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Abstract—Swabbing for the specimen is crucial in controlling 
the Covid-19 pandemic, but it occupies a lot of healthcare workers 
with dangerous (the risk of spit infection) and dull operations. Our 
lab developed a remote swabbing robot to complete the task safely 
and efficiently. Depth information is crucial for controlling the 
force in the swabbing process, ensuring patients’ safety. 
Nevertheless, constrained by the oral cavity size, the sensors can 
only collect a part of the depth information. This research 
implements the Cyber-physical System concept on the robot to 
have comprehensive depth information. The system has an 
adaptable digital twin of the human oral cavity that can adapt 
according to the patient’ s oral shape, achieving precise swabbing. 
The precise swabbing makes the swabbing process comfortable 
and effective. This elementary study creates a statistically 
averaged model based on eight samples and contains the morphing 
error under 4 mm. Further study will focus on expanding the 
samples to minimize the error. 

 Index Terms—3D Slicer, Cyber-Physical System, Generalized 
Procrustes Analysis, Model Morphing, Principal Components 
Analysis 

I. INTRODUCTION 

HE Covid-19 pandemic has caused millions of death and 
substantial economic losses around the globe. The pandemic 

control has become a desperate problem, in which early 
swabbing to contain the spread is crucial. Our lab proposes a 
remote oral/nasal swabbing robot: it reduces the risk of spit 
infection for healthcare workers and lessens the stress on the 
medical system. 

The block diagram of the system is as Fig. 1. With the 
human-in-the-loop logic, the operators can utilize their 
knowledge in selecting the swabbing area and thus increase the 
success rate in swabbing. The streaming video and the virtual 
model would help operators aim for swabbing areas. The virtual 
model would also serve as the digital twin of the robot: it shows 
the robot’ s position and orientation and serves as a training 
environment for operators. 

 

Fig. 1.  System block diagram 
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The visual feedback of the current system is limited to A 
camera streaming, so it is hard for the operator to know the 
distance between the swab and the oral surface. Without the 
distance information, it is hard to control the swabbing force. We 
tried using an RGB-D camera to retrieve depth data, such as 
RealSense manufactured by Intel. Nevertheless, the operating 
hole is too narrow for RealSense to measure depth, as Fig 2. 
illustrates. We also considered tiny Time of Flight (ToF) sensors, 
but the distance information is too scarce to represent the 
swabbing area. As a result, we propose a method utilizing 
Computer Tomography (CT) images to gather most of the depth 
information preoperatively and use the information to build the 
statistically averaged human oral cavity model. In the swabbing 
process, we collect featured depth information using ToF, and 
utilize the information to morph the averaged model to fit the 
patient’ s oral cavity. The morphed model would be shown to 
the operator, aiding the accuracy and the force control of the 
swabbing process. 

 

Fig. 2.  Comparison of the size of two possible depth sensors and the operating 
hole. The operating hole on the shell is designed according to the comfortable 
size of human oral cavities. The hole is too narrow for RealSense (#1) to 
measure depth. On the other hand, if we adopt GY-530 ToF sensor (#2), it 
cannot provide holistic depth information around the swabbing area. 

II.  RELATED WORK 

Cyber-physical system (CPS) is an integrated system that 
combines software and hardware; it bridges the gap between the 
cyber (including communication, algorithm, and control) and 
the physical world (including mechanics, sensory, and actuation) 
[2]. The challenges of designing a CPS include: I. the hardware 
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part may change with time, making the model inaccurate, and II. 
the information is corrupted during transmission [3]. As a result, 
it is crucial to have a holistic view of system design to prevent 
grave errors. A Digital Twin would constantly extract 
information from the physical world to update itself and reach 
high fidelity even over a long period. The high fidelity enables 
the purpose of life prediction [4]. Reference [5] concludes the 
state-of-the-art development in Digital Twin: in addition to the 
above utility in Prognostic and Health Management, it can also 
solve problems like intelligent control, product optimization, 
and product flexibility.  

Utilizing statistical methods to morph an average model to 
imitate a target is often used in computer-assisted orthopedic 
surgery. Reference [6] used this method for anterior cruciate 
ligament surgery. Its method can be divided into two stages:  
I. build the statistical model for the object, and II. fit the 
statistical model onto the target model using an optimization 
algorithm. In stage I. the authors used Octree Splines to register 
all the samples and subsequently used Principal Component 
Analysis (PCA) to record the statistical distribution of the 
samples. In stage II. the authors used the Nelder-Mead method 
along with the simulated annealing method to minimize the error. 
The initial solution of simulated annealing is generated using 
Iterative Closest Point (ICP) algorithm. The final Root Mean 
Square (RMS) error was around 0.4 mm. Reference [7] used the 
same staged structure on femoral heads, intending to provide a 
low-cost intra-operative model compared to CT or Magnetic 
Resonance Imaging (MRI). In stage I. the authors also used PCA 
to record the distribution. In stage II. the authors minimize an 
objective function by solving a linear system. The objective 
function incorporates Euclidean distance and Mahalanobis 
Shape Distance—a distance represents how far a sample is away 
from the mean. With leave-one-out experiments, the final error 
was around 1.5 mm. 

