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Abstract—The requirement for service robots has grown in 
many industries recently. Traditionally, Simultaneous 
Localization and Mapping (SLAM) is used for localization. 
However, it is not an efficient way since particles are needed to 
scatter every time. And it takes a lot of time for particles to 
calculate the position of the robot. Also, GPS has poor signal in 
indoor environments. In this paper, an indoor localization 
algorithm based on a deep neural network is proposed. In the deep 
neural network model, the inputs are the distance to obstacles and 
the angle of the robot gotten by LiDAR and compass. The output 
is the robot position. Since we are familiar with the indoor 
environment, the data is collected, and the model is trained in 
advance. Furthermore, a model that combines GoogleNet and 
Random Forest is used for prediction. In the path planning section, 
Probabilistic Roadmap (PRM) algorithm is used. Finally, the 
proposed localization algorithm is reliable and efficient shown in 
the experimental results. 

 Index Terms—Indoor Localization, Path Planning, Deep Neural 
Network, GoogleNet, Random Forest 

I. INTRODUCTION 

n recent years, the localization algorithm has attracted many 
researchers due to the development of mobile robots and 
autonomous vehicles. Traditionally, Simultaneous 

Localization and Mapping (SLAM) based on particle filter [1] 
and Kalman filter [2] is used to deal with localization problems 
[3]. In [4], Nak Yong Ko1 and Tae Gyun Kim compared the 
Kalman filter and particle filter used for underwater vehicle 
localization. Another SLAM involves cameras, known as visual 
SLAM [5], which lower the cost and generate numerous 
information. Furthermore, deep learning is also utilized for 
localization. In [6], the DDL-SLAM (Dynamic Deep learning 
SLAM) is proposed. Background Inpainting is used to improve 
the localization accuracy. Also, in [7], the robot localization 
problem is seen as a classification problem by using a 
convolution neural network (CNN). 

The difference between outdoor and indoor localization is 
that GPS can be used outdoors. However, receiving poor GPS 
signals in indoors makes it a big challenge for localization. 
Therefore, Wi-Fi-based [8], [9], [10], [11] or RF-based [12], 
[13], [14], [15] localization systems are proposed by 
researchers. 

However, since SLAM uses particles and keeps iterating to 
calculate the position of the robot, which may spend excessive 
time. In [16], the time complexity of SLAM is discussed and a 
square root unscented Kalman filter (SRUKF) is developed. 
This paper proposes an indoor localization algorithm based on 
a deep neural network. In an indoor environment, the data is 
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collected, and the model is trained in advance. The algorithm of 
the deep neural network can immediately predict the position 
instead of spending a great time calculating particles and 
building a map.  

The paper is organized as follows. Section II presents the 
system architecture to introduce the PR2 robot and the structure 
of the algorithm. Section III presents the proposed methods to 
show the deep learning model and path planning algorithm. In 
Section IV, experimental results are presented and discussed. 
Finally, section V shows the conclusion. 

II.  SYSTEM ARCHITECTURE 

A PR2 robot is used in this research. The PR2 has a variety 
of sensors. It has 2 LiDARs called base laser and tilting laser. 
Also, there are 3 cameras on the head and 2 cameras on the left 
and right hand. For gripper sensors, accelerometer and fingertip 
pressure sensors are installed. An inertial measurement unit 
(IMU) and a speaker are located next to the tilting laser. The 
PR2 robot is shown in Fig. 1. An indoor environment is built in 
the simulator shown in Fig. 2. 

 

Fig. 1. PR2 robot. 

 

Fig. 2. The environment in the robot simulator. 
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The distance to obstacles and the angle of the robot gotten by 
LiDAR and compass installed on the robot. These data are used 
to be the input of the deep learning model. Robot position is the 
output. The LiDAR installed on the base of PR2 has 270 
degrees and 30 meters scanning range. And the output of the 
model is the position of the robot. Before training the model, 
the robot was controlled to move in the environment and stored 
the values of the LiDAR, compass, and position. Finally, 7,458 
data was collected from the simulator. 

In the proposed algorithm, values are gotten from LiDAR 
and compass first. Second, the data is used as input for deep 
learning models. Third, the output of models is gotten as the 
current position and the robot is moved to the next position. 
Finally, check whether the current position equal to the target 
position. If true, end the program; otherwise, values are kept 
getting from LiDAR and compass. The structure of the 
algorithm is shown in Fig. 3. 

