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Abstract-This paper presents a collaborative air-ground 
robotic system with an indoor GPS-denied quadrotor working 
together with a Mecanum-wheeled mobile robot in indoor 
warehouse environments, in order to find and recognize 
cardboard boxes using deep neural networks on inventory shelfs. 
The quadrotor is used to fly in the warehouse environment and 
scan cardboard box’s tags on the shelf. The Mecanum-wheeled 
mobile robot with one Nvidia TX2 AI computing module is 
employed to co-work with the quadrotor not only by stitching the 
images which are scanned by the quadrotor, but also by using tiny 
YOLOv2 network to detect and find the cardboard boxes on the 
shelf. This collaborative robotic system is operated under the ROS 
environment such that it is easily deployed in any real warehouse 
system. Experimental results are conducted to show the feasibility 
and effectiveness of the proposed method. 

Index Terms—Collaborative robotic system, inventory management, 
deep neural networks, YOLOv2 neural network, ROS. 

 

I. INTRODUCTION 

N recent years, the use of robotic systems in inventory 
environments has been increasingly popular due to cost 

reduction and automation requirements. Therefore, there have 
been many related investigations and public competitions, such 
as the Amazon’s robots used widely in their own warehouses, 
and Amazon’s pick-up challenge. Furthermore, there are some 
studies presenting various methods investigating the use of 
robotic system in inventory environments. The authors in [1] 
proposed a mobile robot, which is able to deal with one 
inventory task, in the indoor environments; their proposed 
system had an ability to generate a costmap, which was an 
occupancy gird map, by using ultrasound, Lidar and RGB 
camera to sense and model the environment such that the used 
mobile robot was shown able to scan RFID tags for the 
inventory environment. However, this kind of robot was 
manually controlled without any navigation algorithm and 
automatic robot movement. The researchers in [2] presented an 
inventory checking system based on an outdoor storage yard 
environment, where the UAV of the inventory system which 
carried a portable PDA as a RFID reader and data collector was 
flew manually to scan RFID tags. Furthermore, air-ground 
robotic systems have been proposed by researchers to process 
and achieve inventory management; for example, the authors in 
[3] used a quadrotor flying above a ground robot, and utilized 
the   marker-based method to scan bar-codes attached on the 
cardboard boxes. In [3], the ground robot navigated and 
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localized itself by using a dead-reckoning technique and 
detecting the land-markers in the working environment, and the 
quadrotor flew over the environment by tracking the ground 
robot via its onboard bottom camera and scanned the bar-codes 
attached on the cardboard boxes. However, the flexibility of the 
quadrotor in [3] is restricted by the ground robot, namely that 
once the quadrotor fails to track the ground robot, it won’t be 
able to localize and navigate itself even to navigate itself from 
one area to another, in order to process inventory management. 
To the best of our knowledge, there are few researchers 
focusing on how to process a complete inventory management 
via multi-robot systems in spite of the fact that there still exist 
many problems of the multi-robot systems working for 
warehouse environments. Thus, this motivates us to seek for a 
more flexible and reliable approach to allowing one kind of 
multi-robot system, especially for air-ground robotic system, to 
process a complete inventory task. 

Deep learning neural networks have been widely applied to 
recognize various objects in huge amount of images. In 
particular, deep convolution neural networks (DCNNs) have 
been extensively used for image recognition and object 
understanding effectively and efficiently. Among DCNNs, 
YOLO NN in [8] has been shown as faster and more efficient 
neural networks, and has also been implemented into a mobile 
embedded system for real-time imaging applications. YOLOv2 
NN is an improved version and function more accurately than 
its original version, YOLO NN, does [9].  In the paper, tiny 
YOLOv2 NN will be used for efficient object recognition in 
inventory good recognition.    

This paper aims to propose a collaborative multi-robot 
system not only allowing the quadrotor to fly in indoor 
environments with the ground mobile robot, but also 
completing scanning task of desired tags attached on the 
cardboard boxes efficiently and precisely. The quadrotor, 
which is benefited from its efficient motion performance, is 
able to fly in front of the shelf and scan the cardboard box 
images. Meanwhile, the ground robot, which is benefited from 
its properties of high payload and omnidirectional mobility, is 
suitable to be equipped with a high-performance computer 
board, one Nvidia TX2 AI computing module, to execute high 
computational loads. Therefore, the quadrotor of the proposed 
system will be responsible to scan the images in front of the 
shelf and send back the scanned images to the computation 
center. Once these images received by the computation center 
on the ground robot, these images will be stitched into a 
complete image in order to find and detect the cardboard boxes 
with the attached tag by using YOLOv2 network and tag 
recognition algorithm. 

 Xin-Cheng Lin and Ching-Chih Tsai  

Development and Design of a Collaborative 
Air-Ground Robotic System in Indoor Warehouse 

I 
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Fig. 1. Working scenario of the collaborative air-ground robotic system. 
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Fig. 2. Software system structure using ROS.    

The rest of this paper is constructed as follows. The proposed 
system structure and description is stated in Section II. Section 
III addresses the indoor cardboard box tags scanning by using 
the quadrotor. Section IV delineates the cardboard box 
detection via YOLOv2 deep neural network. In Section V, 
experiments are conducted to verify the effectiveness and 
feasibility of the proposed method. Section VI draws the 
conclusions of the paper. 

II. SYSTEM STRUCTURE AND DESCRIPTION  
This section aims to introduce the structure of the proposed 

system, describe system configurations of the quadrotor, the 
Mecanum-wheeled robot and the ROS (Robot Operating 
System) software environment. The ROS will be used to be a 
robot framework and software platform, with each sensor or 
module being registered as a node and communicating with 
each other via the Master of the used ROS. The collaborative 
air-ground robotic system for the inventory management will 
be implemented in the ROS environment.  

Fig. 1 shows the overview of the collaborative air-ground 
robot system in the indoor warehouse. The quadrotor is 
responsible for capturing images in front of the shelf. 
Meanwhile, the Mecanum-wheeled vehicle which carries a 
powerful computing module, NVIDIA Jetson TX2, is 
responsible for executing all the computations, including 
SLAM algorithm, quadrotor flying trajectory calculation and 
cardboard box tag recognition. Once the quadrotor scans the 
images in front of the shelf, the images will be stitched into a 
complete image in order to find and detect the cardboard boxes 
with the attached tags by using YOLOv2 neural network. 

Fig. 2 depicts the overall system structure in the ROS 
environment. In Fig. 2, the quadrotor will be registered as a 
node, and it will publish its navigation data, the images of front 
and bottom cameras to the Master of ROS. The 
Mecanum-wheeled robot together with its on-board camera and 
Lidar will be registered as three nodes, respectively. Hence, 
they will publish the odometry data, camera images and Lidar  

 
  Fig. 3. Picture of the collaborative air-ground robotic system. 

data to the Master of ROS. Once the odometry data, camera 
images and Lidar data have been published to the Master of 
ROS successfully, the PF-SLAM and ORB-SLAM algorithm in 
[4] as two nodes will be able to subscribe these data and process 
the computations of the algorithms. Meanwhile, the trajectory 
planning module will also be registered as a node in order to 
command the quadrotor and Mecanum-wheeled robot to the 
proper position by publishing control commands of both robots. 
Fig. 3 shows the collaborative air-ground robotic system, where 
the Mecanum-wheeled which has omnidirectional movement 
ability is able to assist the indoor quadrotor to process the 
cardboard box tags scanning task in indoor warehouse 
environments. 

III. INDOOR CARDBOARD BOX SCANNING TASK  
This section describes how to process the indoor cardboard 

boxes scanning task of the quadrotor by using image stitching 
technique and tiny YOLOv2 deep neural network. In order to 
perform a proper indoor quadrotor flight, two SLAM 
approaches, including ORB-SLAM and particle-filter SLAM, 
are deployed to localizing and automatically building the 
environmental map of the quadrotor and ground robot 
respectively [4]. Furthermore, to ensure the safety of the 
quadrotor while it flies close to the shelf, the land markers will 
be attached on the shelf. The SLAM technique guarantees the 
quadrotor and ground robot to navigate themselves safely in the 
warehouse environment, and the land markers technique 
ensures the safety and accuracy of the quadrotor to process the 
scanning task in the way of closing to the shelf. Once the 
quadrotor has flown in front of the shelf, the images of the 
cardboard boxes will be captured simultaneously. Moreover, 
these images will be stitched into complete images in order to 
form a complete shape of each cardboard box. Therefore, the 
tiny YOLOv2 neural network will be employed to find the 
cardboard boxes. 

A. Image Scanning via the Quadrotor 

Due to the image resolution, the size of each cardboard box 
and tag, the quadrotor must fly nearby each cardboard box in 
order to recognize the tag successfully. However, after the 
quadrotor flies close to a cardboard box, it’s possible that the 
quadrotor cannot recognize it because it cannot see its complete 
shape. Moreover, it will not find other cardboard boxes because 
they cannot be seen. 
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Fig. 4. Block diagram of the image stitching method. 

For efficiency, we propose a novel but simple method to 
allow the quadrotor to fly only one time to collect all images of 
the shelf including the tags of the cardboard boxes. During the 
quadrotor flying in front of the shelf, the image of the shelf will 
be captured and these images will be stitched into a complete 
image. Once these images are stitched into a complete image, 
the cardboard boxes will be detected and its attached tag can be 
scanned as well. Furthermore, the complete image of the shelf 
is also able to provide the inventory information to the 
inventory manager in order to proceed with process inventory 
management. The scanning task is designed in the following 
four steps. 

Step 1: Localize itself by assistance of the ground robot 
The ground robot which processes SLAM algorithm 

navigates itself to the shelf, and simultaneously the quadrotor 
flies above the ground robot and localize itself assisted by the 
ground robot [4].  

Step 2: Fly close to the shelf 
Once the ground robot has found the shelf corner by 

detecting the QR-code attached on the shelf, the quadrotor will 
fly close to the shelf and start to scan the shelf image. 

Step 3: Scan the cardboards’ images via the flight sequence 
The quadrotor will fly horizontally from one side of the shelf 

to another side. Afterwards, it will fly to the next flight height 
and repeat to fly from one side to another. During the flight 
sequence, the quadrotor is able to localize itself more accurately 
by using the QR-code markers attached on the shelf. At the 
same time, the locations of scanned images can be recorded as 
well. 

Step 4: Complete the image scanning 
Once the quadrotor completes the scanning task, it will fly 

back to stop atop the ground robot and wait for future scanning 
tasks. 

B. Image Stitching for Cardboard Boxes Detection 

Due to the limitations of the scanned images, it’s hard to 
identify the cardboard box through the partial cardboard box 
image accurately. Therefore, it’s necessary to stitch the 
continuous images of the cardboard box in order to identify and 
recognize the attached tag. Since the image stitching techniques 
have been developed for several years, one of the key methods 
are the two stitching methods in [5], where one is direct 
techniques and the other is feature-based method. In this paper, 
we deploy a feature-based method which matches images by 
establishing correspondences between points, lines, edges, 
corners or other geometric entries. Fig. 4 depicts the block 
diagram of the proposed stitching method, where the algorithm 
is divided into the following five steps. 

Step 1: Image acquisition 
The quadrotor which has an onboard camera is responsible 

for scanning the images of the shelf. 

Step 2: Features detection and matching 
To process the image stitching, it is necessary to detect the 

features of the images. Once the features of the images are 
detected, the images will be matched. A well-known algorithm, 
scale-invariant feature transform (SIFT) [6], is used to detect 
the features and match the images. 

Step 3: Compute homography H using RANSAC 
To compute the homography H matrix which projects each 

image onto the same surface for image stitching, this step 
deploys the Random sample consensus (RANSAC) algorithm 
[7] to estimate the homography H matrix. The first step is to 
choose number of sample N, and then choose 4 random 
potential matches. The second step is to compute H by using 
normalized Direct Linear Transform (DLT), and then to project 
points from x to  x  for each potentially matching pair.  

Step 4: Global alignment 
To combine multiple images of the same scene into an 

accurate 3D reconstruction, we deploy bundle adjustment 
which applies an iterative algorithm to compute optimal values 
for the 3D reconstruction of the scene and camera positions. 

Step 5: Blending and composition 
This step is to select the final compositing surface, such as 

planar, cylindrical, spherical and cubic, and to blend the images 
together. We then select the cylindrical surface and blend the 
images of shelf together for cardboard box detection. 

IV. CARDBOARD BOX DETECTION BY USING YOLOV2 
NEURAL NETWORK 

This section will investigate how to detect the cardboard 
boxes by using tiny YOLOv2 neural networks [8]-[9], and how 
to achieve fine-tuned pre-trained weights of the network in 
order to recognize the cardboard boxes in our own inventory 
environments more accurately. Due to the image deformation 
of image stitching, traditional object detection may not 
recognize the cardboard boxes successfully. To circumvent the 
difficulty, YOLO neural network, benefitting from the robust, 
power tool, and deep neural network, can be deployed to solve 
this problem. The YOLO neural network with the light-weight 
and real-time performance is particularly suitable to be 
implemented in an embedded system in this proposed system to 
detect the cardboard boxes with image deformation in the 
stitched image. 

A. Cardboard Boxes Detection 

To achieve the real-time detection performance on the 
embedded system board, NVIDIA Jetson TX2, we deploy the 
tiny YOLOv2 neural network to detect the cardboard boxes on 
the shelf. The tiny YOLOv2 neural network has the ability to 
recognize and localize the cardboard boxes in real-time with 
acceptable accuracy. The principle of the YOLO neural 
network is to divide the input image into a SS gird, and then 
predict and detect objects through a single convolutional neural  
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Fig. 5. Pipeline of the YOLO neural network. 

 
Fig. 6. Structure of the YOLOv2 deep neural network. 

network. Each gird cell predicts a fixed number of bounding 
boxes, B, and each box has one box confidence score which 
reflects how likely the box contains an object and how accurate 
is the boundary box. Furthermore, each gird cell also predicts C 
conditional class probability (one per class for the likeliness of 
the object class) which is the probability that the detected object 
belongs to a particular class. Thus, the bounding boxes with 
high box confidence scores will be kept then to make a final 
prediction.  

Once the box confidence box and conditional class 
probability are estimated, the class confidence score for each 
predicted box will be computed as: 

     
 

 
 

  

  

  

i i

i

i

P class IoU P object IoU P class object
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
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   
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where P(object) is the probability that the box contains an 
object, P(classi|object) is the probability that the object 
belongs to classi given an object is presence, IoU is the IoU 
(intersection over union) between the predicted box and the 
ground truth, and P(classi) is the probability that the object 
belongs to classi. For more details, each bounding box contains 
5 elements: offsets to the corresponding cell x and y; width w, 
height h of the image, and a box confidence score (x, y, w, h). In 
Fig. 5, it shows the pipeline of the YOLO neural network. 

TABLE 1. STRUCTURE OF THE TINY YOLOV2 DEEP  NEURAL NETWORK. 
Layer Filters Size/Stride Input Output 
0 conv 16 3 x 3 / 1 416 x 416 x 3 416 x 416 x 16
1 max  2 x 2 / 2 416 x 416 x 16 208 x 208 x 16
2 conv 32 3 x 3 / 1 208 x 208 x 16 208 x 208 x 32
3 max  2 x 2 / 2 208 x 208 x 32 104 x 104 x 32
4 conv 64 3 x 3 / 1 104 x 104 x 32 104 x 104 x 64
5 max  2 x 2 / 2 104 x 104 x 64 52 x 52 x 64 
6 conv 128 3 x 3 / 1 52 x 52 x 64 52 x 52 x 128 
7 max  2 x 2 / 2 52 x 52 x 128 26 x 26 x 128 
8 conv 256 3 x 3 / 1 26 x 26 x 128 26 x 26 x 256 
9 max  2 x 2 / 2 26 x 26 x 256 13 x 13 x 256 

10 conv 512 3 x 3 / 1 13 x 13 x 256 13 x 13 x 512 
11 max  2 x 2 / 1 13 x 13 x 512 13 x 13 x 512 
12 conv 1024 3 x 3 / 1 13 x 13 x 512 13 x 13 x 1024
13 conv 512 3 x 3 / 1 13 x 13 x1024 13 x 13 x 512 
14 conv 425 1 x 1 / 1 13 x 13 x 512 13 x 13 x 425 

15 softmax        
 

 

Fig. 7. Cardboard box image of our own datasets. 

B. Design of the Neural Network’s Architecture 

The regular YOLOv2 neural network has 24 convolutional 
layers followed by 2 fully connected layers, as can be seen in 
Fig. 6. In this section, we only implemented a faster, 
light-weight version YOLOv2, tiny YOLOv2 network which 
only used 9 convolutional layers with shallower feature maps. 
Table 1 shows the structure of the tiny YOLOv2 neural 
network. 

C. Fine-Tuning with the Pre-Trained Weights 

To detect the customized object and increase the accuracy of 
the pre-trained tiny YOLOv2, we proceed with fine-tuning of 
the network by our own datasets. First of all, the “cardboard 
box” dataset was created by using our own images from 
different scenes including outdoor, indoor and warehouse scene, 
and then labeling the cardboard boxes by hands. To date, about 
200 images have been constructed with labelled data in our 
dataset. Fig. 7 displays the four images from our “cardboard 
box” dataset. After creation of our own dataset, the network 
was fine-tuned with its weights by using NVIDIA Jetson TX2 
GPU board. 
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V. EXPERIMENTAL RESULTS AND DISCUSSION 
This section presents the experimental results of the 

proposed collaborative air-ground robotic system in a 
demonstrative warehouse environment. The four experiments 
aim to show that the collaborative air-ground robotic system 
will complete the tags scanning task in the warehouse 
environment successfully. More importantly, the quadrotor will 
be shown able to fly in front of the shelf and scan the images of 
the shelf, and the ground robot will be shown able to carry 
high-performance computer board and detect cardboard boxes 
by using image stitching technique and tiny YOLOv2 neural 
network.  

A. Image Stitching  

In the first experiment, the image stitching module is 
verified if it has the ability to stitch the images with partial 
cardboard boxes and shelfs into a complete image by using the 
proposed stitching algorithm. Fig. 8 displays the images with 
partial shape of the cardboard box and shelf, and Fig. 9 shows 
the results of the stitching algorithm. Fig. 10 presents the 
images scanned by the onboard camera of the quadrotor. As can 
be seen in Fig. 11, the cardboard box was stitched successfully 
despite of the fact that there is a little image deformation. As 
shown in Fig. 12, the images were shown with QR-code 
attached on the cardboard box and shelf. The results in Fig. 13 
reveal that the cardboard box image was stitched successfully 
as well. 

 
 
 
 
 
 
 
 
 

   

   
Fig. 8. Images of the cardboard box. 

 
Fig. 9. Stitched image of the cardboard box.

 

 

 

 
Fig. 10. Partial images of the cardboard box. 

 
Fig. 11. Stitched image of the cardboard box. 

 
 
 
 

 

 

 
Fig. 12. Partial images of the cardboard box. 