 The Genetic Algorithm (GA) is proposed by John Holland 
[8]. The method specializes in solving optimization problems. 
GA captured the concept of evolution to find the best solution—
by introducing mechanisms like crossover, mutation, and fitness 
selection, the solution improves in each epoch [9]. In this 

research, we select GA as the optimization algorithm because it 
has multiple solution agents: it should be more efficient than the 
simulated annealing method with a single solution agent. The 
GA implemented in the research would generate multiple real 
numbers in one chromosome as the weights for the PCA 
morphing algorithm. 

3D Slicer [10] is a data visualization software specializing in 
medical images. In this research, we modified the SlicerMorph 
[11] extension of 3D Slicer to meet our need for statistical 
morphing. 3D Slicer has multiple types of Fiducial Marker to 
mark crucial positions in the image. One of the Fiducial Markers 
is called Fiducial Markups; in later sections, we called it 
Markups. A Markups is a set of multiple Control Points; a 
Control Point can provide 3-dimensional coordinates data of a 
particular anatomical position. The Generalized Procrustes 
Analysis (GPA) submodule in SlicerMorph uses GPA to align 
Markups and get the average Control Points distribution, then 
uses PCA to extract the principal components of the distribution. 
We could morph the Control Points along the corresponding 
eigenvectors with the principal components. In this research, we 
adjust the weights of the cumulative top 90% importance of the 
principal components. The values of these weights are obtained 
from GA, and they minimize the Euclidean distance between the 
target and the morphed Markups.  

III. METHODS 

In the following section,  GPA and PCA Morphing (parts C 
and D) belong to SlicerMorph [11] extension. Before entering 
these two parts, we preprocess our data (parts A and B) to 
produce better input for later parts. We incorporate GA (part E) 
in PCA Morphing to optimize the morphing parameters, and 
lastly, we put the final result in CPS simulation (part F). 

A. Data Preprocessing 

After obtaining the CT data from the dentistry, we use the 
Volume Rendering module to render the CT image to ensure 
the Region of Interest (ROI) is captured; we then use the 
Volume module to center the volume onto the origin of the 
space. At this point, the volume’ s orientation and position still 

 

Fig. 3.  Data Preprocessing flow chart. Once the hard tissue is segmented, we place Markups on it to generate Similarity Transform to register the hard tissue 
and soft tissue. The graphs with little icons mean batch operation (the operation is done for every sample). 
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require further alignment using Markups. Therefore, we first 
need to segment the CT to have a model that has a concrete 
surface to place Markups. We use Segmentation Editor to 
threshold the image. The whole process is shown in Fig. 3. 
Because soft tissue is unstable, the Markups placed upon the 
soft tissue are not stable enough to register these samples. As a 
result, we use different threshold settings to segment the hard 
tissue from the soft tissue and place Markups upon the hard 
tissue to register these samples. The registration transformation 
used is Similarity Transform: through rotation, scaling, and 
affine to register samples. Here we choose sample 7 as the 
registration target because the image quality of sample 7 is the 
best.  
Table I shows the RMS error of the transform. Afterward, we 
apply these transforms onto the soft tissue to complete the 
registration process. The soft tissue threshold selection here is 
based on Global Otsu [12]; as for hard tissue, the threshold 
selection is arbitrary: as long as it separates the hard tissue from 
the soft tissue. The soft tissue model may contain artifacts, so 
we use different tools to clean the soft tissue data, as shown in 
Fig 4. 

TABLE I 
RMS ERROR IN SIMILARITY TRANSFORM OF MARKUPS 

Item No. RMS Error (mm) a 

1 2.43 

2 1.50 

3 0.94 

4 2.25 

5 1.79 

6 2.09 

7 0.00 

8 1.99 

a Round up to the hundredth digit 

 

Fig. 4.  Soft tissue data cleaning tools. For noise, we use Scissors to cut off; for 
holes, we use Paint to fill them up. We also smooth the model for later Markups 
placement, using a median filter with a 2 mm3 kernel size. 