 

 
Fig. 3. Structure of the algorithm. 

III. PROPOSED METHOD 

Before training a model, we need to prevent the bias from 
relying on one particular way of training and testing datasets. 
For example, if the testing data same as the training data, we 
can not prove the model can predict well other data even if the 
accuracy is 100%. Therefore, we need to use a stricter way to 
access the model. 

Cross-validation uses several ways to partition the original 
dataset into training and testing data and calculate the average 
result of different partitions. K-fold and leave-one-out are both 
common ways of cross-validation. Here I choose k-fold cross-
validation to evaluate the performance. 

K-fold cross-validation means the original dataset is split into 
k sets. Using k-1 folds for training and one fold for testing the 

model, and then iteration for k times. Finally, average the results 
of each iteration. Fig. 4 shows K-fold cross-validation. 

Decision Tree (DT) is like a tree structure, including a root 
node, internal node, and leaf node. Each branch holds a result 
of the test and each leaf node has a class label. It starts from the 
root node and divides the dataset into more accurate subsets. 
Fig. 5 shows the structure of DT. 

 

 

Fig. 4. K-fold cross-validation. 

 

 

Fig. 5. Decision Tree. 

Random Forest (RF) is constructed by several decision trees 
and the final result is determined by the output of each tree. By 
iterative calculation, the target will converge. Finally, the 
majority voting or average method is used to get the final result 
of the random forest model. Fig. 6 shows the structure of RF.  

 

 

Fig. 6. Random Forest. 
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Support Vector Regression (SVR) is based on Support 
Vector Machine (SVM). If the distance between f(x) and y is 
short, the prediction will be considered correct. An ε is added 
to the left and right of f(x) as the model tolerance interval. 
Therefore, only the errors outside the dotted line will be 
calculated during the training process. Fig. 7 shows SVM. 

 

 
Fig. 7. Support Vector Machine. 

 
 AdaBoost is the abbreviation of “Adaptive Boosting.”  

The wrong samples of the previous basic learner will be 
strengthened, and the weighted whole samples will be used to 
train the next basic learner again. At the same time, a new weak 
learner is added to each round until it reaches a predetermined 
sufficiently small error rate or reaches the pre-specified 
maximum number of iterations. Fig. 8 shows AdaBoost. 
 

 
 

Fig. 8. AdaBoost. 

 
ResNet is a network based on residual learning. More layers 

are added to increase the performance, but Degradation may 
happen. ResNet solved this issue and add more layers 
successfully. Having skip connections allows the network to 
learn identity mappings more easily. (Fig. 9) Therefore, with a 
residual block, the model will not degrade. Instead of 
convolution layers, dense layers are used to build a ResNet-like 
model in this paper. Fig. 10 shows the ResNet-like block. 

 

 
Fig. 9. Skip Connection. 

 

 
 

Fig. 10. ResNet-like block. 

 
GoogleNet was proposed in 2014. Its structure is based on 

Inception Net. Due to over parameters in Inception Net, 
GoogleNet uses techniques such as 1×1 convolutions in the 
middle of the architecture and global average pooling to 
decrease the number of parameters. Instead of convolution 
layers, dense layers are used to build a GoogleNet-like model 
in this paper. Fig. 11 shows the GoogleNet-like block. 

 
 

Fig. 11. GoogleNet-like block. 
 

Since Random Forest and GoogleNet-like models have better 
performance, the voting method is used in this paper to get 
characteristics from both models. The voting formula is shown 
in (1). 
 

���� =  
�����

��  × ������ + ����
�� × �����

�����
�� + ����

��  (1) 

 
�����  and ������  are mean square error (MSE) and 

prediction of training data using Random Forest. ����  and 
�����  are MSE and prediction of training data using 
GoogleNet. 

Before doing path planning, it is required to get the position 
of obstacles. The map is built to imitate the top view of the 
indoor. The black blocks are the obstacles. The top view of the 
indoor environment is shown in Fig. 12. 
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Fig. 12. Indoor Environment. 

 
Path planning is a computational problem that makes a robot 

find an optimal path between two positions and avoids colliding 
with obstacles. Most path planning algorithm is based on a data 
structure called a Graph consisting of nodes and edges. In this 
paper, Probabilistic Roadmap (PRM) algorithm is used for path 
planning. Before implementing PRM, the map mentioned 
above is read in the program. The black areas will be 
transformed into obstacles.  