 
Fig. 13. Stitched image of the cardboard box. 
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Fig. 14. Earlier stage of the training process. 

 
Fig. 15. Complete stage of the training process. 

B. Fine-tuning of the Tiny YOLOv2 NN 

The second experiment is carried out to examine whether the 
tiny YOLOv2 is successfully find-tuned with our own dataset.  
Fig. 14 shows the training curve of the network on the earlier 
stage, and Fig. 15 depicts that the loss value continuously 
decayed until the training process was stopped. The results in 
Figs. 14 and 15 indicate that the tiny YOLOv2 has been 
successfully find-tuned with our own dataset. 
 

C. Cardboard Box Detection via Tiny YOLOv2 NN 

The third experiment is conducted to investigate if the 
fine-tuned tiny YOLOv2 network has the ability to detect a 
cardboard box in the image. Fig. 16 depicts the testing results of 
the object detection using the tiny YOLOv2 NN, thereby 
showing that the network is capable of detecting and localizing 
the cardboard box in different view angles and scenes. 
Furthermore, Fig. 17 shows that this network is capable of 
recognizing the cardboard box in the stitched image with image 
deformation as well. 

D. Cardboard Box Tags Scanning Task 

Finally, the last experimental is aimed to explore if the 
quadrotor is able to complete the scanning task in the 
warehouse environment. In Fig. 18, six pictures showed that the 
quadrotor first flew close to the shelf and started to scan the 
shelf image, and then flew horizontally from one side of the 
shelf to the other; afterwards, the quadrotor flew to the next 
flight height and repeated to fly from one side to the other. 
Meanwhile, the Mecanum-wheeled robot was used to carry the 
computation center and assist the quadrotor to process the 
scanning task in the indoor warehouse environment. The 
experimental results in Fig. 18 that both robots cooperated to 
achieve the scanning task successfully. 
 

Fig. 16. Testing of the tiny YOLOv2 neural network. 

Fig. 17. Stitched image testing of the tiny YOLOv2 network. 
 

 

 
Fig. 18. Tags scanning task of robotic system. 

VI. CONCLUSIONS 
This paper has presented a collaborative air-ground robotic 

system in indoor warehouse allowing one quadrotor to scan 
cardboard box tag and one Mecanum-wheeled robot to process 
the image stitching algorithm, tiny YOLOv2 object detection, 
and SLAM algorithms. The collaborative air-ground robotic 
system has been implemented in the ROS environment. The 
quadrotor with an onboard camera has been responsible for 
scanning the images of the shelf and sending back these images 
to the ground robot. The Mecanum-wheeled robot carrying a 
high-performance computing module has been shown to work 
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well to process the image stitching algorithm and the tiny 
YOLOv2 neural network. Through experimental results, the 
system has been shown its effectiveness in an indoor warehouse. 
An interesting topic fir future work would be to integrate a 
QR-code detection and recognition method and an inventory 
management system into a more complete system. 
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Abstract-This paper presents a novel motion control method 
using broad-learning-system (BLS) for station keeping and 
trajectory tracking of an uncertain Inverse-Atlas ball-riding 
robot (IABRR) driven by three omnidirectional wheels. After 
brief description of the dynamic model of the robot with viscous 
and Coulomb frictions, a BLS-based compensator along with the 
backstepping sliding–mode controller is proposed to accomplish 
robust self-balancing and trajectory tracking of the robot in the 
presence of frictions variations, viscous and Coulomb frictions 
with unknown parameters and uncertainties. The proposed 
motion controller is proven asymptotically stable using 
Lyapunov stability theory. Computer simulations are conducted 
for illustration of the effectiveness of the proposed control 
method. The results show that the proposed controller is more 
effective and efficient than Chan’s method [16]. 

Index Terms—Backstepping, ball-riding robot, sliding-mode 
control, broad-learning-system (BLS), trajectory tracking. 

I. INTRODUCTION 

EVERAL ball robots have been developed to achieve 
mobile servicing in human living and work environments 

[1-7] in recent years. The ball-riding robots devised by the 
authors in [5-7] were constructed using three omnidirectional 
wheels driven by three DC servomotors. Moreover, ball-riding 
robots [5-7] have been designed as mobile platforms for 
indoor autonomous service robots because such robots have 
high center of gravity, narrow bases of support, agile mobility 
toward any poses, and dynamical stability. Hence, such 
mobile platforms have been shown useful in achieving 
efficient navigation around the human living space, and 
establish friend and convenient man-machine interactions. 

Although the ball-riding robots have received much 
attention recently [5-7], the stability of the proposed state 
feedback control in [5-6] has not been analyzed because the 
complete dynamic model of the ball robot has not been 
established yet. On the other hand, the modeling and control 
of the ball robot developed in [6] have not been seen in the 
literature although the authors released the experimental 
videos to show how the robot worked successfully. The 
researchers in [8] presented a dynamic model and an LQR 
control method for a ball-riding robot, in order to achieve 
station keeping and point stabilization; however, the trajectory 
tracking stable control problems have not been solved yet [8].  

                                                 
Bing-Yang Chen, Ching-Chih Tsai and Feng-Chun Tai are with the 

Department of Electrical Engineering, National Chung Hsing University, 
Taichung, 40227, Taiwan, R.O.C. (Corresponding author Ching-Chih Tsai, 
email: cctsai@nchu.edu.tw) (email: g106064024@mail.nchu.edu.tw). 

The authors gratefully acknowledge financial support from National 
Science Council, Taiwan, ROC, under contract NSC 106-2218-E-005-003-. 

From viewpoints of control systems technology, the 
control of the ball-riding robot can be thought of as an 
under-actuated control problem, which has been investigated 
by several researchers [9-11]. In particular, Lo and Kuo [9] 
provided a decoupled sliding-mode control to stabilize a 
nonlinear system with four state variables, Lin and Mon [10] 
offered a hierarchical decoupling sliding-mode control to 
regulate a more general class of under-actuated control 
systems, and Wang et al. [11] presented two systematic 
sliding-mode design methods for a class of under-actuated 
mechanical systems. On the other hand, backstepping control 
method has been one important branch of nonlinear control 
approaches for model-based systems, aiming at a class of 
nonlinear systems whose dynamic models are governed by 
strict feedback forms. Backstepping sliding-mode control has 
been well studied in [12] by taking advantages of 
backstepping and sliding mode control. This control approach 
has been shown particularly useful in a class of second-order 
dynamic systems.  

In recent years, the Broad Learning System (BLS) is 
proposed as an original flat structure established based on the 
random vector functional-link neural network (RVFLNN)[13]; 
the BLS inherits the major features of RVFLNN, and it can be 
expanded in a wide sense [14]. Chen et al. [15] further 
discussed the general approximation capability of the BLS 
and some variants with their mathematical models. The BLS 
is indeed different from some popular deep neural networks 
which have high compute cost and suffer from a time 
consuming learning for excessive parameters, thereby 
providing a much faster method with high accuracy. Due to 
these characteristics, it makes the BLS very efficient and 
much less time-consuming in function approximation and 
regression. However, the intelligent motion control augmented 
by BLS method has not been proposed for motion control of 
uncertain IABRRs. 

Hence, the objective of the paper is to propose an 
intelligent motion control using BLS along with backstepping 
sliding–mode methodology for station keeping and trajectory 
tracking of the ball-riding robot with uncertain parameters. 
The presented contents are written in two main contributions. 
One is the rigorous derivation of the BLS-based intelligent 
motion controller using Lyapunov stability theory for the 
IABRR, the other is the comparative study on effectiveness, 
efficiency and superiority of the proposed method by 
comparing to an existing control method by Chan [16].     

Intelligent Motion Control  
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Uncertain Inverse-Atlas Ball-Riding Robots  
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Fig. 1. The experimental ball-riding robot; (a) physical diagram;  

(b) laboratory-built prototype.  
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Fig. 2. Illustration of (a) the elevation angle θ, the zenith angle φ; (b) the tilt 

angle θx and the motors’ angular positions ϕx in the median sagittal 
plane; (c) the tilt angle θy and the motors’ angular positions ϕy in the 
median coronal plane. 

The rest of the paper is organized as follows. Section II 
briefly describes the dynamic model of the IABRR with 
uncertainties, and Section III shows the structure of the used 
proposed BLS. In Section IV the proposed intelligent BLS 
controller is synthesized to achieve the design goals. 
Computer simulation is performed in Section V to illustrate 
the effectiveness and superiority of the proposed control 
method. Section VI concludes the paper. 

II. SYSTEM MODELING 

The section aims to describe the system structure and 
physical configuration of the designed IABRR, and then recall 
its dynamic model. Table 1 lists the parameters of the 
ball-riding. Note that the modeling process is based on a 
simplification assumption that the ball-riding robot is 
constructed by two major components: the body and ball. 

A. Kinematic and Dynamic Models of the IABRR  

To steer the designed a stable controller for the IABRR, it 
is necessary to develop its dynamic model. As mentioned in 
[5-6,8], the IABRR is realized using two mechanisms: one is a 
two-dimensional inverted pendulum and the other is an 
omnidirectional mechanism using an inverse Atlas spherical 
motion platform for driving the ball. For the control purposes, 
two decoupled, independent dynamic equations for the 
two-dimensional mobile inverted pendulum are required in 
order to easily achieve trajectory tracking. 

The basic concept in finding kinematic and dynamic 
model of the robot is to first obtain a relationship between the 
angular velocity vectors of the center of mass of the sphere 



 and the angular speeds of the three omnidirectional  
wheels i


, which accounts for zero kinematic slip between 

 

TABLE 1. LIST OF THE ROBOT PARAMETERS AND THEIR ACTUAL VALUES. 

Symbol Parameter description Actual value 

mB mass of the body 13.6kg 
mb mass of the ball 2.7kg 

l 
distance between the center of the ball and 
the center of mass of the body 

0.225m 

rB radius of the body 0.15m 
rb radius of the ball 0.105m 

IB 
moment of inertia of the Body with respect 
to the center of the body 

0.2678 

Ib 
moment of inertia of the ball with respect 
to the center of mass 

0.0119 [kg·m2]

 

the sphere and omnidirectional wheels. Since the related 
mathematical work about the Atlas spherical motion platform 
has been well described in [8], some related variables and 
functions are presented as follows.  The relationship between 
the angular velocities, , 1, 2,3,i i   of three omnidirectional 

wheels and the linear velocities, vx, vy in both x and y axes, 
and the rotational speed ωz of the robot is expressed by  

1

2

3

cos

1 3 1
( ) cos

2 2

3 1
( )cos

2 2

y z z

x y z z

x y z z

v K

v v K
r

v v K

 

  


 

 
  
  
       
         

       (1) 

Moreover, the angular velocity vector 


 of the ball is given 
by 

1 2 3

1

2 2 3

3

1 2 3

2

2cos
/

2 3
( ) /

3 2cos

1
( )

2sin

y b

x b
b

z

v r
r

v r
r

  


 



  



   
 
                         

  
  

  (2) 

Let the contact point sR


 between the sphere and the 

ground have the position vector defined by s bR r k 


, where 

i


, j


and k


are respectively the unit normal vectors in the x, y 

and z axes. Hence, the velocity V


 of the contact point 
between the driving ball and the ground is computed by  

1 2 3

2 1

0 0

0 =

s

b

b b x y z

i j k

R

r

r i r j k V i V j V k

 
       
  

       

V

 
  

    
     (3) 

which leads to  

, ,    0x x y y zV x v V y v V               (4) 

Taking the time derivative of Eq. (4), one easily obtains the 
dynamic equations of the inverse Atlas spherical motion 
platform in the following.  
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,    x x x y y yx V v u y V v u                   (5) 

where ux and uy are the acceleration control commands in both 
x and y axes. 

B. Dynamic Modeling of the Two-Dimensional Mobile 
Inverted Pendulum 

The subsection is aimed to describe a simplified planner 
dynamic model of the two-dimensional mobile inverted 
pendulum using Lagrangian mechanics. Similar to the 
modeling process investigated by Nagarajan et al. [3-4], our 
modeling approach makes the following three assumptions: (i) 
there is no slip between the spherical wheel and floor, (ii) the 
motion in the median sagittal plane and median coronal plane 
is decoupled, and (iii) the equations of motion in these two 
planes are identical. With these assumptions, one obtains two 
decoupled, independent planar dynamic models for the robot, 
thereby easily designing two independent motion controllers. 
In the following, as per the assumptions, the equations of 
motion in the median sagittal plane (x-z) are derived and then 
the vehicle dynamics in the median coronal plane (y-z) is 
assumed to have identical dynamics but with different 
symbols. 

1) Reduced Dynamics in the Median Sagittal plane 
To describe the dynamics of the robot in the sagittal plane, 

one needs to obtain two expressions of the kinetic and 
potential energy of the body and ball, form the Lagrangian 
function and finally obtain the Euler-Lagrange equations of 
motion of the two-dimensional ball-riding robot in the 
following vector matrix form 

 x x x xM ( ) C ( , ) +G ( ) D ( )= 0 τ
T

x x x x  x x xq q q q q q q      (6) 

where  

x

2 2
x

1

2

2 cos( ) cos( )
M ( )

cos( )

C ( , ) sin( ) sin( )

G ( ) sin( ) 0 ,    ( )

T

x x x

x x

x

T

x x x x x x x

T

x x x x x
b

Dg
D

Dr

 

      
   

   

 

   
   

   

    

   
     

  

  



x

q

q

q q q

q q

 

and 2( )b B b bI m m r    ; B bm r l  ; 2
B Bm l I    . bI , 

bm  and br  are, respectively the moment of inertia, mass, 

and radius of the ball.   represents the viscous coefficients 

and c  denotes the static friction coefficient.  

Since x  and x  can be calculated from the kinematic 

equations of motion of the ball, i.e., 

2 3( )
3 cos

x
x

bb

vr

rr
  


    and 2 3( )

3 cos
x

b

r

r
  


     

where x xa dv dt , then we have the following second- order 

equation of motion of x  from Eq. (6) 

2
11 1 12

12

sin( ) sinx x x x x x x x
b

x
x

b

g
M D M

r

M
u

r

        

 

  

   (7) 

where 11 2 cos( )x xM       , 12 cos( )x xM      and 

x xu a . Considering the uncertainty coming from the system 

parameters, one decomposes system parameters into nominal 
terms and perturbed terms as below;  

11 110 11 0 12 120 12,   ,   x x x x x xM M M M M M            

where perturbed terms are assumed to be bounded. Then, Eq. 
(7) turns out  

2 0
110 0 120

120

sin( ) sinx x x x x x x x
b

x
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g
M U M

r

M
u

r


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  (8) 

where

2
1 11 12

1

sin
sin( ) x

x x x x x x x x
b

x

g
U D M M

r

D

 
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


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represents the dynamic equation of the uncertain inverted 
pendulum in the Sagittal plane or in the x axis. 

2) Reduced Dynamics in the Median Coronal plane 
Similar to the previous section, the Euler-Lagrange 

equations of the robot in the median coronal plane can be 
derived and governed by the following matrix form 

y y y yM (q )q C (q ,q )q G (q ) D (q ) 0 τ
T

y y y y y y y y     =     (9) 

In addition, because y  and y  can be calculated from the 

kinematic equations of motion of the ball, i.e., 

1 2 3( 2 )

3 cos
y

y
b b

vr

r r

  



  

   and 1 2 3( 2 )

3 cos
y

y
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r r

  



  

 
    

where y ya dv dt , then we have the following second- order 

equation of motion of x  from Eq. (9) 
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 (10) 

where 11 2 cos( )y yM       , 12 cos( )y yM     , and 

y yu a . Similarly, we have  

11 110 11y y yM M M   , 0     , 12 120 12y y yM M M    

 
Then, (10) is rewritten by 
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Fig. 3. Illustration of the BLS. 
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
            (11) 

where 

2
1 11

12

1

sin( )

       sin

y y y y y y

y y y
b

y

U D M

g
M

r

D

  

  



    


  

 

 

        (12) 

and Eq. (11) represents the dynamic equation of the uncertain 
ball-riding robot in the median coronal plane. 

III. REVIEW OF BLS 

A. Introduction to BLS 

This subsection will briefly introduce the broad learning 
system structure as shown in Fig. 3. For the input data 

1,mR X , the output data nRY  , and the nonlinear 

transformation i , the output of the ith mapped feature is 

expressed by, 1,...,i n ,  

( )

( 1 ) ( )

T
i fi fi

TT T T
i fi fi i fi



 

 

       

iZ W X β

W β X W x
   (13) 

where ( )i x x ; fiW and fiβ are generalized weights and 

biases, respectively; 1TT m
fi fi fi R    W W β  and 

1
TT mR   x X . Let 1[ ,..., ]T n

nZ Z R Z  and 

1 2, ,  ..., m n
f f f fn R    W W W W .  

Hence, it follows that  

( )T fZ W x                 (14) 

Next, we group the first n feature maps together and establish 
the jth enhancement node group whose output is obtained from, 

1,..., ,j m  

( )

( 1 ) ( )

T
j j ej ej

TT T T
j ej ej j ei



 

 

       

H W Z β

W β Z W z
 (15) 

where tanh( )j   ; ejW and ejβ are also respectively 

generalized weights and biases. 
TT

ei ei ei   W W β  and 

11
TT nR    z Z . Moreover, let us represent the first m 

groups of the enhancement nodes by 1[ ,..., ]T m
mH H R H .  

let  1 2e e e emW W W W , and one obtains  

( )T
eH W z                  (16) 

and the output of the broad learning system as   

TY W Ψ                    (17) 

where W is the weighting matrix connects mapped features 

and enhancement node groups to output, and T T T[ | ]Ψ Z H .  

B. Vector Uncertain Function Approximation by BLS 

The BLS has been shown capable of uniformly 
approximating any real continuous vector function f(x)R1 on 
a compact set U to any arbitrary accuracy bε, i.e., there exists 
an ideal BLS with ideal parameters W such that 

 sup ( ) T
x f x b  U W Ψ            (18) 

Therefore, vector function ( )f x  can be represented as 

( ) Tf x  W Ψ                (19) 

where ||ε|| ≤ bε. In this paper, all norms of vectors and matrices 
adopt Frobenius norm. The norms of the ideal parameters 
should satisfy the following assumption. 

Assumption 1: The norms of ideal parameters, ||We||, ||Wf|| and 
||W||, are bounded by positive real values, i.e. ||We|| ≤ be, ||Wf|| 
≤ bf and ||W|| ≤ bw. Clearly, we need to estimate the ideal BLS 
by an estimate BLS 

 ˆ ˆˆ( ) Tf x  W Ψ                  (20) 

The weight updating law will be stated in the following. By 

defining ˆ W W W , ˆ
f f f W W W and ˆ

e e e W W W , 

we have 

ˆ( ) ( ) ( )f f f x x x             (21) 

where 

 

( )

ˆ ˆ

T
t

e

T T T
t

f f f
f 



  
   

  

 
   

 

f e
f

f e
f e

x W W W
W W W

Ψ Ψ
W Ψ W W W W

W W

     

  
   (22) 

where T
t  W Ψ and t is assumed to satisfy maxt  . 

