–1417, Dec. 2016, doi: 10.1109/JIOT.2016.2609405.

[12] I. T. Haque and C. Assi, “Profiling-Based Indoor Localization Schemes,”
IEEE Syst. J., vol. 9, no. 1, pp. 76–85, Mar. 2015, doi:
10.1109/JSYST.2013.2281257.

[13] W. Zhu, J. Cao, Y. Xu, L. Yang, and J. Kong, “Fault-Tolerant RFID
Reader Localization Based on Passive RFID Tags,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 8, pp. 2065–2076, Aug. 2014, doi:
10.1109/TPDS.2013.217.

[14] A. Tzitzis et al., “Localization of RFID Tags by a Moving Robot, via
Phase Unwrapping and Non-Linear Optimization,” IEEE J. Radio Freq.
Identif., vol. 3, no. 4, pp. 216–226, Dec. 2019, doi:
10.1109/JRFID.2019.2936969.

[15] Z. Chen, M. I. AlHajri, M. Wu, N. T. Ali, and R. M. Shubair, “A Novel
Real-Time Deep Learning Approach for Indoor Localization Based on
RF Environment Identification,” IEEE Sensors Lett., vol. 4, no. 6, pp. 1–
4, Jun. 2020, doi: 10.1109/LSENS.2020.2991145.

[16] S. A. Holmes, G. Klein, and D. W. Murray, “An O(N2) Square Root
Unscented Kalman Filter for Visual Simultaneous Localization and
Mapping,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 7, pp.
1251–1263, Jul. 2009, doi: 10.1109/TPAMI.2008.189.