B. Placement of Markups 

In this research, we place two sets of Markups for each 
sample: one is placed upon hard tissue to generate similarity 
transform for registration, and the other is placed upon soft 
tissue to capture the depth information around the swabbing 
area. The first set has five Control Points: the first three are 
placed around Anterior Nasal Spine, and the rest are placed 
upon the Buccal Cervical Root of the Left and Right Maxillary 
Second Molar. The second set also has five Control Points: they 
are placed upon the Uvular and the Palatoglossal Arch—the 
swabbing areas selected by doctors and in [13] indicates. By 
combining these two sets, we can get the Markups used in the 
algorithm later. Fig 5. shows the position of the Control Points. 
Because we want to match the scarce depth data obtained by the 
ToF sensor, we place relatively sparse Control Points; on the 
other hand, it is to prevent irrelevant data from tampering with 
the model’ s accuracy. 

 

Fig. 5.  No. 1, 2, and 3 are the views from the front, right, and left of the Control Points for the hard tissue. No. 4 is the front view of Control Points for the 
soft tissue. No. 5 is the front view of combined Markups for the later morphing algorithm. 



Yang et. al.  
Journal of Robotics Society of Taiwan (International Journal of iRobotics) 

10 

C. Generate Average Markups 

With the combined Markups, we first conduct GPA to 
construct the average Markups. Let us have � Markups, and 
each Markups has �  Control Points. GPA first subtracts the 
mean from each Control Point’ s coordinates to have initial 
alignment.  
 � = {�� ∈ �|1 ≤ � ≤ �} (1) 

 �� = { �� 
� , ⋯ , �� 

� } (2) 

 �� 
� = ( �� 

� , �� 
� , �� 

� ) (3) 

Where � is the set of all Markups, �� is one of the Markups, 
�� 

�  is a point in �� , ( �� 
� , �� 

� , �� 
� )  is the corresponding 

coordinates. 
The initial alignment would turn �� to ��

� : 

 �� → ��
� = { ��

�
 

� , ⋯ , ��
�

 
� } (3) 

 ��
�

 
� = �� 

� − (�̅�, ���, ��̅) (4) 

 �̅� =
� �� 

��
���

�
, ��� =

� �� 
��

���

�
, ��̅ =

� �� 
��

���

�
 (5) 

The first sample’ s Markups would then be considered the 
initial average Markups. We multiply the transpose of the first 
Markups and the rest Markups, and we take Singular Value 
Decomposition on the result to get two unitary matrices, � and 
�∗. We take the transpose of the two and multiply them together 
to get the rotational matrix that can align this sample with the 
first sample and times the Markups with the rotational matrix to 
align them even further. Let the second Markups be ��

� , the 
whole process is as follows: 

 ��
� �

��
� = ���∗, � =  �∗���, ��

�� = ��
� � (6) 

Where ��
�� is the Markups that are aligned with ��

� . 
When the process was over, we averaged the coordinates 

again along with the first dimension to get the initial average 
Markups, �, as below: 

 � = {���, ⋯ , ���} (7) 

 �� = (���, ���, �̃�) (8) 

Where ��  is a point in � ,(���, ���, �̃�) is the corresponding 
initial mean coordinates. 

With the method mentioned above, we align all the samples 
with this initial average Markups again. The process would go 
iterative until a particular round when the Frobenius norm of 
the difference between averaged Markups this round and the 
previous one is less than 0.0001. Then we get the final averaged 
Markups, �′. This Markups would later be used in the PCA 
morphing algorithm. The whole process is illustrated in Fig. 6. 

 After GPA, we could also know each sample’ s Procrustes 
distance, representing the sample’ s distance always from the 
mean. As Table II shows, sample 7 is the closest sample to the 
mean; it would be the morphing template in later PCA 
morphing. 

 

Fig. 6.  GPA flow chart. 

TABLE II 
PROCRUSTES DISTANCE OF SAMPLES 

Item No. Procrustes Distance (mm) a 

7 6.72 

4 7.66 

8 8.29 

2 9.60 

6 11.81 

1 12.34 

3 14.82 

5 18.39 

a Round up to the hundredth digit 

D. PCA Morphing Algorithm 

We take the aligned samples running the PCA. We can get 
eigenvectors. By changing the weights of these eigenvectors, 
we could morph the average Markups, ��, as below equation: 

 � = �� + ∑ ����
�
���  (9) 

Where �� is eigenvector, ��  is the corresponding weight, � 
is the morphed Markups, � is the number of eigenvectors in use. 