IV. INTELLIGENT MOTION CONTROL USING BLS 

This section will present the procedures of designing the 
proposed motion controller for tracking xd(t) and yd(t), and 
stabilizing both variables θx and θy at θxd(t) and θyd(t), 
respectively. Since the dynamic equations of motion of the 
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robot in both sagittal and coronal planes are identical except 
the notations. Hence, only the controller in the sagittal plane is 
designed during the controller design process. The same 
controller can be straightforward applied to control the robot 
in the other plane. 

The design procedure is divided into two steps; the first 
step uses backstepping to design a virtual controller, and the 
second step defines the sliding surface and designs the 
sliding-mode controller. 

By defining the following four state variables, 1xx x , 

2x xx  , 3xx x  , 4x xx   , the dynamic model (8) in the 

median sagittal plane can be re-expressed by 

 
 

1 2 3 4=
T

x x x x x

T

x x x x x b

x x x x

x u A u B U    

x    


        (23) 

where
2

120

110 110 110 110

 ,   sin( ) ,    ,x x x
x x x b

x b x b x x

M Ug
A B U

M r M r M M

 
 

    
 



and ux=x. 

A. Virtual Control Design  

In order to achieve the control goal, one defines the 
following tracking error 

1 1 1 3=x e d x e d dx x x x x x x x                 (24) 

2 2 2 4= =x e x xd x e xd xdx x x x                 (25) 

Consider the two state variables, 3xx and x4x ,as two virtual 

(ideal) controls and set 

3_ 1
1 2

24 _

( , )
x virtual x e d

p
x e xdx virtual

x x x
x x K

xx



     

              


     (26) 

where 1

2

0
0

0
p

p
p

k
K

k

 
  
 

 

Hence, we have  

1 1 1 1 1 1 0e p e e p ex k x x k x       
          (27) 

2 2 2 2 2 2 0e p e e p ex k x x k x      
         (28) 

By introducing the Lyapunov function 

  1 1 2 1 2

1
V

2

T

x e x e x e x ex x x x           (29) 

one obtains time derivative of the Lyapunov function  

   1 1 2 1 2V 0
T

x e x e p x e x ex x K x x       (30) 

According to Barbalat’s lemma, 1V  is negative semi-define 

function and it implies that  

 1 2 1 20 as t , 0 as t
T

x e x e x e x ex x x x   

 

(31) 

Next, let the backstepping error vector be defined as follows; 



3 3 1
1 2

24 4Virtual control
True

= ( , )x x x e d
x x x p

x e xdx x

x x x x
x x K

xx x
 


       

          
      


     (32) 

With the definition of the backstepping error vector, the 

dynamics of  1 2

T
x x  can be rewritten by 

   1 2 1 2

T T

e e x p e ex x K x x            (33) 

In order to start with the design of the control law for ux, it 
is necessary to obtain the time derivative of the backstepping 

error vector  1 2

T

x x x    

3 1

24

1 1

2 2

x x e d
x p

x e xdx

p x e dx

b p x e xdx x x

x x x
K

xx

k x xu

U k xA u B






     
       

    
  

         

  
 

 


     (34) 

B. Backstepping Hierarchical Aggregated Sliding Surface 
and Control 

In order to make the backstepping error vector η to 
converge to zero, it is necessary to construct the subsequent 
sliding surface by obeying the design procedure of the 
hierarchical aggregated sliding-mode controller in [11],    

1 2 1 1 2 2, ,x x x x x x xS S rS S S           (35) 

where r is a real constant. The time derivative of the 
second-layer sliding surface S is given by 

   
1 2 1 2

1 1 2 2

 ( ) ( )  

   +

 (1 )( )

x x x x x

x p x e d x x x b p x e xd

x x x d xd

S S rS r

u k x x r A u B U k x

rA u f x r

 





   

      

    

    
  



(36) 

where   1
1 1 2 2 (1 )x x p x e x b p x ef rA k x r B U k x        

Let the control be decomposed into _ _x x eq x swu u u  , the 

equivalent and switching control, respectively. The equivalent 

control _x equ  can be found such that 0xS  ,  

_x eq xu f                    (37) 

Since the function xf  in (37) is unknown, one proposes that 

the control is learned by the BLS as follows; 

 _
ˆ

x eq x txu f                   (38) 

where the function ˆ
xf  in (38) is online learned by the BLS. 

According to the result in Subsection 3.2 the ideal function 

_x equ  is expressed as 
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_

ˆ ˆ( )

ˆ        

T

x eq
T

t

f

u



     
 

   

f
f

e
e

Ψ
x WΨ W W

W

Ψ
W W

W

 


            (39) 

and the actual output of the BLS is then given by  

_
ˆ ˆˆˆ T

x eq xu f   W Ψ  

The inclusion of the switching-like control which is  

 _ 1 1 1 2 2sgn( )x sw xd xd x xu k c r r g S k S             (40) 

gives the resultant torque ux, 

 
_ _

1 1 1 2 2

ˆ

ˆ sgn( )

x x eq x sw

x xd xd x x

u u u

f k c r r g S k S 

 

          (41) 

where k1 and c1 are two positive and constant gains. 

In order to prove the stability of the controller Eq. (41), 
the Lyapunov function is selected as below; 

2
2

2
max

1 1 1

2 2 2

1 1
              

2 2

T T
x f f

w wf

T
e e

we x

V S
r r

r r


  

 

W W W W

W W

   

  
 

where rw, rwf, rwe and rεx are real and positive. Let max
ˆg  , 

and the time derivative of Sx
2/2 is expressed by 

  

 

2

1 2

max

1 max

1 2 2
1 1 2

1 2

1

(1 )
2

ˆ

( )
ˆ      

ˆ
 ( ) sgn( )

   

 

(

x
x x x x xd xd

T

x x

x x x x
xd xd

x xd xd

Sd
S rA u f r

dt

W

S r r A

k
S r r A S k S

c r r

S r r

r r

 





 

 

 
     

 
     

 
   

   
    
     

 

  

f
f

T
e

e

Ψ
WΨ W

W

Ψ
W W

W

 

 



 

 

 

2

2
2 max 1

ˆ

) ˆ        

T T

x
Tx

x x

S
A

k S k S

      
  

    
    

f
f

e
e

Ψ
W Ψ W W

W

Ψ
W W

W

 





 (42) 

where (1+rAx)<0. 

Thus, differentiating the Lyapunov function V2 yields 

 
 
 

2

max max

2
1 2 1 2

max 1 2 max

1 2

1 2

1 1 1

1
          

( )

ˆ  ( ) /

ˆ  ( ) /

ˆ ( ) ˆ  ( )( ) /

  

T T T
x x f f e e

w wf we

x

x x x

x x x

T
x x wx

T T
f x f wf

f

T
e

V S S
r r r

r

r r A k S k S

r r A S r

r r A S r

f
r r A r

W





 

 

   



   

  

  

 
     



W W W W W W

W Ψ W

x
W W

W

        

 








1 2

ˆ ( ) ˆ( )( ) /T
x e e

e

f
r r A r

W 

 
    

x
W


   (43) 

Therefore, we take the following parameter adaptation rules 

max 1 2

1 2

1 2

1 2

ˆ ( )

ˆ ( )

ˆ ( )ˆ ( )

ˆ ( )ˆ ( )

x x x x

wx x x

T

f cx x x

T

e x x x

r r r A S

r r r A S

f
r r r A S

f
r r r A S





  

 

 
     

 
     

f

e

W Ψ

x
W

W

x
W

W









        (44) 

which leads to 

 
 

2
2 1 2 1 2

2
1 2 1 2

( )

0,  if ( )

x x x

x x x x x

V r r A k S k S

k k S k S k r r A

   

     


  (45) 

Since 2V  are negative semi-definite, it is easy to show via 

Lyapunov stability theory that the second-layer sliding 
function Sx converges to the origin asymptotically.  

In what follows, we let r be a switching gain where 
r=r0sgn(S1xS2x), r0>0, for the IASBRR since the origin is 
inherently unstable, and show that the control effort u will 
force the system state to reach the first-layer sliding-mode 
surface in finite time. In doing so, we first prove 

1 2 2 2| | , | | ,x xS L S L  i.e. 

 
2 2

1 20 0
 ,    x xS S d

 
            (46) 

From (45), we have, 

 2
2 2 1 20

2
2 0

( ) (0)

(0)  

x x x x

x

V t V k k S k k S d

V S d









  

    




 (47) 

which leads to know that 
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TABLE II.  TOTAL SIMULATION TIME OF THE PROPOSED METHOD USING BLS 

AND THE CHAN’S METHOD [16]. 
 BLS RIT2FNN 

Averaged execution time 
per sampling (ms) 

3.28 17.31 

ISE 117.4100 180.5710 

IAE 906.6102 1.3723e+03 

ITAE 4.2390e+03 6.9999e+03 

ITSE 122.8238 225.8240 

 

  
(a)                          (b) 

Fig. 4. Simulation results of the straight line tracking: (a) the proposed 
method using BLS; (b) the Chan’s method using RIT2FNN [16]. 

2 2
1 20 0

1 1 20

2 2 2
1 1 2 1 2 20

2 2 2
1 1 2 20

 ( )  

( )( ) 

 ( ) 

 ( 2 )       

x x x

x x x x

x x x x x x

x x x x

S d S rS d

S rS S rS d

S rS S rS S r S d

S rS S r S d

 







 







 

  

   

    

 




  (48) 

Since 2ab ≤ a2+b2 holds for any real numbers, it is obvious 
that 

2 2 2
1 2 1x 2x0 0

2  (S +r S ) x xrS S d d 
 

         (49) 

which leads to show   

2
1 2 1 20 0 0

2    x x x x xrS S d S d rS S d  
  

         (50) 

Now, (46) and (48) and the two inequalities S1x
2≥0 and 

r2S2x
2≥0 imply that 

2
102 2 2

1 20 2 2
20

( )     
x

x x

x

S d
S r S d

r S d












      
  





   (51) 

Next, move to prove 1 1 2,  ,  ,x x xS L S L S L      and 

2xS L . From (51) one obtains .xS L   At the same 

time, from the following equation 
2

2 1 2 ,x x x x x xV S S k k S k k S       we can also obtain 

.xS L  Because the choice of λi guarantees 1 2( ) 0i i is s   , 

we obtain 1 2, ,  x xS L S L   i.e. 

1 1 2 2
0 0

sup ,  sup   x x x x
t t

S S S S
 

        (52) 

From the equation 1 1xS  , it follows that   

1 1 1x x p x e dS u k x x                  (53) 

 
(a)                         (b) 

Fig. 5. Simulated responses of the proposed method using BLS for the 
ball-riding robot tracking the straight line: (a) Sx1 and Sx2 converge to 
zero; (b) Sy1 and Sy2 converge to zero. 

 
Fig. 6. Comparison of the straight line tracking errors of the proposed method 

using BLS and the Chan’s method using RIT2FNN.  

Since all variables in the right-hand side of (53) are bounded. 

Hence, 1xS is bounded, i.e., 1xS L . From 2 2 ,xS   we 

can obtain 2xS L . Because we have proved 

1 2,  x xS L S L   . According to Barbalat’s lemma, 

1 2lim 0 and lim 0,x xt t
S S

 
   i.e., the first-level sliding 

surfaces, 1xS and 2xS , converge asymptotically to zero. 

These indicate that both variables x and θx are stabilized at xd 
and θxd, respectively. The main result is summarized as below.  

Theorem 1: Consider the ball-riding robot dynamic model (8) 
with the proposed control laws (54). Then the second-layer 
sliding function Sx→0 and the first-layer functions, S1x and S2x, 
tend to zero as t→∞. Moreover, θx→θxd, x→xd, for t→∞. 

Remark 1: Similar results can be applied for the control of 
the IABRR in the coronal plane. To avoid chattering, we 
implement the control law (41) by  

 1 1 1 2 2
ˆ ( )x x xd xd x xu f k c r r g sat S k S            (54) 

V.  SIMULATION RESULTS AND DISCUSSIONS 

To examine the performance and merit of the proposed 
controller, this section will conduct comparative simulations 
on straight-line tracking. All computer simulations adopt the 
parameters listed in Table 1. At first, we select 1 input to use 
the BLS to estimate the uncertain vector function and increase  
1.5 times mass, inertia and frictions at the 10th seconds. The 
numbers of mapped feature and enhancement nodes are 75, 
respectively. The simulations are executed using Matlab 
/Simulink, and the proposed controller is with the following 
parameter settings; kp1=17.8, kp2=23.1, γ=1, k=0.1. The 
simulation is conducted to steer the ball-riding robot to move 
along a straight line starting from the initial position (-0.5m, 
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0.5m), and the velocity are vx=0.2m/sec and vy=0.2m/sec. Fig. 
4 shows the simulation results for the proposed method using  
BLS and the Chan’s method with RIT2FNN [16] where the 
simulation time is 20 seconds. Fig. 5(b) and Fig. 5(c) depict 
that all the first-layer sliding functions Sx1, Sx2, Sy1 and Sy2 
almost approach zero. Fig. 6 illustrates the straight line 
tracking errors of the proposed method with BLS in 
comparison with the Chan’s method with RIT2FNN, showing 
that the proposed controller can converge to desired values. 
The simulation shows that the IABRR can be controlled to 
track the straight line successfully. Table 2 compares the 
average execution time and performance indices of the 
proposed controller and the Chan’s controller [16]. The 
proposed controller using BLS is more efficient than the 
Chan’s controller, and it outperforms the Chan’s controller in 
terms of ISE, IAE, ITAE and ITSE. Obviously, the results in 
Table 2 indicate that the proposed controller using BLS is 
superior to the Chan’s controller using RIT2FNN.  

VI. CONCLUSIONS AND FUTURE WORK  

This paper has presented a novel motion control method 
using BLS for the IABRR with uncertain parameters. This 
type of controller has been constructed using the Lyapunov 
stability theory, in order to accomplish motion control 
trajectory tracking of the robot in presence of parameter 
variations, exogenous disturbances and terrain-dependent 
frictions. The performance and merits of the proposed control 
method has been shown by conducting computer simulations 
on the IABRR. An interesting topic for future work would be 
to derive a consensus-based formation control method using 
BLS for multiple IABRRs.    
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Abstract—This paper presents an adaptive motion control 
approach using deoxyribonucleic-acid (DNA) algorithm for 
simultaneous tracking and stabilization (STS) of uncertain 
nonholonomic mobile robots with parameter variations. A 
kinematic STS controller is proposed, and then a DNA computing 
method is employed to search for its optimal controller 
parameters in the sense of minimum of integration of squared 
errors (ISE) or control efforts. An adaptive dynamic controller is 
synthesized using backstepping approach. Such a dynamic 
controller is implemented into a high-performance 
field-programmable gate array (FPGA) chip using 
hardware/software codesign technique and 
system-on-a-programmable-chip (SoPC) design concept with a 
reusable user intellectual property (IP) core library. In addition, a 
soft-core processor and a real-time operating system (RTOS) are 
embedded into the same chip for realizing the proposed dynamic 
control law to steer the mobile platform. Simulation results are 
conducted to show the effectiveness and merit of the proposed 
control method in comparison with Dixon’s STS kinematic 
controller. Finally, the performance and applicability of the 
proposed embedded adaptive controller are exemplified by 
conducting one experiment on steering an embedded 
nonholonomic mobile robot to achieve circular trajectory 
tracking. 

Index Terms—Deoxyribonucleic-acid (DNA) algorithm, 
simultaneous tracking and stabilization (STS), Nonholonomic 
mobile robot, Backstepping, Regulation, Trajectory tracking.  

I. INTRODUCTION 
ECENTLY, biological algorithms have gain wide 
applications to solve the optimization problems. For 

example, GAs and evolution algorithms (EAs) have been well 
applied to find optimal solutions in many applications, but they 
have a chance of converging into the local optimum rather than 
global optimum [1,2]. To circumvent this shortcoming, several 
researchers have considered DNA algorithm, firstly proposed 
by Aldelman [3], as another powerful optimization technique to 
emulate the concept of the bimolecular evolution. As a new 
computing paradigm, DNA computing has shown its merits in 
solving complex problems and attracts attentions from 
researchers in the control community. At present, DNA 
 

Chien-Cheng Yu and Feng-Chun Tai are with the Department of Electrical 
Engineering, National Chung Hsing University, Taichung City, Taiwan.  

Chien-Cheng Yu is also with the Department of Electronic Engineering, 
Hsiuping University of Science and Technology, Taichung, Taiwan. 

Shih-Min Hsieh is with the Department of Electronic Engineering, National 
Chin-Yi University of Technology, Taichung City, Taiwan. 
 (Corresponding author Chien-Cheng Yu, email: ccyu@hust.edu.tw) 

The authors gratefully acknowledge financial support from the Ministry of 
Science and Technology, Taiwan, the R.O.C., under contract MOST 
104-2221-E-005 -054 -MY2. 

computing methods have been applied successfully to solve 
complex problems and show their excellent performances [3-8]. 
For example, Lin et al. [5] proposed a self-organizing PID 
control design based on DNA computing method (this method 
presented how to solve the optimal problem more effectively), 
Zhu et al. [8] presented a DNA algorithm of image recognition 
based on syntax and its application on isosceles triangle 
recognition, and Ding et al. [9] introduced the DNA genetic 
algorithm for the design of generalized membership-type 
Takagi-Sugeno fuzzy control system. In [10, 11], DNA 
algorithms were applied to solve the path planning problem of a 
mobile manipulator with an omnidirectional mobile platform. 
However, as our best understanding, DNA computing 
algorithms in [1-12] have not been yet employed to find 
optimal parameters of unified motion controllers for 
simultaneous tracking and stabilization of nonholonomic 
mobile robots with differential driving. 

The control problem of nonholonomic mobile robots has 
attracted considerable attention in the control community over 
past and present decades. Since Brockett [13] showed that pure 
time-invariant state feedback laws do not hold for the 
nonholonomic mobile robots, many advanced approaches, such 
as nonlinear control [14-18], sliding-mode control [1, 19-20], 
fuzzy control [21, 22] and neural control [23, 24], have been 
presented to solve for the set-point control (regulation) and 
tracking control problems, respectively. However, these 
methods could not directly address the STS problem in one 
control framework, namely that a single controller can be used 
to solve simultaneously the regulation and tracking problems 
for nonholonomic mobile robots. To overcome the shortcoming, 
several researchers have proposed different kinds of unified 
control methods to achieve simultaneous tracking and 
stabilization of the nonholonmic mobile robots. For example, 
Dixon et al. [12, 25] proposed a unified kinematic STS 
controller with exponential stability, Do et al. [26] adopted 
adaptive backstepping technique to construct two STS 
approaches for a class of nonholonomic mobile robots with 
differential driving, and Morin and Samson [27] used the 
transverse function method to establish a unified kinematic 
STS controller for a more general class of nonholonomic 
mobile robots. Despite the advent of the aforementioned 
methods, there remain some improvements on the STS control 
schemes for nonholonomic mobile robots incorporated with 
dynamic effects. 