After getting the position of obstacles, the PRM algorithm 
generates random nodes in the configuration space. (Fig. 13) 
Add the node that does not intersect with obstacles into the 
graph. Then, connect the new node with the closest node 
through an edge. Add the edge that does not intersect with 
obstacles into the graph. Finally, a graph is constructed by the 
above step. After building a complete graph, the shortest path 
can be found using the Dijkstra algorithm. The PRM algorithm 
is shown in Fig. 14. 

Compare with the general A* and Dijkstra algorithm which 
computes all the points in the map, Probabilistic Roadmap only 
samples a bunch of points so that it is more efficient. 

 

 
Fig. 13. Random nodes in the environment. 

 
Fig. 14. Probabilistic Roadmap Algorithm. 

  
Forward kinematics determines the end of a kinematics chain, 

which end effector. There is only one solution to the forward 
kinematic equation. Inverse kinematics calculates the joint 
positions that are needed to place the end effector of the robot 
at a specific position and orientation. The forward kinematics 
formula is shown in (2). 

 
T = f(θ�, θ�, … , θ�) (2) 

 
The inverse kinematics formula is shown in (3). 
 

[θ�, θ�, … , θ�] = ���(T) (3) 
 
Homogeneous Transformation Matrix (HTM) combines both 

rotation and displacement into a matrix. It can be expressed as 
a 4×4 matrix, including a 3×3 rotation matrix and a vector of 3 
dimensions. HTM is shown in Fig. 15. 

 

 
 

Fig.  15. Homogeneous transformation matrix. 
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The rotation of HTM around the x-axis is shown in (4). 
 

�(��) = �

1 0 0 0
0 cos �� −sin �� 0
0 sin �� cos �� 0
0 0 0 1

� (4) 

 
The rotation of HTM around the y-axis is shown in (5). 
 

�(��) = �

cos �� 0 sin �� 0

0 1 0 0
− sin �� 0 cos �� 0

0 0 0 1

� 

 

(5) 

 
The rotation of HTM around the z-axis is shown in (6). 
 

�(��) = �

cos �� − sin �� 0 0
sin �� cos �� 0 0

0 0 1 0
0 0 0 1

� 

 

(6) 

 

IV. EXPERIMENTAL RESULTS 

The mean absolute error (MAE) and mean square error (MSE) 
are two model evaluation metrics for regression models. MAE 
uses absolute value which can avoid to offset positive and 
negative numbers. The MAE formula is shown in (7). 

 

��� =
1

�
�|�� − ���|

�

���

  (7) 

 
 Compared with MAE, MSE can amplify the value with larger 
prediction deviation and compare the stability of various 
prediction models; in addition, it can be differentiated, so it is 
often used as a loss function. RMSE is the square of MSE, 
which is the same unit as data. 

���� = �
1

�
�(�� − ���)�

�

���

 (8) 

 
 Table I use MAE and RMSE to compare the performance of 
the models mentioned above. 
 

TABLE I.  
PERFORMANCE OF THE MODELS 

Model MAE RMSE 
Decision Tree 0.155 0.6 
Random Forest 0.142 0.341 

SVM 0.548 0.753 
AdaBoost 1.62 1.86 

MLP 0.249 0.44 
ResNet 0.213 0.41 

GoogleNet 0.131 0.344 
Random Forest & GoogleNet 0.117 0.283 

 
The process of the robot grasping an object is shown in Fig. 

16. Inverse kinematics is used to calculate the angle of the robot 
arm. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 16. Experimental result. (grasp an object) 
 

The path of the PRM algorithm is shown in Fig. 17. Also, Fig. 
18 shows the process of localization. The robot starts from the 
corner of the environment, and the target position is close to the 
sofa. 

 

 
Fig. 17. Path of PRM algorithm. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
 (j) 

Fig. 18. Experimental result. (localization process) 

V. CONCLUSION 

In this paper, an algorithm of localization using a deep neural 
network is proposed. We firstly collect the data in the indoor 
environment, including the values of LiDAR, compass, and 
robot position. A map is drawn to show the position of obstacles, 
so that path planning can be done. For the localization, get the 
values of LiDAR and compass as input, then get the output of 
the model as the current position. In an indoor environment, 
using a deep neural network is more efficient since a bunch of 
particles does not need to be calculated. In the future, we plan 
to implement a localization algorithm using the particle filter 
and compare its performance with the deep neural network. 
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