In the research, we select the cumulative top 90% importance 
of the eigenvector as the morphing direction, as Table III shows. 
(to PC3, so t is 3) 

TABLE III 
CUMULATIVE SIGNIFICANCE OF EIGENVECTORS 

No. Eigenvalue a Percentage (%)a Cumulative Percentage (%)a 

PC1 71.43 51.30 51.30 

PC2 33.15 23.80 75.10 

PC3 14.46 10.40 85.50 

PC4 12.59 9.00 94.50 

PC5 5.14 3.70 98.20 

PC6 1.61 1.20 99.40 

PC7 0.96 0.70 100 

PC8 0.00 0.00 100 

a Round up to the hundredth digit 
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We select Markups No. 7 as the morphing template since it 
is the closest sample to the mean. No. 7 would first calculate the 
Bookstein Thin-plate Spline transform [14] with the averaged 
Markups, ��. The transformation can fit the template Markups 
onto the averaged Markups; the objective function is as below: 

 ����,������(�) = � ∥ �� − �(��) ∥��

���
+ ���

�(�) (10) 

Where ����,������(�) is the value we seek to minimize, � is 

the target function, ��  is the control point of the morphed 
Markups, ��  is the control point of the target Markups,  

λ is a rigidity controlling factor, ��
�(�) is the gradient of � on 

each dimension. 
If we apply the transformation to the model of the template, 

then we get our initial template model. When the template 
Markups are morphed by the PCA algorithm mentioned earlier, 
the model would also be warped by the Markups, thus morphing 
the model. 

E. Genetic Algorithm 

The genetic algorithm finds the correct weights of principal 
components to morph the Markups closest to the target 
Markups. The selection method is deterministic: we select the 
top N of the population pool to get into the next epoch. This 
selection method is more efficient than Probability Proportional 
Stochastic Selection. The hyperparameters are set according to 
Table IV. 

TABLE IV 
GENETIC ALGORITHM HYPERPARAMETER SETTINGS 

Item Symbol Settings 

Population Size N 100 

Crossover Rate Cr 0.8 

Mutation Rate Mr 0.2 

Dimension D 3 

Upper/Lower Bound B 6 

Max Epoch Me 500 

   

We select the principal components that sum up to 90% 
(PC1~PC3). Initialize the pool with N chromosome—every 
chromosome contains D real numbers (here, D = 3 because we 
select three principal components) as the weights of the PCA 
morphing algorithm. The range of generated real numbers is 
between -32 to +31, which is constrained by B (-2B-1 ~ 2B-1-1). 
The number of iterative epochs is set at 500 epochs. The 
objective function is the RMS error between the target Control 
Points and the morphed Control Points. The GA would evolve 
to minimize the objective function value O. 

F. CPS Simulation 

In this research, we adopt the method in [15]; after generating 
an assembly in SOLIDWORKS, we use sw2urdf extension to 
turn the assembly into URDF (Unified Robot Description 
Format). URDF cannot simulate closed kinematic chains, so we 
open the URDF using Gazebo, add joints in the model editor to 
fulfill the closed kinematic chains, and save the file as SDF 
(Simulation Description Format). Fig. 7 shows the result. Aside 
from the robot, we use the same method to generate the 
morphed oral model. However, the oral model has too many 

triangulated surfaces for Gazebo to handle, and thus we only 
crop out the necessary region and show it in the simulation. 

 

Fig. 7.  Gazebo simulation. The yellow circle indicates the position of the oral 
model, whereas the red circle points out the swab rod mounted on the robot. 

IV. RESULT 

We use the input Markups as the morphing target because 
the data transfer between the ToF sensor and the algorithm 
module has not been set. Table V lists the RMS error in the 
Euclidean distance of morphing the average Markups to the 
target Markups; the table shows that we contained the RMS 
error below 4 mm, not a satisfying result compared to the 0.4 
mm error achieved in [6]. However, [6] conducts this morphing 
structure on rather stable hard tissue, whereas we are the first to 
adopt this method on unstable soft tissue. Fig. 8 shows the 
morphed results of Markups, while Fig. 9 shows the morphed 
result of the model. The two figures mentioned above show that 
the swabbing region: the Uvular and the Palatoglossal Arch, are 
aligned at the same depth. 

TABLE V 
RMS ERROR OF MORPHING MARKUPS 

Item No. RMS Error (mm)a 

1 0.92 

2 3.80 

3 1.23 

4 4.04 

5 1.06 

6 2.44 

7 1.79 

8 1.44 

a Round up to the hundredth digit 
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Fig. 8.  The morphing result of Markups of sample 5. The red Markups are the 
morphed Markups, whereas the green Markups are the target. 

 

Fig. 9.  The morphing result of model of sample 8. The upmost graph shows the 
superimposition of the morphed model (in blue) and the target model (in 
yellow). The two lower graphs show the models respectively. 

V.  CONCLUSIONS 

This research proposes a CPS incorporating the statistically 
averaged human oral cavity and containing the final error below 
4 mm. We got only ten CT data, of which two are of terrible 
quality, so they were not used in the research. The size of the 
dataset is too small to put the method into practice. In a further 
study, we will expand our dataset and focus on changing the 
number and position of the Markups to see if we can improve 
the result. 
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