Adaptive Simultaneous Tracking and 
Stabilization Using DNA Algorithm for 

Uncertain Nonholonomic Mobile Robots  
Chien-Cheng Yu, Shih-Min Hsieh, and Feng-Chun Tai 
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The system-on-a-programmable-chip (SoPC) technology 
has been bringing a major revolution in the design of integrated 
circuits [28-31]. Compared with the fixed-processor DSP [32], 
the SoPC technology is capable of not only achieving the same 
software functions running in its embedded processor but also 
providing additional hardware IP implementation and an 
embedded real-time operating system (RTOS) for further 
purposes. Furthermore, the SoPC technology may offer 
identical functions to hardware-oriented FPGAs [33-35] 
because the SoPC evolved from the hardware-oriented FPGA. 
With the benefits of low cost, low power consumption, small 
circuit size, IP reusability, and reprogrammable 
hardware/software codesign, the SoPC technology has been 
shown as a powerful way to combine flexible software modules 
and high-performance hardware units for realizing 
sophisticated but complicated signal processing algorithms, 
and high-performance but computation-intensive control laws 
[28-30]. As the authors' best understanding, the SoPC 
technology has not been applied to design any adaptive 
trajectory-tracking controllers for nonholonomic mobile 
platforms and robots yet. 

The objectives of this paper are to improve the STS method 
proposed by Dixon et al. [12, 25], to use the DNA computing 
method to tune the optimal parameters of the proposed 
controller, to propose an adaptive dynamic controller for the 
STS problem of the nonholonomic mobile robots, and to 
implement such a controller in real time by employing the 
SoPC technology. In comparison with the control laws 
presented by Dixon et al. [12], this paper is written in the 
following three technical contributions.  
1. A general invertible transformation and a more general 

kinematic STS control method are derived, and a DNA 
computing algorithm is applied to find the optimal 
parameters of the proposed kinematic STS controller. 

2. Backstepping techniques are used to synthesize the adaptive 
stable dynamic controller for the robot incorporated with its 
dynamic effect.  

3. An FPGA-based adaptive motion controller is implemented 
by an embedded processor, an embedded operating system 
and the SoPC technology. This embedded adaptive motion 
controller combining the hardware/software co-design and IP 
re-use concept takes the advantages of efficient 
implementation, excellent flexibility and satisfactory 
performance. 

The rest of this paper is organized as follows. Section 2 
introduces the general invertible transformation and the 
open-loop error system, develops the proposed kinematic STS 
controller with globally exponential stability, and finds its 
optimal control parameters using a DNA computing method. 
Section 3 derives a stable dynamic controller via backstepping 
technique together with the Lyapunov stability theory. Section 
4 briefly describes the FPGA-based implementation of the 
adaptive controller for a nonholonomic mobile robot. 
Simulation results and experiment are presented and discussed 
in Section 4. Section 5 concludes this paper. 
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Fig. 1. Block diagram of the proposed adaptive dynamic motion controller for 

an uncertain nonholonomic mobile robot.  


q

 
Fig.2. Position and orientation of a nonholonomic mobile robot in the Cartesian 

coordinate. 

II.   MODELING AND KINEMATIC CONTROLLER DESIGN  
In this section, a kinematic controller is first designed to 

achieve STS, and a DNA computing method is then employed 
to off-line search for the optimal parameters of the controller in 
the sense of minimum of integrated squared error (ISE) or 
control effort. Moreover, the adaptive dynamic controller using 
backstepping approach will be synthesized to achieve STS in 
presence of dynamic effects, parameter variations and 
uncertainties. Figure 1 depicts the block diagram of the 
proposed adaptive dynamic controller for an uncertain 
nonholonomic mobile robot. 

A. Kinematic Model and Problem Formulation  

To steer the nonholonomic mobile robot effectively, it is 
necessary to have the kinematic and dynamic models of the 
robot in order to design controllers to satisfactorily accomplish 
out desired control objectives. In this subsection, the kinematic 
model of the nonholonomic mobile robot is briefly described 
and the design goal of the DNA-based kinematic controller is 
then stated. 

1) Kinematic Model  
Under the assumption of pure rolling, the kinematic model of 

the nonholonomic mobile robot, shown in Fig. 2, can be given 
as follows: 

q S(q)v                                      (1) 

where 3q(t) , q(t) R  are defined as  , , T

c cq x y   and 

 , , T

c cq x y    ; ( )cx t  and ( )cy t  denote the reference position 
of the nonholonomic mobile robot with respect to the Cartesian 
coordinates, and 1( )t R   is the orientation of the 
nonholonomic mobile robot. ( )cx t  and ( )cy t  denote the 

corresponding linear velocity. The matrix 3 2( )S q R   is given 
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by  

cos 0
sin 0

0 1

θ   

S(q) θ    

           

 
   
  

                              (2) 

Furthermore, the velocity vector 2( )v t R  is defined as 

 1 2
T

v v v , 1
1( )v t R  represents the linear speed, 

1
2 ( )v t R  denotes the angular velocity. 

2) Problem Formulation 
The design goal of the proposed DNA-based kinematic STS 

control for the nonholonomic mobile robot is to let the 
trajectories of the nonholonomic mobile robot exponentially 
follow the desired positions and orientations of a fixed 
reference configuration and a time-varying reference trajectory 
in one unified control framework. To formulate the problem, let 

( ),  ( ),  ( )
T

q x t y t t   
    be the differences between the real 

position ( ),  ( )c cx t y t  and the angle ( )t  of the nonholonomic 
mobile robot with the desired reference trajectory, 

  3( ) ( ) ( ) ( ) T

r rc rc rq t x t , y t , θ t R  , in the Cartesian coordinate, 
i.e.,  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

c rc

c rc

r

x t x t x t

y t y t y t

t t t  

 

 

 





                              (3) 

Moreover, the desired reference trajectory ( )rq t  satisfies the 
following equation: 

( ) ( )r r rq t S q v                                     (4) 

where ( )S   is also defined in (2),   2
1 2( ) ( )  ( ) T

r r rv t v t v t R   
represents the desired time-varying linear and angular 
velocities.  

The aim of the proposed STS method is to design the 
control ( )v t  such that ( ) ,  ( ) ,  ( )  x t y t t e     , where   

and   are positive constants. Worthy of mention is that the 
desired reference trajectory ( )rq t  is a function of time (or a 
fixed reference configuration), then the simultaneous 
regulation and trajectory tracking control method is reduced to 
the so-called trajectory tracking method (or the regulation 
method). 

B. STS Kinematic Controller design 

This subsection is devoted to synthesizing a STS kinematic 
motion controller whose parameters are searched by a DNA 
computing method. In Fig. 1, the proposed kinematic controller 
is composed of a globally invertible transformation and a STS 
control law with the property of exponential stability. Below is 
the detailed description of the proposed kinematic controller 
design. 

1) Open-Loop Error Control System and Model 
Transformation  
To achieve simultaneous stabilization and exponential 

stability analysis of both the regulator and tracking controller, 
we define a new globally invertible transformation as follows: 

1

2

cos 2 sin sin 2 cos 0
cos sin 0

0 0 1

w xk k k k

z θ y

z

     




       
          
        

  



   (5) 

where 0k  , 1( )w t R  and   2
1 2( ) ( )  ( ) T

z t z t z t R   are the 

auxiliary tracking error vectors, and 1( ),  ( ),  ( )x t y t t R    are 
defined in (3). From (5), we have the inverse transformation  

2

2 1

2

1  1sin ( sin 2 cos ) 0
2 2

1 1cos ( cos sin ) 0
2 2

0 0 1

z k
k kx w

y z z
k k

z

  
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

  
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     (6) 

Note that, from (6), if 1 2( ),  ( ),  ( )w t z t z t L , then 

( ),  ( ),  ( )x t y t t L   . Moreover, it is easy to claim that 

1 2lim ( ) 0,  lim ( ) 0,  lim ( ) 0
t t t

w t z t z t
  

   , then 

lim ( ) 0,  lim ( ) 0,  lim ( ) 0
t t t

x t y t t
  

                         (7) 

and 1 1 1

0 1 0 2 0( )  ,  ( )  ,  ( )  t t tw t e z t e z t e          implies  

3 3 3

2 2 2( )  ,  ( )  ,  ( )  t t tx t e y t e t e                (8) 

where 0 1 2 3,  ,  ,       are positive constants. Furthermore, we 
take the time derivative of (5) and then use (1-4), to obtain the 
following expressions: 

 

 

1

2

1 2 1
1 2 1 2

2 2
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    2 sin

     1      0
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kv z z
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       
         
 
 

    
      

    

 


   (9) 

 1 1 1 2

2 2 2

cos1   sin cos
     0                   1

r

r

z v v zx y
z

z v v

         
        
      

 


     (10) 

Combining (9) and (10), the dynamics of the tracking error 
becomes 

T Tw k J Z kf

z




 





                               (11) 

where 2 2TJ R   is the skew-symmetry constant matrix 
defined by 
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0    - 1
1      0

TJ
 

  
 

                                  (12) 

and 1f R  is the bounded auxiliary signal [3] given by  

1 2 1 22( sin )r rf z v v z                             (13) 

Further,   2
1 2( ) ( )  ( ) T

t t t R     is called the auxiliary 
control input having the following form  

1 21

2

cos
      

r

r

v z
T v

v
   
   

 
                           (14) 

where 2 2( )T t R   is expressed by  

 1      sin cos
0                   1

x y
T

   
  
 

 
                      (15) 

Note that, from (14), the actual control vector becomes  

1 2

2

cos
      

r

r

v z
v T

v

  

      
                          (16) 

2) Kinematic Controller Synthesis  
The primary study of the STS problem encountered for the 

nonholonomic mobile robot is to design a STS kinematic 
controller via backstepping approach based on the kinematic 
model (11). To facilitate the design process, one defines an 
auxiliary error signal 2( )z t R , where ( )z t  is the difference 

between the auxiliary signal 2( )dz t R  and the auxiliary 
tracking error vector ( )z t , i.e.,  

( ) dz t z z                                     (17) 

To stabilize the open-loop error system of (11), one further 
defines another auxiliary control signal ( )t  in (14) by 

2a k z                                    (18) 

where the control term 2( )a t R   is given by 

1
12a d d

d

k w f
Jz z


 

  
 

                         (19) 

Hence, the auxiliary signal ( )dz t  in (17) can be given by  

21
1 d2  z  ,  (0) (0)Td

d d d d d
dd

k w f
z kw Jz z z





 

     
 




   
  (20) 

where the auxiliary control terms 1
1( )t R   and 1( )d t R   

are expressed by  

1
1 2 2 d

d d

k w f
k kw


 

 
     

 


                        (21) 

1
0

t
d e                                      (22) 

where 1
1 2 0 1,   ,   ,   ,   k k k R    are positive constant control 

gains. 
Differentiating ( ) ( )T

d dz t z t  yields 

1
12( ) 2 ( )T T d

d d d d d
dd

k w fd
z z z kw Jz z

dt




 
    

 


            (23) 

From (12) and with the properties of the skew-symmetry 
constant matrix J, (23) turns out  

( ) 2T Td
d d d d

d

d
z z z z

dt







                           (24) 

which leads to obtain the unique solution of (24) as follows: 
2 2( ) ( ) ( ) ( )T

d d d dz t z t z t t                        (25) 

where   denotes the standard Euclidean norm. 

To develop the closed-loop error control system of (11), 
one substitutes (18) into (11) and then uses (17) to obtain  

T T T
a a dw k Jz k J z kf                            (26) 

Furthermore, by substituting (19) into (26) and using (25), the 
closed-loop error system for ( )w t  is obtained from  

1
T
aw k Jz kk w                             (27) 

Next, differentiating ( )z t  with respect to time, and substituting 

( )a t  in (19) and z  in (11) into ( )z t  and utilizing (19-21), 
one obtains the dynamics of the closed-loop error system for 

( )z t  governed by  

2az kwJ k z                              (28) 

The globally exponential stability of the aforementioned 
closed-loop error system can be easily proven by defining a 
radial, unbounded and quadratic Lyapunov function denoted by 

1 (t)V R  as follows: 

21 1( )
2 2

TV t w z z                             (29) 

This main result is summarized as below.  

Theorem 1 Let 1 2 1,   ,   ,   k k k   be real positive constants 

satisfying 1 2 1min( , )kk k  . Then the control laws (18-22) 

make the closed-loop error system globally exponentially 

stable, i.e., 3
2( ) , ( ) , ( ) tx t y t t e     , where 1

2 R   and 

1
3 R   are positive constants. 
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C. Parameters Selection Using DNA Computing Method  

This subsection aims to use a DNA computing method to 
select the optimal parameters of the proposed kinematic 
controller. In what follows, a DNA computing method with its 
coding scheme and operators is first delineated, and the 
proposed DNA computing algorithm for finding the optimal 
control parameters is then developed. 

1) DNA Computing   
DNA computing is a parallel, global optimization method 

with the search strategy similar to GAs. DNA computing 
consists of four bases of molecule structure, named Adenine 
(A), Guanine (G), Cytosine (C) and Thymine (T). In particular, 
DNA computing provides two new operators, enzyme and 
virus, which are very useful to enhance the effect of mutation. 
Moreover, the coding schemes of DNA computing algorithms 
are quite different from those of GAs. In what follows the core 
operators of DNA algorithms are recalled in some detail. 

2) Coding Scheme 
DNA algorithms use A, G, T and C to stand for their 

chromosome; for example, one can define A=0, G=1, T=2, and 
C=3. Moreover, (30) can easily be applied to define the range 
and precision of a parameter in the DNA algorithm [5, 11]. 

max min

4 1l

U U






                               (30) 

where   stands for the precision, l stands for how many bits 
will be used, maxU  is the maximum of the parameter, and minU  
denotes the minimum of the parameter. Worthy of mention is 
that (30) hinges on the fact that DNA algorithms use four bits 
for the coding scheme, but GAs only use two bits.  

3) Selection 
The main task of selection module is to select individuals 

from the populations so that these individuals can be sent to the 
crossover and mutation module in order to attain new offspring. 
There are several selection methods with different 
characteristics, such as roulette selection, rank selection and 
tournament selection. Selection is one of the key operators that 
ensure survival of the fitness. It is necessary to get the fitness 
value of each chromosome prior to selection process.  

4) Crossover  
Crossover is the fundamental mechanism of genetic 

rearrangement in DNA algorithm. This is done by the exchange 
of strings between the two parent chromosomes from the 
selection module. Crossover occurs when two chromosomes 
break and then reconnect but to the different end piece. There 
are various crossover schemes such as one-point crossover, 
two-point crossover, uniform crossover and arithmetic 
crossover. 

5) Mutation (Enzyme and Virus Operation) 
Mutation is the process which consists of making small 

alterations to the bits of the chromosomes by applying some 
kind of randomized changes, such as single-point or 
multi-point mutation process. In DNA algorithms, there are two 

special mutation operators, enzyme and virus, which are more 
effective than GAs. The enzyme operator refers to deletion, in 
which one or more base pairs are removed and the virus 
operator refers to insertion, in which one or more base pairs are 
inserted into sequence. These two operators are used to reduce 
or enlarge the chromosome sequences in order to change the 
step length of searching [11]; thereby diverse the searching 
space in DNA, however, the step length should be small. 

6) Fitness function 
The fitness function reported here is based on the integrated 

squared error (ISE) regarding the three variables x , y  and  , 
or the control effort about the linear and angular velocity 
commands, i.e.,  

      2 2 2

0
,   

T
ISEFISE CISE I x t y t tS dE t     (31) 

  2 2
1 20

 ,  ( ) 
T

CE v t v t dtFCE CCE CE                      (32) 

where T is fixed and selected by designers, and the two positive 
and real constants, CISE and CCE , are chosen such that FISE and 
FCE are always positive. The goal of the controllers’ parameters 
search is to optimally select the three best parameters 

1 2,   ,   k k k  using the DNA computing method so as to minimize 
the fitness function in (31) or (32).  

7) Proposed DNA Computing Algorithm  
The DNA algorithm for finding the optimal controller 

parameters problem with the fitness function mentioned in (31) 
or (32) is described by the following steps. 

Step 1: Randomly generate the parameters 1 2,   ,   k k k  by 
chromosomes and make sure that all of them fit with the 
basic requirements. Notice that A, T, G, and C 
respectively represent the chromosomes in the DNA 
algorithm. 

Step 2: Set the number for the first generation (parents). 

Step 3: Calculate the fitness of the chromosomes, while the 
objective is not achieved, the DNA computing process 
cannot stop, and the aforementioned operations of 
selection, crossover and mutations mentioned are 
implemented. 

Step 4: Execute the procedure of crossover and also check 
whether the new chromosome is acceptable. If the new 
chromosome does not satisfy the requirement, this 
procedure must be repeated until an acceptable 
chromosome is obtained. 

Step 5: Perform mutation process (enzyme and virus operation) 
with low mutation rate, and ensure that new 
chromosomes are reasonable such that the fitness 
function mentioned in (31) or (32) is minimized.  

Step 6: Redo these three steps from Step 3 to Step 5 until the 
specified condition is reached. 
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III. DYNAMIC CONTROLLER DESIGN AND IMPLEMENTATION 
Once the controller with the optimal parameters found by 

the DNA computing algorithm has been developed, the 
dynamic controller will be synthesized to achieve STS in 
presence of parameter variations and uncertainties. By 
Newtonian mechanics, equations of motion of the 
nonholonomic mobile robot with static frictions can be easily 
obtained. Afterwards, the well-known backstepping technique 
together with the Lyapunov stability theory is employed to 
derive a stable dynamic controller. Detailed closed-loop 
stability analysis is also investigated as well.  

A. Dynamic Model  

The dynamic model of the nonholonomic mobile robot 
navigating in a flat terrain can be simply modified from [1] and 
expressed in the following form  

( , ) ( ) ( )Mv C q q v F q G q B                      (33) 

where 
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2 2 2
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

 

2( )v t R  denotes the time derivative of v  defined in (1), 
2 2M R   represents the symmetric and positive-definite 

inertia matrix, 2 2( )C q R   represents the centripetal and 

Coriolis matrix, 2 1( )F q R   denotes the surface friction, 
2 2B R   represents the input transform matrix, and 2( )t R   

represents the torque input vector. Assume that the mobile 
robot moves in the horizontal plane; thus, the gravitational 
vector ( )G q  will be zero. 1sF  and 2sF  are static friction 
elements, b  is half of the width of the mobile robot, r  is the 
radius of the wheel, cm  and wm  are the mass of the body and 
wheel with a motor. wI  and mI  are the wheel with a motor 
about the wheel axis, and the wheel with a motor about the 
wheel diameter, respectively.   

Pre-multiplying (33) by ( )TT t  defined in (15) and using(1) 
to obtain  

( ) ( )T T TT M T T T F T T B                   (34) 

which leads to the following model: 

mM V N B                                   (35) 

where 

,   ,   ,

( )

T T T
m

T T

M T MT B T B V T MT

N T M T F T

  

   


         (36) 

and 

1 2 2

2

cos ( sin cos )
                      

r r

r

v z v x y

v

   
   

 

 
                    (37) 

Note that M  is a symmetric and positive-definite matrix, and 

the matrix 1
2 mM V  is skew-symmetric [25].  

B. Dynamic Controller Synthesis 

In this subsection, one new control objective is to design an 
adaptive tracking controller for the transformed nonholonomic 
mobile robot model. Before doing so, the previous kinematic 
control signal is used as the desired control signal, i.e.,  

2d a k z                                   (38) 
For the convenience of designing the controller and 

theoretical analysis of the nonholonomic mobile robot, it is 
necessary to define an auxiliary backstepping error signal 

2( )t R   as follows: 

d                                    (39) 

To achieve globally asymptotically stable control for the 
robot, we propose the input torque ( )t R   given by  

1
3

ˆ( )B Y k kJzw z                               (40) 

where 3k R  is a positive definite diagonal gain matrix; 
ˆ( ) pt R   denotes the parameter estimate of  , and it is 

calculated on-line via the following update law: 

ˆ TY                                   (41) 

where   is a diagonal matrix, ( , , , )d dY t    is the regression 
matrix defined as follows: 

d m dY M V N                              (42) 

To quantify the performance of the adaptation algorithm, 
we define the parameter estimation error signal ( ) pt R  , 
defined as follows 

ˆ                                    (43) 

C. Closed-Loop Error Dynamics  

In order to develop the closed-loop error system for ( )w t , 

( )z t , ( )t  and ( )t , it is necessary to substitute (38) and (39) 
into (11) and then have  

1
T T T T

dw k J z kf kk w k Jz k Jz                           (44) 

2az kwJ k z                                   (45) 

By taking the time derivative of (39) and using (34) and 
(42), one obtains the following closed-loop error dynamics for 
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       (46) 

D. Stability Analysis 

From (44-46), the aforementioned adaptive control laws 
(40-41) are shown globally asymptotically stable by using the 
following theorem. 

Theorem 2 Given the robot’s dynamic model (33), the control 
law (40) together with the parameter updating laws (41-42) 
will make the closed-loop error system globally asymptotically 
stable,  

lim  ( ) 0,  lim  ( ) 0,  lim ( ) 0
t t t

x t y t t
  

                       (47) 

namely that the origin is globally asymptotically stable for the 
closed-loop error control system of the robot with dynamic 
effect.  

Proof： First we select a Lyapunov function 1( )V t R  as 
follows: 

21 1 1 1
2 2 2 2

T T T TV w z z M                       (48) 

Differentiating (48) with respect to time, taking (44-46) into 

( )V t , and using the fact that ˆ     yield the following 
expression. 
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   (49) 

With (41) and the skew symmetry of  1
2 mM V , (49) turns 

out  
2

1 2 3 0T TV kk w k z z k                                (50) 

which implies that the variables w , z  and   are shown 
uniformly bounded by Lyapunov stability theory. Moreover, 
w , z  and   approach zero as time tends to infinity. 

 
Fig. 3 FPGA implementation of the proposed adaptive motion controller 

IV. FPGA-BASED IMPLEMENTATION OF THE PROPOSED 
ADAPTIVE CONTROLLER 

This section is devoted to using the SoPC technology to 
implement the proposed adaptive motion control law of the 
nonholonomic mobile robots. Figure 3 shows the architecture 
of the FPGA implementation for the proposed adaptive motion 
controller. As shown in Fig. 3, the Avalon Memory-Mapped 
(Avalon-MM) interface is an interface protocol for use in 
connecting master and slave components in an SOPC Builder 
system. The protocol connects address-based read/write 
interfaces typical of an Avalon Memory-Mapped master that 
usually controls a number of Avalon Memory-Mapped slave 
peripherals. In general, the Avalon-MM master is a 
microprocessor (Nios II), and slaves include memories, 
UARTs and timers, etc. Furthermore, Avalon-MM master and 
slave ports do not connect together directly. Instead, 
Avalon-MM ports connect to system interconnect fabric 
(Avalon switch fabric) and the system interconnect fabric 
translates signals between master ports and slave ports, i.e., the 
Avalon switch fabric is the collection of signals and on-chip 
interconnect logic, including address decoding, data-path 
multiplexing, wait-state generation, arbitration, interrupt 
controller, and data-width matching, etc. 

In Fig. 3, the adaptive control law for the mobile platform 
has been implemented into the 32-b Nios II processor whose 
numerical precision and computation speed are high enough to 
realize the adaptive control law. The Nios II processor accesses 
the control and status registers of on-chip components using an 
Avalon-MM interface. The software-based adaptive controller 
and hardware-based custom logic are connected to the system 
interconnect fabric via Avalon-MM for achieving the adaptive 
controller in the Altera FPGA chip. The parallel input/output 
(PIO) core provides a memory-mapped interface between an 
Avalon Memory-Mapped (Avalon-MM) slave port and 
general-purpose I/O ports. The I/O ports connect either to 
on-chip user logic, or to I/O pins that connect to devices 
external to the FPGA. The user IP cores (custom logic) for this 
robotic application have been developed by VHDL (VHSIC 
Hardware Description Language). 
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Fig. 4 Embedded adaptive controller of the nonholonomic mobile platform in 

Altera FPGA  

The adaptive motion control system with a FPGA-based 
controller using the SoPC technology has been efficiently 
implemented in an Altera Stratix II FPGA chip using a 32-b 
Nios II processor. Figure 4 shows the flowchart of the proposed 
controller and the peripheral hardware. As shown in Fig. 4, the 
12-b D/A converter, MCP4822, is employed to convert the 
output commands into analog voltage signals for driving two dc 
brushless motors mounted on the two nonholonomic wheels. 
The user IP core library (custom logic) connected to the Altera 
system interconnect fabric via Avalon-MM for the mobile 
platform controller in the FPGA chip. The clock divider 
module is mainly employed to generate the desired 50/2N-MHz 
clock frequencies to other clock domain modules in the 
controller, where N is an arbitrary integer. Photo encoders are 
often integrated in motor assembly to determine the current 
position of the motors by quadrature-encoder-pulse (QEP) 
processing. Because the photo encoders are very sensitive to 
their working environments, the measurement noise must be 
filtered out by a digital filter prior to the QEP in order to obtain 
exact readings. 

The QEP module is used for direct interface with a linear or 
rotary incremental encoder to obtain its position, direction, and 
speed information for use in a high-performance motion and 
position control system. The two QEP signals generated from 
the two motors are fed back to the embedded controller. With 
the QEP signals, the real position and orientation of the mobile 
platform can be estimated directly by the embedded Nios II 
processor. The QEP decoder circuit was implemented by 
VHDL, and the real-time OS MicroC/OS-II was ported into the 
FPGA chip to handle the data communication with a personal 
computer (PC) via TCP/IP protocol. Moreover, the embedded 
soft-core Nios II processor works with the lwIP (lightweight IP) 
for the Ethernet connectivity, thereby significantly reducing 
resource usage. The FPGA chip is Altera Stratix 
EP2S60F672C3N with 60 440 logic elements (LEs), 718 user 
I/O pins, 36 DSP blocks, 2 544 192 RAM bit memory, 12 
phase-locked loops (PLLs), and an embedded Nios II 32-b 
RISC (Reduced Instruction Set Computer) processor. 
Furthermore, the resource usage of the proposed adaptive 
controller IC is 6242 LEs, 3164 registers, 225 user I/O pins, 8 
DSP blocks, 1 phase-locked loops (PLLs), and 56 192 memory 
bits. With the hardware/software codesign and SoPC 

technology, the adaptive controller takes the advantage of 
software flexibility for complicated algorithm with low 
sampling frequency in motion control (less than 1 kHz) and 
high sampling frequency required in hardware IP (greater than 
1 MHz) [36]. 

V.  SIMULATIONS, EXPERIMENTAL RESULTS AND DISCUSSION 
In this section, four simulations and one experiment are 

conducted to illustrate the feasibility, performance and merit of 
the embedded adaptive dynamic motion controller. The 
experiment is used for illustration of effectiveness of the 
embedded adaptive dynamic motion controller.  

A. Simulation Results and Discussion 

This subsection will present Matlab/Simulink-based 
simulation results of an adaptive dynamic motion controller 
using the DNA computing method for STS of nonholonomic 
mobile robots with differential-driving. The performance and 
merit of the proposed control method are exemplified by 
conducting four simulations on regulation and trajectory 
tracking. In both simulations, the fitness function is evaluated 
based on the ISE in (31), and the dynamical behavior of the 
nonholonomic mobile robot is governed as follows: 

1 1 11

22 2 2

sgn( )00 1 1
00 sgn( )
s

s

v vFM r r

FI v v b r b r




         
                   




(51) 

where -2
w wM 2m 2r I 165kgcm     is the mass of the robot; 

2 2 2 2
w m wI 2m b 2 I 2b r I 4.643Kg- m     is the inertia of the 

robot; r =0.075m is the radius of the wheels; b =0.667m is the 
length of the axis between the wheels; 1 10NSF   and 

2 10NSF   are static friction elements; 1  and 2  respectively 
represent the two torque inputs for both wheels. 

In the simulations, the mobile robot is assumed to get 
started at the initial posture (0m, 0m,  / 6 rad) ; the reference 
trajectory for trajectory tracking is assumed to start at 
(2.0m,  3.0m,  / 3 rad)  and the desired line trajectory is given 
by ( ( ),  ( ),  ( ))x t y t t  0 0 0( ,  ,  )r r rx v t y v t t     where 

0.6 m/s,  0r rv    for 5 st  , and the desired  
circular trajectory is obtained from (4) with 0.6 m/srv  , and 

0.2 rad/sr   for t >5s such that the initial values of the 
auxiliary signals are (0) 1.5348w  , 1(0) 0.5z  , 

2 (0) 0.9912z  . Therefore, the controller’s parameters for the 
virtual motion command generator are set by 

          2 2
0 10 2 cos 6 0 2 sin 6 6 3  ,  0.2           

and          0 2 cos 6 0 3 sin 6 6 3
T

dz             
Furthermore, in the simulations, the parameters of DNA 
computing method are set as follows: the low mutation rate is 
0.05; the precision of DNA computing is 10000; the operator 
points of crossover, mutation, enzyme, and virus are set by 2, 3, 
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3, and 3, respectively. The use of the proposed DNA computing 
method obtains the optimal values of 1 2,  ,  k k k ; the DNA 
computing method was terminated at 60 seconds, thus giving 
that the optimal controller parameters 0.8053k  , 1 1.3732k  , 

2 9.5769k  , which satisfy 1 2 1min ( )kk , k α . Theorem 2 
infers that the closed-loop error control system is globally 
exponentially stable. Figure 5 depicts the behavior of the 
ISE-based fitness values of the proposed STS method with the 
DNA computing method in ten generations, thereby showing 
that the optimal fitness value is 22.5411. Worthy of mention is 
that the simulation result in Fig. 5 is based on the line-circular 
trajectory tracking, as shown in the following second 
simulations, and the three optimal controller parameters, 

0.8053k  , 1 1.3732k  , and 2 9.5769k  , are applied to the 
following four simulations.  
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Fig. 7. Errors of the simulated regulation: (a) x-axis and y-axis position errors; 
(b) orientation errors. 

The first simulation is conducted to show the stabilization 
performance of the proposed STS method with the optimal 
controller parameters searched via the DNA computing method. 
Figure 6 depicts the simulation result of the proposed controller 
for stabilization steering the robot from the initial pose 
(0m, 0m, /6 rad)  to the destination pose (2m , 3m, /3 rad) . 
Figure 7 respectively presents the simulation results of both 
two-axial position and orientation errors. The results in Fig. 7 
clearly indicate that both position and orientation errors go to 
zero, thus show the effectiveness of the proposed controller. 
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Fig. 8. Simulation result of the proposed controller for the line-circular 

trajectory tracking. 
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Fig. 9. Simulation results of the proposed controller for the line-circular 
trajectory tracking: (a) x-axis and y-axis position errors; (b) orientation 
errors. 

The second simulation is performed to illustrate the 
trajectory tracking performance of the proposed controller. 
Figures. 8 and 9 respectively depict the simulation results of the 
proposed control method and both position and orientation 
errors of the line-circular trajectory tracking. The results in Figs. 
6 and 8 clearly indicate that the nonholonomic mobile robot 
with the proposed DNA-based STS controller can 
simultaneously achieve both regulation and desired trajectory 
tracking, thereby illustrating the feasibility and effectiveness of 
the proposed STS method. 
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 (a)                                                           (b) 

Fig. 10. Performance comparison of the simulated circular trajectory tracking 
for (a) the proposed controller with the proposed new STS kinematics 
approach; (b) the proposed controller with Dixon’s STS kinematics 
approach. 

The third simulation is executed to compare the proposed 
control method with the method proposed by Dixon et al. [12]. 
The performance comparison is done by setting the controller 
parameter k in (5) as unity, namely that the proposed STS 
kinematic controller is reduced to the approach presented by 
Dixon et al. [12]. Figure 10 respectively shows the simulated 
results of circular following by employing both control 
methods. The results in Figs. 10(a) and (b) clearly reveal that 
the parameter k  indeed significantly affects the tracking 
performance, and the DNA-based tuning of these parameters 
can give better trajectory tracking performance. 
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(b) 

Fig. 11. Simulation results of the proposed controller for (a) regulation and (b) 
the line-circular trajectory tracking with M=120Kg and I=3.377Kg-m3. 

The fourth simulation is employed to show the robustness 
of the proposed control method in presence of mass and inertia 
variations. In the simulation, the platform mass and inertia are 
respectively changed from 165Kgw  to 120Kgw  and from 

24.643Kg- m  to 23.377 Kg- m , but other parameters remain 
unchanged. Figure 11 depicts the simulation results of the 
regulation and the line-circular trajectory tracking using the 
proposed adaptive dynamic controller. Through these 
simulation results, the proposed adaptive dynamic STS control 
method is proven capable of giving robust tracking 
performance against mass and inertia variations. 

B. Experimental Results and Discussion 

The aim of the following experiments is to examine the 
effectiveness and performance of the proposed embedded 
adaptive motion control method by constructing an 
experimental mobile robot incorporating with the 
nonholonomic mobile robot. All the hardware and software 
design of the nonholonomic mobile robot are integrated into an 
Altera FPGA chip. 

 
Fig. 12 Block diagram of the experimental nonholonomic mobile robot 

1) Experimental Nonholonomic Mobile Robot 
This subsection is aimed to describe the system structure 

and core components of the experimental nonholonomic 
mobile robot as Fig. 12 shows. In Fig. 12, the command source, 
such as PC or Notebook (NB), will give the motion commands 
to the controller (FPGA board). By using the 
Recommended-Standard-232 (RS-232) interface, one of the 
Universal-Asynchronous-Receiver/Transmitter (UART) 
interface, the mobile platform with differential-driving can 
receive the motion control commands and execute them. When 
the controller receives the commands, the control system will 
calculate and generate the digital speed control signals. 
Through the power and signal distribution board and the 
on-board Digital-to-Analog-Converter (DAC) chip MCP4822, 
the output commands are converted into analog voltage signals 
for driving two dc brushless motors mounted on the two wheels 
via Serial-Peripheral-Interface (SPI). After the control signal 
conversion, the motor drive will activate the motor and drive 
the pulley to generate the QEP feedback signals for 
dead-reckoning. The purpose of the dead-reckoning of the 
robot is, given a correct initial pose, to continuously keep 
tracking of its correct poses with respect to the reference frame. 
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(a) 

 
(b) 

Fig. 13 Physical structure of the platform: (a) front-view (b) back-view 

Figure 13 shows the physical structure of the experimental 
FPGA-based nonholonomic mobile robot with 
differential-driving, which is equipped with a pair of DC 
24-Volt brushless motor and gearbox kit with their own drives, 
three power supply batteries including a pair of 12-Volt, 50Ah 
lead-acid batteries (GS LEV12500) for motor, and one 12-Volt, 
7Ah lead-acid battery (YUASA NP-7-12) for FPGA board, a 
pair of external optical encoder with 1000 pulse/round for 
accuracy, a self-construction power and signal distribution 
board, and an Altera Stratix II FPGA board using Nios II 
development board as main controller hardware. 

The proposed unified motion control law was implemented 
using C/C++ code and standard programming techniques in the 
Altera Nios II embedded processor. The FPGA chip integrated 
the embedded processor, RTOS, lwIP, and VHDL-based IP 
circuits to perform the adaptive motion control law of the 
mobile robot. In the experiments, the two encoders were 
employed to measure the angular velocities of the two DC 
brushless motors in order to achieve the dead-reckoning of the 
robot.  

2) Circular Trajectory Tracking 
The following experiment is to study circular trajectory 

tracking performance of the proposed adaptive motion 
controllers. The platform got started at 

0 0 0( ,  ,  ) (0 ,  0 ,  0 )x y m m rad   and then was steered to move 
along the circular trajectory path described by 
( ,  ,  ) ( cos ,  sin ,  )r r rx y v t v t t     with 0.3 /v m s  and 

/12 /rad s  . Figure 14 shows the sequential still images 
of the proposed controller for steering the robot from the initial 
pose to the destination pose. Figure 15 shows the trajectory 
comparison between experimental data and simulation result of 
circular trajectory tracking under the same conditions.  

 
Fig. 14. Sequential still images of circular trajectory tracking. 

 
Fig. 15. Performance comparison of the experimental and simulation results for 

circular trajectory tracking. 

Figure 15 shows that the experimental and simulation 
trajectories are very similar, and the trajectory is close to the 
reference result. This experimental result reveals that the 
designed controller using SoPC technology is effective, that is, 
the implemented controller is capable of giving satisfactory 
experimental results. 

VI. CONCLUSIONS 
This paper has presented an adaptive dynamic motion 

controller using DNA computing method to address the STS 
problem of an uncertain nonholonomic mobile robot. The 
proposed controller has been constructed first by establishing a 
kinematic STS controller and then by synthesizing an adaptive 
dynamic controller via backstepping approach. The kinematic 
controller has been proven globally exponentially stable by 
Lyapunov stability theory, and its three optimal parameters 
have been searched by the DNA computing method. Once the 
kinematic controller with the optimal control parameters has 
been constructed, the proposed dynamic controller is then 
constructed by Lyapunov stability theory and linearized 
parameterization of the dynamic robot model. Furthermore, the 
proposed dynamic controller has been shown to be superior to 
the adaptive dynamic control method with Dixon’s STS 



Yu et. al. Adaptive Simultaneous Tracking and Stabilization Using DNA Algorithm for Uncertain Nonholonomic 
Mobile Robots 

28 

kinematic controller. The adaptive dynamic controller, which 
has been implemented into an FPGA chip with the SoPC 
technology, has been shown effective and useful by conducting 
several simulations/experiments on stabilization, trajectory 
tracking, and robustness via experimentation. An interesting 
research topic for future work would be to extend the proposed 
method to investigate adaptive dynamic STS problem for 
uncertain nonholonomic robots whose centers-of-gravity do 
not coincide with their geometry centers.  
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Abstract—This paper presents a global trajectory planning 
method using real-coded genetic algorithm (RGA) and elastic 
band technique for contour flight of autonomous helicopters. The 
RGA is used to find global, optimal navigation points or via-points 
for the terrain with static or dynamic threats, while the elastic 
band technique is employed to obtain smooth and deformed local 
paths when the static or dynamic obstacles are encountered. The 
integrated path planner by combining the RGA and elastic band 
technique is proposed to search for the near-optimum, smooth 
and feasible flight routes over a wide variety of terrain. By using 
an existing trajectory tracking controller augmented with fuzzy 
basis function networks (FBFN), the effectiveness and merit of the 
proposed three-dimensional global trajectory planning algorithm 
are well exemplified by conducting several simulations on an 
autonomous small-scale helicopter. 

Index Terms—Autonomous helicopter, elastic band, real-coded 
genetic algorithm (RGA), global trajectory planning, obstacle 
avoidance. 

I. INTRODUCTION 
URRENTLY, the unmanned or autonomous helicopters 
have been widely used in the civilian and military 

applications due to their abilities to hover and low-flying. Such 
helicopters can also be used in harsh landing environments and 
implementation of emergency in inaccessible locations in order 
to avoid pilots casualties. In particular, unmanned helicopter 
used on the battlefield are shown capable of providing real-time 
surveillance information and performing high risk 
reconnaissance and jamming support [1]. Moreover, these 
autonomous helicopters are demanded to guide themselves 
through cluttered and complicated environments and arrive 
safely at a desired far location. To handle with these tough 
flights, the integrated and hierarchical approach to vehicle 
instrumentation, computing, modeling and control would 
provide a possible solution [2-5]. Fig. 1 depicts a three-layered 
control system which consists of a global path planner, a local 
trajectory re-planner, and a low-level trajectory tracking 
controller for an autonomous helicopter system. Upon 
reception of start and destination points from a supervisory 
controller, the path or trajectory planner generates an optimal 
and collision-free route for autonomous helicopters. The global 
path planning problem refers to the finding of connected 
way-points with given terrain or map and known obstacles, 
while the local one can be attained by taking into account 
helicopter dynamics and unexpected and/or moving obstacles.  
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The obstacle avoidance is the most important issue for 

autonomous helicopters since they usually have to fly close to 
ground or in low altitude in order to enhance terrain masking 
effect. The flight height is changeable according to the 
perceiving threats [1]. There are three modes of terrain flight 
recognized in the U.S. Army doctrine. Fig. 2 illustrates the  low 
level, contour, and nap-of-the-earth (NOE) [5-8].  

Genetic algorithm (GA) [9] is one of many popular methods, 
including Ant Colony Optimization (ACO)[10], Particle 
Swarm Optimization (PSO) [11] and A-Star algorithm[5], in 
path planning for unmanned vehicles [12-13] or robot 
navigation [14-15]. Many GAs have been developed from 
mimicking the natural biological evolution principle, and 
considered as global search and optimization methods. 
Real-coded genetic algorithms (RGA) are different from binary 
genetic algorithms (BGA) due to no coding and decoding 
computational requirements for all chromosomes.  Since RGA 
and BGA are regarded as adaptive, heuristic and biological 
search methods, they have similar four basic operators: 
selection, reproduction, crossover and mutation. The key idea 

Three-Dimensional Global Trajectory Planning Using 
RGA for Contour Flight of Autonomous Helicopters  

Zen-Chung Wang and Ching-Fu Hsu  

C 

Fig. 2. Three flight modes of autonomous tactical helicopters over 
flight environments. 

Fig. 1. Illustration of a three-layered hierarchical control system for 
SSUHs architecture. 
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behind RGA is to construct the fitness function to evaluate all 
chromosomes in a population, and to choose the best 
chromosomes with the best fitness in order to reproduce new 
chromosomes via the selection operator. Generally speaking, 
the chromosomes with bigger fitness values have higher 
probabilities to be selected in the next generation. In addition, 
crossover and mutation are often utilized to create new 
chromosomes or off-springs. Compared with the BGA, the 
RGA has been shown to offer higher precision with more 
consistent results across replications [16-17]. Moreover, RGA 
together with PSO was used to find the optimal control law for 
addressing the multi-UAV formation reconfiguration problem 
[18]. The BGA was used by Lee [19] to find a set of best 
waypoints for autonomous helicopter, and the author 
conjectured that the RGA would give more precise solutions.  
On the other hand, the elastic band technique based on the 
potential field approach has been shown to provide a simple 
and ease computing method to plan the best trajectory to reach a 
goal location while unknown obstacles are avoiding. 
Furthermore, the bubble concept offers an efficient method of 
implementing the elastic band as a collision-free region [3]. 
The elastic-band-based path is absolutely safe and feasible only 
if it remains inside the coverage of bubbles. The elastic band 
concept was originally introduced by Quinlan and Khatib 
[20]-[21] for robotic path planning and recently applied to the 
automotive assistant systems including vehicle following [22], 
lane-keeping, lane-changing [23], and collision avoidance [24]. 
The elastic band technique has been applied to find an 
admissible real-time trajectory for an autonomous helicopter 
maneuvering in complex 3D environments with static and 
dynamic obstacles [2]. Lee [19] applied a BGA method along 
with the elastic band approach to search for a set of optimal 
global waypoints and obtain a smooth trajectory for 
autonomous helicopters. However, the resultant trajectory has 
not been shown plausible or feasible by using a low-level 
trajectory tracking controller yet. 

The objective of this paper is to propose  a global trajectory 
planning method using real-coded genetic algorithm (RGA) 
and elastic band technique for contour flight of autonomous 
helicopters. By comparing to the existing methods [25-28], the 
proposed method is particularly useful for  contour flight of 
autonomous helicopters. Moreover, the proposed method may 
provide useful references for professionals working in this area.  

The rest of this paper is organized as follows. Section II 
delineates the real-coded genetic algorithm (RGA), and Section 
III states the elastic band technique and its algorithm. In Section 
IV, the integrated global trajectory planner is proposed by 
fusing RGA and elastic band technique for contour flight of 
autonomous helicopter. Section V conducts one numerical 
simulation to demonstrate the effectiveness and merits of the 
proposed integrated global trajectory planning algorithm, 
where all the planned trajectories are tested by an existing 
FBFN-based trajectory tracking controller. Section VI 
concludes the paper. 

II. GLOBAL WAY-POINT PLANNING BASED ON REAL-CODED 
GENETIC ALGORITHM 

In this section, an RGA method is adopted  to implement the 
autonomous helicopter for global path planning. All 
components of a real-coded genetic algorithm are described as 
follows. 

A. Real-Coded Chromosome 

The real-value type representation of chromosome is used in 
this paper. For the genetic algorithm, a chromosome 
corresponds to a flight route which consists of a sequence of 
nodes from the start to the goal waypoints. Each node of the 
same chromosome is specified by the coordinates (  ,   ,   )i i ix y z . 
The start node (  ,   ,   )o o ox y z  and end node (  ,   ,   )n n nx y z are 
specified as the same for all the chromosomes. The length of a 
chromosome, i.e., the number of nodes, is determined in the 
beginning and kept constant during the evolution process. For 
example, one of chromosome can be expressed as 

0 1[   ... ]nw w w , where each node of (   ) i i i iw x y z is the 
waypoint coordinate, the first node ( ow  ) and the last one ( nw  ) 
are specified as the same with other chromosomes.  

B. Evolutionary Operators 

The operators of crossover and mutation are used to evolve 
their offsprings. The single-point crossover is applied to 
recombine two parent chromosomes into two offspring ones. 
Two parent routes are divided randomly into two parts 
respectively and recombined with exchanged parts from each 
other. This evolution process is expressed as follows; 

 
0 1 0 1

0 1 ( 1) ( 1)

0 1 ( 1) ( 1)

[   ...  ... ] [   ...  ... ]

[   ...  |   ...  ]

[   ...  |   ...  ]

p pm n q qm n

p p m qm q n n

q q m pm p n n

w w w w w w w w

w w w w w w

w w w w w w

 

 







 (1) 

where the symbol (  ) means the crossover operation, the 
single-point is randomly selected as thm  node. After the 
crossover operation, two offspring routes are produced to be 
similar to, but not the same with, their parent routes. The 
perturbation mutation is used to impose a random change to the 
coordinates of the intermediate nodes. The change of 
coordinates should be within the local feasible area. During this 
evolution process, the new coordinates of the intermediate 
nodes can be expressed as follows. 

 1 1 2 3(   )i i x y zw w r D r D r D    (2) 

where 1,  ...,  ( 1)i n  , ,  1,...,3jr j   are random real numbers 

between 0 and 1. ,   and  x y zD D D  are reasonable distances 
along the three axes respectively. 

C. Evolution Fitness Function 

The fitness function of flight route is defined as follows; 

 2 2
1 2 3 4

1
( )

n
turn

i i i i
i

V w L w H w T w A


     (3) 
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where, ,   1,..., 4iw i  , are weighting gains for each score 
parameter of fitness function. Those weighting gains ( iw ) can 
set by positive real values, the larger one stands for much 
importance for routing planning. iL  is the length of the thi  

route segment, iH  is the average altitude of the thi  route 

segment, turn
iA  is the helicopter turning angles of elevation and 

azimuth at the thi  way-point, they are limited by its flight 
maximum turning angles of vehicle capability and iT  represents 
the danger degree exposed to the known static threats. It is 
expressed as follows; 

 
4

1

threatN
j

i
j j

k
T

S

   (4) 

where jk  represents the intensity of the thj  threat, jS is the 

slant range to the thj  threat, and threatN  is the number of known 
static threats. 

D. Global Way-Point Planning Algorithm 

Given the start and goal waypoints, the evolutionary path 
planning algorithm is described in the following steps. 

Step 1: Total l  initial populations of chromosomes are 
randomly generated as the parent generation. 

Step 2: Total m  populations of chromosomes are generated by 
the crossover operation. 

Step 3: Total l  populations of chromosomes are duplicated 
from the parent generation. 

Step 4: All chromosomes including the parent and the offspring 
populations are evaluated with the fitness function (3). 
Select the best l  chromosomes as the parent generation. 

Step 5: Go back to Step 2 if it does not reach the specified 
evolution generations. 

III. OBSTACLE-AVOIDANCE TRAJECTORY GENERATION USING 
ELASTIC BAND TECHNIQUE  

Considering the real-time applications of the autonomous 
helicopter, the proposed local trajectory generation adopts the 
elastic band technique with the bubble concept. Before the 
detailed algorithm is presented, some given conditions are 
described as follows. The start and goal positions are two 
navigation waypoints given by the global trajectory planning 
algorithm. The minimum and maximum radii of bubbles are 
limited by the priori vehicle dimension and performance of 
unmanned helicopters, respectively. The unmanned helicopter 
vehicle is assumed to be capable of detecting the obstacles in 
the long distance. The distance and direction of obstacles can be 
measured by the unmanned helicopter on the fly for every 1 
second. 

The proposed trajectory generation method can be divided 
into four phases: initial path build-up, elastic band deformation, 
bubble reorganization and trajectory transformation. First, the 
initial path between two long-range navigation n waypoints 
given by the global trajectory planning algorithm is determined 

by connecting them as the shortest path. Second, this path is 
constantly modified due to both static and moving obstacles by 
means of a dynamic path adaptation. Third, the path 
completeness is verified through the bubble reorganization 
process. Finally, the collision-free path is smoothed and 
associated with time to be a feasible trajectory. The detailed 
procedures and methods are explained in the following 
paragraphs. 

A. Initial Path Build-up 

The initial path is the shortest path between two given 
navigation waypoints by connecting them directly. The round 
bubbles of the same size are inserted and distributed evenly 
between the specified start and goal navigation waypoints. The 
center points of bubbles are viewed as the bubble nodes and 
labeled with ascending numbers from 0 (start) to bubblesN  (goal). 
The total number of bubble nodes is calculated 
by bubblesN = ceil(  )bub

min maxD R , where minD  is the shortest 

distance from the start position to the goal position and bub
maxR  is 

the maximum bubble radius. The bubble size gives an 
indication of how far the helicopter is safe from collisions. The 
reasonable bubble size, bubR , is determined by the following 
equation, 

 2    hel bub bub bub hel
min max maxD R R R V T        (5) 

where helD  is the diameter of the main rotor, bub
minR  is the 

minimum bubble radius, T  is the time interval of local path 
planning and hel

maxV  is the maximum speed of the unmanned 
helicopter. Therefore, the initial path is determined by 
connecting all the bubble nodes without considering any 
obstacles. 

B. Elastic Band Deformation 

The initial path is continuously modified in real-time by 
using the latest measurement of the environmental static and 
dynamic obstacles by means of a dynamic path deformation 
mechanism. Two virtual forces are introduced to describe the 
interaction between bubbles or with external obstacles. Each 
node ( ib ) is attracted by two internal forces from its preceding 
node ( 1ib  ) and following node ( 1ib  ) respectively. The internal 
force for a bubble ib  is computed using the following equation 

 1 1
int int 1 1

1 1

( ) ( )ib bub bubi i i i
i i min i i min

i i i i

b b b b
F k b b R b b R

b b b b
 

 

 

        
   

   
   

     (6) 

where   denotes the Euclidean norm, intk  means the 
contraction gain. Normally the directions of both internal 
contraction forces are departing from this node ( ib ) to its 
neighbor bubbles respectively. However, the attractive internal 
forces will alter to be repulsive forces with the opposite action 
directions if the node comes too close its neighbor bubbles. 

The external forces are repulsive forces exerted by the 
obstacles of the environment to deform the bubble band 
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adequately and then keep the path collision-free. Each node ( ib ) 
is repelled by all the nearby obstacles only if they are close 
enough. Therefore, the directions of all the external forces are 
aiming at this node from its nearby obstacles. The single 
repulsive force from the position vector of obstacle ( jO ) is 
calculated as follows, 

  ( ) affD i jj
ext i ext

i j

b O
f b k e

b O


 
 
  

 


   (7) 

where extk  means the repulsive gain. The fading function 
depends on the affected distance affD  which is calculated via 

 
 , if  

0                      , if  

i j safe i j safe

aff

i j safe

b O D b O D
D

b O D

     
 

  

   (8) 

and the safe distance is defined by 

 min
bub obs

safe bub sD R V T     (9) 

where obs
bubV  is the relative velocity from the obstacle to this 

bubble. Finally, the resultant external force acting on this bubble 
node is calculated by 

 
1

( )i

N
b j

ext ext i
j

F f b


 


 (10) 

where N is the total number of nearby obstacles. Once both 
internal forces and external forces have been computed for the 
node ib , the net applied force is summarized by 

 int
i i ib b b

net extF F F    
  

 (11) 

where   and   are respectively the weighting factors for the 
internal forces and external forces. The new elastic band 
configuration for each bubble node is 

 i i ib b b
new old netP P F  
  

 (12) 

where   is the step size for updating the bubble band 
deformation. The path deformation process continues until the 
deformation amount is less than the specified tolerance. 
Accompanied with the path deformation, the bubble size (radius) 
is also updated according to how close the bubble is to the 
nearest obstacle. 

C. Bubble Reorganization 

To maintain the elastic band as a continuous and feasible 
path, the constraint that each bubble overlaps with its two 
neighbors may require new bubbles to be inserted as the elastic 
band deforms. In addition, it is desirable to remove redundant 
bubbles to improve its efficiency. Therefore, two following 
properties of the elastic band must be checked properly. There 
is bubble redundancy when a small bubble’s coverage is totally 
within its neighboring big bubble’s coverage. In this case, it is 
desirable to remove redundant bubbles from elastic band to 

improve its efficiency. If the criterion for bubble redundancy 
defined by (13) is true, the thk  bubble is removed from the 
elastic band. 

     1 1k k k kR R b b   
 

 or 1 1 1 1k k k k k kR R b b b b       
   

 (13) 

where   means the absolute value and   is the 2-norm to 
measure the distance. On the other hand, there is bubble 
insufficiency when two neighboring bubbles do not overlap 
each other due to the bubble moving too far during the path 
deformation. If the criterion for bubble insufficiency defined in 
(14) is true, then an extra bubble is inserted at the middle 
location between 1kb   and kb  bubbles. 

 1 1k k ol k kR R d b b    
 

 (14) 

where old  is the desired overlap distance between two 
neighboring bubbles. 

D. Trajectory Transformation 

Finally, this feasible path generated from the elastic-band 
planner is smoothed by using the cubic B-spline technique. The 
nodes of the elastic band will be interpolated by a cubic spline 
curve function (cscvn) using the Curve Fitting Toolbox of 
Matlab, where EB = cscvn (nodes) is a parametric cubic spline 
curve through given points (nodes). The vehicle’s velocity is 
controlled by passing through those nodes at specified time 
interval ( cT ) as follows, 

 1( ) /i i i cV b b T 
 

 (15) 

The closer the bubble nodes allocation, the slower the 
helicopter flight speeds. A trajectory is essentially a geometric 
path parameterized by time. We desire to generate a real-time 
trajectory at 1 Hertz which is only one order of magnitude 
slower than the control system. For a small-scale helicopter 
system, the motion controller is usually operating at 50 Hertz, 
that is, the time interval for trajectory generation is chosen as 
one second and total 50 points are retrieved evenly from the 
path EB  between two bubble nodes. 

E. Algorithm for an Elastic Band Trajectory Generation 

On basis of the aforementioned descriptions, a real-time 
algorithm for elastic band trajectory generation is proposed in 
the following steps. This 16-step procedure is executed 
iteratively from the current position to the goal waypoint. 

1) Construct the initial path ini  consisting of bubblesN  
bubbles allocated evenly between the start waypoint and 
the goal waypoint.  

2) Perform the elastic band deformation process from the 
current bubble node through all the uncompleted bubble 
nodes. 

3) Compute the internal forces acting on the thi  bubble node 
due to its neighbor nodes of index i-1 and i+1 respectively. 
Refer to (6). 

4) Calculate the external forces acting on the thi  bubble 
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node due to all the static and dynamic obstacles. Refer to 
(7) - (10). 

5) Execute the path deformation for the thi  bubble node 
applying the sum of the virtual forces given in Steps 3 and 
4. Refer to (11) - (12). 

6) Repeat Steps 3 to 5 until the amount of the path 
deformation is less than the tolerance. 

7) Decide the bubble radius on the smallest clearance 
distance to all the obstacles. 

8) Shift the bubble index to the next and repeat Steps 3 to 7 
until the end of the elastic band, bubblesi N . 

9) Do the bubble reorganization from the current bubble 
node through all the uncompleted bubble nodes. 

10) Check if the thi  bubble is redundant and deletes it if (13) 
is true. 

11) Check if the thi  bubble has a broken connection with its 
previous one and inserts an extra bubble at the middle of 
two bubbles if (14) is true. 

12) Do the elastic band deformation if an extra bubble is 
generated. Refer to Steps 3 to 6. 

13) Shift the bubble index to the next and repeat Steps 10 to 12 
until the end of the elastic band 1bubblesN  . 

14) Generate the real-time collision-free trajectory from the 
current position to the goal. 

15) Smooth the deformed elastic band to get the path EB  by 
using a cubic spline function. 

16) Generate a real-time trajectory by correlating the path 
EB  with time based on (15).  

Repeat Steps 2 to 16 until the goal is achieved ( bubblesi N ). 

IV. INTEGRATED GLOBAL TRAJECTORY PLANNING 
ALGORITHM 

Given the start and goal waypoints and three-dimensional 
terrain, the integrated global trajectory planning algorithm is 
described by the following steps. 

1) Total l  initial populations of chromosomes are randomly 
generated as the parent generation. 

2) Total m  populations of chromosomes are generated by 
the crossover operation. 

3) Total l  populations of chromosomes are duplicated from 
the parent generation. 

4) All chromosomes including the parent and the offspring 
populations are evaluated with the fitness function (3). 
Select the best l  chromosomes as the parent generation. 

5) Go back to Step 2 if it does not reach the specified 
evolution generations. 

6) After the above evolution process, the best route is chosen 
to perform the following elastic band deformation process, 
Steps 7-12. 

7) Each node of the chosen route is assigned with a bubble of 
a variable radius size which is determined by the nearest 
distance with its neighboring terrain. 

8) Compute the internal forces acting on the thi  bubble node 
due to its neighbor nodes of index 1i   and 1i   
respectively. Refer to (5). 

9) Calculate the external forces acting on the thi  bubble 
node due to all the static and dynamic obstacles. Refer to 
(6) - (9). 

10) Execute the path deformation for the thi  bubble node 
applying the sum of the virtual forces given in Steps 8 and 
9. Refer to (10) - (11). 

11) Repeat Steps 8-10 until the amount of the path 
deformation is less than the tolerance. 

12) Decide the bubble radius on the smallest clearance 
distance to all the obstacles. 

V. SIMULATION RESULTS AND DISCUSSION 
In this section, one numerical simulation is conducted to 

investigate and examine the effectiveness and performance of 
the proposed integrated global trajectory planning algorithm for 
contour flight of autonomous helicopters. The low-level flight 
trajectory tracking control is done by a flight controller which 
adopts an existing intelligent trajectory tracking method 
augmented with FBFN approximation to the coupling forces 
between the helicopter actuators [25]. The missions of the 
autonomous helicopter are to follow the desired trajectories, 
given by the proposed integrated global trajectory planning 
algorithm, so as to fly through the 3D complex environment 
and arrive at the specified destination.  

Given start and goal waypoints, the proposed algorithm is 
offline used to find automatically a feasible trajectory over a 
rough 3D terrain of 1000 m square space with scattered static 
and dynamic ground threat targets. The simulated rough terrain 
with mountains and valleys is represented by a meshed 3D 
surface which is produced by the following mathematical 
function. 

    2 2 2 2

sin( ) sin( ) cos( )

cos sin

z a y b c x d y

e d x y f f x y

      

       
 (16) 

where a , b , c , d , e and f  are constants. The start and the 
goal locations are specified as [0, 0, 53.91] and [1000, 1000, 
42.07] (unit: m), where both waypoints have clear 10 meters of 

Fig. 3. Planned global trajectories: the naïve straight line by 
connecting the starting point to the final goal (dot black line); the 
planned 3D path by the RGA only (blue line); the smooth 3D global 
trajectory via the proposed method (red line). 
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height above the terrain. Three simulations use the identical 
parameters of the used RGA algorithm as follows; the total 
initial populations of chromosomes are l=20, which are 
randomly generated from the parent generation; the total 
populations of chromosomes are 20m  , which are generated 
by the crossover process among the best 5 parent chromosomes; 
the total populations of chromosomes are 20l  , duplicating 
from the parent generation; after the evaluation of fitness values, 
the best chromosomes, 20l  , are selected as in the parent 
generation for evolution of the next generation. Moreover, the 
three simulations are terminated after 150 generations. 

This used scenario considers three static ground threats 
scattered in the terrain environment. As shown in Fig.3, three 
static threats are respectively marked by blue, green and yellow 
colors, mesh balls that are put nearby the moving forward path 
of the helicopter by directly connecting the starting position to 
the destination. The coordinates of the three colorful static 
threats are set by (500m, 700m, 35.79m) for the blue threat, 
(500m, 600m, 60.23m) for the yellow one, and (500m, 500m, 
70.09m) for the green one, respectively. With both given 
starting and goal waypoints, the proposed integrated global 
trajectory planning algorithm is applied to find an optimal and 
safe flight trajectory over the simulated terrain. During the 
planning process, the RGA-based path planning algorithm is 
initially employed to search for a set of the best waypoints in 
the sense of minimum fitness; in particularly, this searching 
process has a rapid convergence speed. Moreover, at Step 6 in 
Section 3, the best set of waypoints after processing total 150 
populations of chromosomes is selected and shown as the blue 
solid line in Fig.3. Worthy of mention is that the planned path 
by connecting these best waypoints is not smooth and it needs 
further processing by the elastic band deformation algorithm.   

After performing the elastic band deformation process from 
Step 7 to Step 11, the resultant trajectory becomes 
collision-free and safe over the simulated terrain, shown as the 
red solid line in Fig.3. It is obvious that this smooth trajectory in 
red solid line is smoother than the path in the blue solid line. 
Fig.4 shows the simulated flight trajectory of the autonomous 
helicopter using the FBFN-based trajectory tracking controller 
[25]. Through Figs.3-4, the results indicate that the flight 
position deviations of the autonomous helicopter don’t exceed 
5 meters in three axes such that the simulated flight trajectory 

lies within the desired safe working space, showing that the 
proposed integrated global trajectory planning algorithm is 
effective. 

VI. CONCLUSIONS 

This paper has presented an offline global trajectory 
planning method by combining the real-coded genetic 
algorithm and elastic band technique, in order to find a 
collision-free and safe globally flight trajectory for contour 
flight of autonomous helicopters. The proposed integrated 
global trajectory planning algorithm has been synthesized as a 
12-step design procedure by taking the advantages of the 
real-coded genetic algorithm and elastic band technique for the 
contour flight. The effectiveness and merit of the proposed 
method have been well exemplified by performing three 
simulations on a class of autonomous helicopters with three 
scenarios of three static or moving threats. Through three 
simulations, the planned trajectories have been successfully 
tested by the used helicopter with an existing FBFN-based 
trajectory tracking controller in [25]. An interesting topic for 
future research would be to apply the proposed method to 
address the trajectory planning for formation of a class of 
multiple helicopters.  
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A Laboratory Course on  
Mobile Robotics Education 

Chien-Cheng Yu, Ching-Fu Hsu, and Feng-Chun Tai 
 
Abstract — Mobile robotics education often needs to develop 
fundamental but interesting hands-on exercises that keep 
students interested in the mobile robotics theory presented in 
lectures. In this paper, we put emphasis on the construction of a 
laboratory course with a pedagogical differential-driving mobile 
robot for the teaching of mobile robotics concepts in senior 
undergraduate or first-year graduate engineering environments. 
Such a pedagogical mobile robot can be easily and inexpensively 
constructed using low-tech commercial components and feedback 
control approaches. An education process together with a 
pedagogical method is presented to show how the experimental 
mobile robot can be incorporated into the laboratory course. To 
increase students’ hands-on experience and keep them interested 
in learning mobile robotics, particular efforts are paid to 
investigate how the enrolled students responded to this 
pedagogical tool. This education method along with the mobile 
robot is shown significantly effective in helping students 
understand mobile robotics theory and practices, and also 
resulting in more motivated and active learning.  

Index Terms—Differential-driving, locomotion and motion 
control, mapping and localization, mobile robot, path planning and 
navigation, sensing and perception. 

I. INTRODUCTION 
OBILE robotics has been extensively instructed in many 
senior undergraduate or first-year graduate engineering 

curriculums, such as electrical engineering, mechanical 
engineering, mechatronic engineering and so on [1]-[3]. 
Mobile robotics education often faces the challenging problem 
of how to give enrolled students interesting and pragmatic 
pedagogical tools by providing hands-on experiments and 
design problems that complement the theory presented in 
lectures of mobile robotics. In particular, students can gain 
significant benefits if such pedagogical tools are 
simultaneously applied to main core technologies in mobile 
robotics. Furthermore, the students are significantly impressed 
on mobile robotics concepts presented in class if they can 
easily implement and evaluate the performance of their 
developed methods on these teaching tools. 

Generally speaking, the general control structure of mobile 
robots includes four main technologies: locomotion and 
motion control, sensing and perception, localization and 
mapping, cognition and path planning, as proposed in [4]. As 
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our best understanding, most of mobile robotics courses cover 
the main theories of these four main technologies in lectures, 
but they lack of laboratory exercises to complement those 
theories. Hence, this paper aim to develop four interesting and 
pragmatic laboratory exercises for the course lectures. 

To date, many pedagogical tools have been presented to 
give senior undergraduate and/or graduate students hands-on 
experience on learning basic concepts of mobile robotics [5]-
[6]. Wheeled mobile robots have been viewed as one of the 
most widely used pedagogical tools in teaching mobile robots 
among many universities [1]-[3]. From the viewpoint of 
mobile robot design and implementation, simple differential-
driving wheeled mobile robots are much cheaper to construct 
by using inexpensive commercial components, and easier to 
control. With the differential-driving platforms, a completely 
mobile robotic system can be efficiently constructed by a 
synthesis of desired sensors with appropriate interfacing, 
mechatronic components, and software of localization, 
mapping, path planning, obstacle avoidance, navigation, and 
motion control. This reason motivates us to explore how to 
develop a differential-driving wheeled mobile robot for 
teaching mobile robotics. 

The rest of this paper is organized as follows. The course 
overview and syllabus are introduced in Section II. Sections 
III and IV respectively detail the laboratory setup and 
experimental exercises setup. Section V conducts four 
experiments with students to exemplify the merit of the 
proposed four exercises mentioned in the previous sections. 
The course evaluation from the enrolled students at the end of 
this course is briefly presented and discussed in Section VI. 
Section VII concludes the paper. 

II. COURSE DESCRIPTION  

A. Course Overview  

The one-semester course, called autonomous mobile 
robotics, was taught for the first-year graduate students at the 
National Chung Hsing University, Taichung, Taiwan. In this 
course, all students should take 3-hour lecture each week. 
Except the introduction, this course is composed of four parts: 
sensing and perception, mapping and localization, motion 
control, and path planning. For each part, one experiment is 
accompanied by the course lectures, and the enrolled students 
have to attend a 3-hour laboratory after finishing lectures 
regarding each part. The laboratory was taught by three 
teaching assistants under supervision of the teaching 
professor. Below is the syllabus of this course.  

M
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(a)                                                 (b) 

Fig. 1 Experimental mobile robot: (a) system structure; (b) physical robot. 

B. Syllabus  

This course was offered in an 18-week semester. The class 
met once a week and each class session persisted three hours. 
The weekly topics taught in the course are outlined as follows. 

‧ Week 1 (lecture): Introduction; basic concepts, categories 
and applications of mobile robots are learned. 

‧ Week 2 (lecture): Locomotion; describe how mobile robots 
needs locomotion mechanisms that enable them to go 
throughout their environments.  

‧ Week 3-5 (lecture): Sensing and Perception; some 
fundamental concepts and features of various kinds’ 
sensors are discussed. 

‧ Week 6 (experiment 1): Sensing and Perception; acquire 
the surrounding environment information by laser scanning 
sensor, ultrasonic ranging module, infrared switch module 
and RFID module. 

‧ Week 7-9 (lecture): Mapping and Localization; describe 
how sensors and effectors uncertainty is responsible for the 
difficulties of localization, and two extreme approaches 
that avoiding localization altogether and performing 
explicit map-based localization to dealing with the 
challenge of robot localization are mentioned.  

‧ Week 10 (experiment 2): Mapping and Localization: 
calibrate the RFID system; robot position estimation; robot 
orientation estimation; real-time pose initialization 
estimation. 

‧ Week 11-12 (lecture): Mobile Robots Kinematics and 
Control; introduce kinematic models, controller designs 
and the related controllers’ synthesis to achieve position 
control (goal-seeking) and obstacle avoidance. 

‧ Week 13 (experiment 3): conduct experiments of position 
control (goal-seeking) and obstacle avoidance. 

‧ Week 14-16 (lecture): Path Planning and Navigation; 
discuss path planning and obstacle avoidance, required for 
mobile robot navigation; demonstrates how combine 
motion control, sensing and perception, mapping and 
localization, path planning, obstacle avoidance and 

navigation into one complete robot system for a real-world 
application. 

‧ Week 17 (experiment 4): Path Planning and Navigation; 
conduct experiments of combination of position control 
and obstacle avoidance.  

‧ Week 18: final examination and final report. 

C. Textbook, Course Materials  

The textbook “Autonomous Mobile Robots” [6] is used to 
teach most of the core concepts and techniques of mobile 
robots. 

III. LABORATORY SETUP 
This section briefly describes the laboratory setup. In order 

to let all enrolled students, have hands-on experience on 
wheeled mobile robots, the experimental robot is a 
differential-driving wheeled mobility platform equipped with 
two personal computers, two motor drives, laser scanner, 
ultrasonic ranging modules, infrared sensors, radio-frequency 
identification (RFID) module, power supply subsystem, facial 
expression system, web camera, touch-screen panel, and one 
wireless internet card. Fig. 1 displays the physical structure of 
the laboratory setup for teaching mobile robots. The 
computing unit of the robot includes a small-scale personal 
computer and an industrial personal computer (IPC), one D/A 
interfacing card, one digital parallel 8255 input/output 
interfacing card, and a touch-screen panel. This computing 
unit is responsible for executing software of the sensing 
perception, localization, cognition and path planning, motion 
control.  

To calculate the traveling distances and speeds of the 
experimental mobile robot, two HTR-M2-1000-2-C rotary 
encoders are mounted on the driving wheels. In regular 
operations, HTR-M2-1000-2-C will output two square waves 
with different phases into the QEP module of the counter 
board for decoding. Thus, the calculated information could be 
reckoned for achieving accurate motion control. With different 
angular resolutions and ranging distances, the laser scanner 
LMS 291-S05 manufactured by SICK Electro-Optics and the 
ultrasonic ranging modules are utilized to obtain the 
environmental information around the robot’s surrounding. 
The laser system and the ultrasonic distance measurement are 
based on the time-of-flight (TOF) measurement principle. The 
infrared switch module is adopted to provide the nearest safe 
protection; for example, when the approaching object or 
visitor is detected, the robot immediately stops. The RFID 
module is employed to roughly find the position of the robot 
by installing a reader on the robot and several tags in the 
robot’s working environment.  

IV. EXPERIMENTAL EXERCISES SETUP 

This section is devoted to introducing experimental 
exercises for teaching aforementioned four main techniques.  

A. Experiment 1: Sensing and Perception  

One of the most important tasks of the mobile robot is to 
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 acquire knowledge about its environment. RFID and laser 
scanners have been considered as two powerful devices for 
mapping of the environment where the mobile robot works. 
The following illustrates the calibration method to convert the 
Received Signal Strength Indication (RSSI) values from active 
RFID tags into their corresponding distances. For the n-th tag, 
the relation between the RSSI and the distance is expressed by 

RSSI , 1, , . i m
i

K
i n

d
                                 (1) 

where the parameters K and m are two unknown 
measurements, 1 2, ,

n
d d d  denote the distances from the robot 

to the tags. Given m pairs of the RSSI and distance 
measurement, both parameters K and m can be found by 
taking the logarithmic operation for (1) and then using least-
squares method. The calibration procedure to find parameters 
K and m will be repeated for each tag until all the tags are 
calibrated. 

B. Experiment 2: Global Localization  

In this experiment, our global localization system adopts 
four active tags and one RFID reader mounted on the robot. 

1) Robot Position Estimation  
From the aforementioned calibration model, the distances 

between the robot and the tags can be computed. Therefore, 
the following subsequent equation (2) can be obtained. 
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The least-squares method is again used to solve the matrix 
equation. 

T -1 T ( )=X A A A B                                     (3) 

which gives the robot position ( , , )Tx y z . 

2) Robot Orientation Estimation  
Since the robot position ( , , )Tx y z can be calculated via (3), 

the robot heading would be found by driving the robot to 
move in a straight line with the original heading direction, 
where the straight line is given as follows: 

i iy m c X                                          (4) 

In (4), the parameter m  is the slope of the straight line and c is 
the constant offset. Assuming two more robot positions to be 
obtained from (3), one re-arranges (4) in a matrix-vector form 
by 
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Again, the least-squares method is employed to solve the 
matrix equation (6). 

T -1 Tc
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m
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From (6), the slope m  is determined, and the robot orientation 
q  can be calculated by solving tan   m  .  

C. Experiment 3: Goal-Seeking and Obstacle Avoidance  

In this experiment, the fuzzy control strategy is used to 
establish two basic behaviors of the mobile robot, including 
goal-seeking and obstacle avoidance behaviors. 

1) Kinematic Model 
Under the assumption of pure rolling, the kinematic model 

of the mobile robot can be given as follows: 

1
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where ( )x t  and ( )y t  are the reference points of the mobile 
robot with respect to the Cartesian frame, ( )t  is the 

orientation of the mobile robot. Furthermore,  1 2
T

v v v , 

1( )v t  represents the linear speed, 2 ( )v t  denotes the angular 
velocity, rw  and lw  respectively represent the angular speeds 
of the left and right wheels, r  is the radius of the driving 
wheel, and b  is the distance between the left and right wheels. 
Once both linear and angular velocities of the robot have been 
determined, the angular speeds of the left and right wheels can 
be solved. 

2) Goal-seeking Behavior Design 
The robot is now treated as a point within an artificial 

potential field ( )
p

U q . Under the influence of the field, the 
robot moves from high potential to low potential, The artificial 

force field ( )F q  acting at the point [ , ] 
T

q x y S , can be 
defined as follows: 
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where ( )pU q  is the gradient of 
pU  at the position [ , ]T

q x y . 
The potential field function 

pU  is regarded as the attractive 
field of the destination and the artificial force field ( )F q  is 



Yu et. al.  
A Laboratory Course on Mobile Robotics Education 

40 

considered as the attractive force from the goal to the robot. 
The attractive potential function can be defined as a parabolic 
function: 

2 ( ) / 2p p pU K q                                            (9) 

where 
p

K  is a positive coefficient and ( )
p

q  represents 

goal
q q . With the differentiable attractive potential function, 

the attractive force can be described as follows: 

( ) ( ) ( ) ( ) ( )
p p p p p p

F q U q K q q K q q                  (10) 

When the robot arrives in the desire position, (10) will 
converge to zero. The control law is constructed according to 
the force components that act on the robot and the robot’s 
speed. 

3)  Obstacle Avoidance Behavior Design 
The obstacles are detected by a laser scanner and nine 

ultrasonic rangers mounted on the robot. There are three 
ultrasonic rangers facing forward, three on the left side, and 
three on the right side. By fusing these sensing data with fuzzy 
control algorithm, the robot can move around the obstacles 
without collision. The scan range of the laser scanner is 180 
degrees. In order to simplify the derivation of the obstacle 
behavior, we divide the scanning range into five regions, each 
of which covers 36 degrees. From right to left, these regions 
are labeled by 1L , 2L , 3L , 4L and 5L , in which 2L , 3L , 4L  

belong Group I and L
1

, 5L  belong Group II. The shortest 

distances found inside the five regions are denoted by 
L
D

1
, 

2LD , 3LD  4LD  and 5LD , and are inferred from the perceived 
distances obtained from the laser scanner. With the use of the 
fuzzy rules for laser-based obstacle avoidance, the rotation 
control 

obsL  can be obtained. The ultrasonic readings can be 
divided into three regions, each of which comprises three 
sectors. These sectors are labeled from right to left as 1U  , 

2U and 3U  (Group I), 4U , 5U  and 6U  (Group II), 7U , 8U  
and 9U  (Group III). The shortest distances for nine sections 
are named in turn by 1UD , 2UD , 9, UD , and are derived from 
the perceived distances obtained from the ultrasonic rangers. 
With the use of the fuzzy rules for laser-based obstacle 
avoidance, the rotation control obsU  can be obtained. 

For calculating the ultimate rotation control obstacle  of the 
obstacle avoidance behavior, the rotation control of the 
obstacle avoidance behavior can be expressed as follows: 

3 ,  when ( ) 0
max( , ),  when , 0
min( , ),  when , 0

obsL obsU obsL obsU

obstacle obsL obsU obsL obsU

obsL obsU obsL obsU

    
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   
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     (11)  

where 3  is the pre-specified weighting. 

 

D. Experiment 4: Path Planning and Navigation 

To perform the local navigation, the robot must 
immediately react to sensory events such as passing through 
narrow passageway without obstacle collision. For global 
navigation, the robot needs to implement dynamic path 
planning to find an optimal path between the goal and the 
starting pose. In order to solve the optimal path problem, the 
Dijkstra’s algorithm [ ] can be used to obtain the optimum 
route in the well-defined environment. Dijkstra’s algorithm is 
a greedy one for solving the single-source shortest path 
problem. According to the working principle of the Dijkstra’s 
algorithm, the vertices (nodes) and the path are the two 
essential factors. Thus, before using the Dijkstra’s algorithm, 
the environment data has to be processed to obtain a 
topological map. After obtaining necessary nodes in the 
environment data, the starting point of the mobile robot and 
the chosen goal are added into the set of nodes. Then a 
topological map is thus constructed.  

Each node format should contain four elements: (i) node 
ID; (ii) its geometrical coordinate; (iii) the number of nodes 
connected to it (the next nodes); (iv) the node ID of the nodes 
connected to it. Worthy of mention is that once the Dijkstra’s 
algorithm terminates, the found global optimal path is 
expressed in terms of a sequence of via-nodes. 

 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

This section present four experimental results for sensing 
and perception, localization, goal-seeking and obstacle 
avoidance, and path planning and navigation using the 
experimental mobile robot. 

A. Experiment 1: Sensing and Perception  

In this experiment, Visual C++ was applied to program 
the user operation interface, shown in Fig. 2(a). Furthermore, 
the system utilize this interface to receive the RSSI value via 
RS-232 communication port for further analysis. The setting 
of RS-232 communication port as show in Fig. 2(b). The 
RFID module via the operation interface receives the tag 
information while setting the Tag ID in the calibration 
procedure, and records each RSSI signal corresponding to 
each meter. Every tag calibration curve is used to covert the 
RSSI values into their corresponding distances, as shown in 
Fig. 2(c). With change into the calibration curve interface, the 
host computer will transform the RSSI values to the 
corresponding distances. Once the data between the RSSI 
values and the distance are recorded, the values of m and K are 
then calculated using the least-squares method, as shown in 
Fig. 2(d).  

B. Experiment 2: RFID Global Pose Initialization  

This experiment was performed to investigate the accuracy 
of the proposed method for RFID static pose estimate of the 
tour-guide robot with one reader on the head and four tags on 
the ceiling. The four tags were installed at the position  

1 1 1( , , ) (47,  544,  300),x y z  2 2 2( , , ) (400,  680,  299),x y z 
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3 3 3( , , ) (473,313, 299)x y z   and 4 4 4( , , ) (595,2,300)x y z   (unit: 
cm) with respect to the world frame. The true position of the 
robot in both x and y coordinate frame was given by (117.5cm, 
160cm) and the true heading angle     was 90 . Before 
experimentation, all the four tags were calibrated using (1). 
Afterwards, the real-time pose initialization algorithm was 
applied to calculate the pose estimates of the robot 
(128.43 cm,  171.06 cm,  74.36 ).o   

In Fig. 3(a), the circle represents the true position, and the 
cross represents the least-squares estimate. We observe that 
the proposed RFID global localization method is proven 
capable of having the position error of less than 20 cm and the 
heading error of less than 25 .  These experimental results 
indicate that the proposed pose initialization method can be 
effectively used to find the correct initial pose of the robot 
with respect to the world frame. 

C. Experiment 3: Behavior Control  

Fig. 4 depicts continuous moving pictures of the proposed 
goal-seeking behavior, and Fig. 5 displays the experimental 
pictures of the proposed obstacle-avoidance behavior. As can 
be seen in Figs. 4 and 5, both proposed behavior designs were 
shown effective in achieving required motions. These results 
also illustrate the applicability of these two proposed 
behaviors.  

 
(a)                                            (b) 

 
(c)                                            (d) 

Fig. 2. The calibration procedure of the relationship between the reader and 
each tag. (a)User operation interface for RFID system. (b)RS-232 
communication port connects to host computer. (c)The relationship between 
RSSI values and distances. (d)Finding the values of the parameters K and m. 

 
(a)                                                        (b) 

Fig. 3. (a) Static robot position estimates. (b) Static robot orientation estimates 
using the RFID pose initialization algorithm. 

 
(a)                                (b)                                (c) 

 
(d)                                (e)                                (f) 

Fig. 4. Continuous moving pictures of the mobile robot while demonstrating 
its goal seeking behavior. 

 
(a)                               (b)                                     (c) 

 
(d)                                (e)                                   (f) 

Fig. 5. Continuous moving pictures demonstrating the performance of the 
proposed obstacle-avoidance behavior.  

 
Fig. 6. Experimental results with the initial pose (164 cm ,  1847 cm ,  90 )  
to the final pose. 

TABLE 1. STUDENT EVALUATION RESULTS. 
(5 is excellent, 4 is good, 3 is fair, 2 is poor, 1 is very p.oor)  

Questions 5 4 3 2 1 Avg
The course organization and planning 
are adequate. 4 9 2 0 0 4.13 

The level of the handouts is adequate. 5 8 2 0 0 4.2 
The contents of the handouts are 
well-developed. 4 8 3 0 0 4.07 

This lab related to the lecture courses 
well. 1 11 3 0 0 3.87 

I gained useful and  practical skills 
from the course of mobile robotics. 4 8 3 0 0 4.07 

I gained usefully theoretical skills 
from the course of mobile robotics. 4 8 3 0 0 4.07 

Experience gained with 
MATLAB/Simulink in class work for 
the course of mobile robotics. 

3 7 5 0 0 3.87 

Overall, this is a good course. 9 4 2 0 0 4.47 
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D. Experiment 4: Behaviors Fusion and Path Planning  

The cooperation/competition coordination methods are the 
main technologies for the behaviors fusion of hybrid 
navigation method. The actual robot angular velocity   is 
generated by combining the output goal  of the position 
control behavior control and the output obstacle  of the obstacle 
avoidance behavior, with the weighting constant a  
determined by the obstacle information. The angular output of 
the cooperation fuzzy weight coordination is simply expressed 
by 

(1 )  ,  for 0 1goal obstacle                  (12) 

Fig. 6 shows the experimental results of the proposed path 
planning approach and behaviors fusion method where the 
initial pose and the final pose of the robot were set by 
(164 cm,  1847 cm, 90 )  and (50 cm,  2667 cm,  150 ) , the via-point 
generated from the map information is (217 cm,  2653 cm) . 
In order to make the robot to move smoothly, there was a 
buffer region with a radius of 150 cm around the via-point, 
when the robot moved into this region, it started to turn toward 
the goal direction. The experimental results clearly indicate 
the effectiveness of the proposed fuzzy behavior fusion 
strategy together with sensing and localization methods. 

 

VI. ASSESSMENT OF STUDENT PERFORMANCE AND STUDENT 
FEEDBACK 

This section briefly presents and discusses the course 
evaluation from the enrolled students at the end of this course, 
especially for the use of the experimental mobile robots. The 
course evaluation was based on a set of questionnaire shown 
in Table 1. Overall, the responses of the enrolled students of 
the proposed laboratory activities were quite positive.  

From this evaluation, it was concluded that after 
completion of the laboratory experiments by studying the four 
main techniques, most of the enrolled students considered it as 
an effective teaching tool to help them understand the basic 
robotics concepts behind to learn the mobile robotics theory 
and practices. With the four laboratory lectures, the students 
had a stronger motivation to construct robotics control system, 
to design robotic controllers and then to evaluate their 
performance and effectiveness, conduct the relevant 

simulations and experiments, and gain usefully theoretical and 
practical skills. 

VII. CONCLUSIONS 
This paper has presented a laboratory course on mobile 

robotics education. Via the help of a  simple differential-
driving wheeled mobile robot, experiments related to the four 
laboratory lectures can be easily conducted for showing how 
the proposed methods work well. For educational purpose, the 
proposed with differential-driving wheeled mobile robot can 
be highly recommended to be introduced at a senior 
undergraduate or first-year graduate course in mobile robotics.  

The use of the proposed differential-driving wheeled 
mobile robot as a concrete and interesting example of a 
wheeled mobile robot not only permits enrolled students to 
effectively improve their theoretical understanding and 
mastery of mobile robot technology, but also helps them have 
hands-on experience of working on a complete analysis and 
design procedure of a mobile robot system. Hence, most of the 
students improve their professional confidence as a result of 
the substantially and meaningfully educational experience.  
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 
Abstract—This paper proposes a piecewise linear feature based 

Rao-Blackwellised particle filter (RBPF) simultaneous 
localization and mapping (SLAM) system with some applications 
for interacting service robots. The SLAM is a fundamental and 
important capability for mobile robots and it allows the robots to 
construct the environment map and to localize themselves. The 
proposed SLAM system calculates line features form the data 
extracted by a 2D laser range finder and adopts an RBPF 
structure to improve the accuracy of the system. For each particle, 
it estimates a trajectory of the robot and a map by matching the 
observation model with the built map. A fitness function is 
designed for evaluating the quality of the particles individually 
and the particles have good fitness values will be remained and 
others will be replaced. Besides, we also propose four necessary 
functions with the SLAM system for our interacting service robot, 
including path planning, object location establishment, human 
robot interaction system, and accompany walking strategy. An 
interacting scenario is setup to examine the efficiency of all 
functions. In this scenario, the robot acts as a staff in a 
supermarket and provides two services that are similar to human 
workers. The experimental results demonstrate the interacting 
service robot can provide attainable interaction and service.  

Key words: accompany walking strategy, human robot interaction, 
interacting robot, Rao-Blackwellised particle filter, simultaneous 
localization and mapping 

I. INTRODUCTION 

 nowadays have more and more chances to interact with 
people and provide personal services. How to interact with 

a person and provide suitable services quickly and suitable is 
not an easy problem. The robot must be equipped some level of 
autonomous learning abilities to interact with people and the 
environment. Mobility is the basis of an interacting robot, 
because it allows the robot to move in the surroundings. The 
mobility contains two technologies, simultaneous localization 
and mapping (SLAM) and path planning. Therefore, we 
propose a Rao-Blackwellised particle filter (RBPF) based 
SLAM system. The SLAM system allows the robot to build the 
environment map and localize itself. Based on the SLAM 
system, several application functions, including path planning, 
object location establishment, human robot interaction system, 
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and accompany walking strategy, are incorporated in for 
providing suitable personal services. Our ideal is that the robot 
can interact with the environment and the person to find out 
what it should provide and then generate a suitable moving path 
and motions to accomplish it.  

Therefore, constructing a SLAM system is the first step we 
should do. Many sensors can be used for SLAM and they can 
generally be divided into image sensors [1] [2] and ranger 
sensors [3] [4]. The SLAM used image sensors are usually 
called vision SLAM, and it can present more details of the 
environment. However, the amount of information and 
computation complexity limits the range it can construct. These 
advantages and disadvantages of image sensors are just 
contrary to ranger ones. The laser ranger finders have usually 
high angular resolution, dense scanning, and are suitable used 
for large environment. Therefore, we adopt a 2D laser range 
finder as the main instrument for measurement. 

For laser based SLAM, there are two popular main structure, 
namely extended Kalman filter (EKF) [6]-[10] algorithm and 
RBPF [11]-[13]. Because the EKF methods are easily affected 
by the nonlinearity and cause inevitable inconsistency in 
solutions [14], we choose the RBPF framework. The RBPF can 
perform well no matter the SLAM system is a linear or 
nonlinear one. Another advantage of RBPF is that the 
Rao-Blackwellization method can reduce the sample space and 
improve the computation time. For further reducing the 
compilation complexity, we adopt an enhanced sequential 
segmentation algorithm [15] to extract the line features from 
the point data to build a compact map.  

The SLAM system constructs a map and calculates the 
robot location, but it cannot guide the robot how to move. 
Therefore, a path planning function has to be integrated in. A* 
algorithm is one of the best known path planning algorithm and 
it performs well when the global map is existed [16]. The 
advantage of A* algorithm is simple for implement, fast, and 
high modifiability [17]. Therefore, we choose it for path 
planning algorithm and provide a modification method to 
smooth the robot path.  

When the robot walks with a person or try to interact with a 
person, the moving path planning is another problem different 
form the basic path planning problem. The suitable relative 
position and velocity is the key element in this problem. It can 
be generated by observing human behavior, the trajectories of 
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two persons walking side by side are analyzed as the reference 
of the robot position [18] [19], or it can be designed by 
psychology researches [20]. In another situation, when the 
robot wants to provide service actively and approaches to a 
person, it has to predict the behaviors of the person and choose 
a gently manner to approach to [21] [22].  

Besides, the above mentioned functions, some other 
functions are also developed and integrated in the robot system 
to allow the robot accomplish interacting tasks. For illustrate 
and demonstrate the efficiency of the propose methods, we 
construct an interaction scenario similar a market. We choose 
market scenario because some researches show a robot 
provides services in a market is workable and may change the 
shopping experience. For example, some robots play a role as a 
receptionist and the survey from the customers show that the 
robot receptionists do attract the attention of customers [23] 
[24]. Some robots detected the moving trajectory of a person 
and approach him/her to provide advertisement [25], and some 
robots can follow a customer and grasp the merchants from the 
shelf for him/her [26].  

The main contributions of this paper are: 
 A SLAM system which can be easily implemented on a 

mobile robot in an indoor environment with low 
computation load and high performance.  

 A real application scenario which demonstrate the 
efficiency of the proposed SLAM system and other 
integrated functions.  

 An intelligent and feasible interaction which provides the 
person who interacts with the robot feels comfortable 
and convenient. 

The remainders of this paper are organized as follows. The 
concept and details of the proposed piecewise linear feature 
based RBPF is presented in Section II. Next, Section III 
describes three main relative functions of interacting with a 
person in a market scenario. In Section IV, the accuracy of the 
SLAM system and the application services are examined and 
the results are illustrated. The conclusion and future work are 
represented in Section V. 

II. PIECEWISE LINEAR FEATURE BASED RBPF SLAM 

SLAM means that both the trajectory of the robot and the 
locations of landmarks are needed to be estimated without any 
priori information. The robot uses a sensor to measure the 
position of the landmarks, and calculates its position by means 
of the established map.  

In general, the SLAM problem is represented as a 
probabilistic form as the following equation 

( )p k 0:k 0:k 0x ,M Z ,U ,x        (1) 
where kx  is the state vector which represents the robot’s 

location and orientation at time k, M  is the set of position of 
landmarks. 0:kZ is the set of landmark observations from time 0 

to k, 0:kU is the history of control inputs, and 0x is the initial 

position of the robot. This probability distribution represents 

joint posterior density of locations of landmark and state vector 
of the robot’s location given the set of observation of landmarks, 
the history of control inputs, and initial pose of the robot.  

After that, we can use a recursive way to solve the SLAM 
problem. This algorithm contains two steps, a predict step and a 
correction step. In prediction step, we define a motion model of 
the robot to predict the next position of the robot, as the 
following equation 

( ) = 

( ) ( )

p

p p d
k 0:k-1 0:k 0

k k-1 k k-1 0:k-1 0:k-1 0 k-1

x ,M Z ,U ,x

x x ,u x ,M Z ,U ,x x
  (2)

 
where ( )p k k-1 kx x ,u is the motion model of the robot in which 

the current position is predicted by the previous position, k-1x , 

and the motion command, ku . 

The position of the robot, kx , is a three-dimensional state 

vector as [ ]T
k k kx y kx . kx  and ky  are coordinates of 

robot pose in Cartesian coordinate, and k  is the orientation. 

ku  is the result of a motion command at time 1k  , as the 

following equation  

1

1

cos( )

sin( )
k k k

k k k

k

Dm m

u Dm m

m

 
 






 
   
  

k       (3) 

where kDm  is the moving distance, km  is the delta angle of 

robot’s orientation, and 1k   is the robot’s orientation. 

Therefore, we can calculate the motion model of the robot by 
means of summing up 1kx  and ku  as the following equation 

1 1

1 1

1

cos( )

( ) sin( )
k k k k x

k k k k y

k k

x Dm m m

p y Dm m m

m m

  
  

  

 

 



     
             
          

k k -1 kx x ,u  (4) 

where xm , ym , and m  represent noises caused by uneven 

ground, dynamical friction, and other reasons. These noise are 
modeled as a Gaussian distribution with zero mean. 

In correction step, we use the sensor input to construct an 
observation model of the landmarks to correct the prediction of 
robot position as the following equation 

( )  

( ) ( )

( )

p

p p

p

k 0:k 0:k 0

k k k 0:k-1 0:k 0

k 0:k-1 0:k

x ,M Z ,U ,x

z x ,M x ,M Z ,U ,x

z Z ,U

   (5) 

where ( )p k kz x ,M is the observation model which is a 

conditional probability distribution of the observation set of 
landmarks given the set of position of landmark and the pose of 
the robot. 

In this study, we adopt a laser range finder as the sensor, and 
extract the 180 degrees ahead of the robot with an angular 



Li et. al.  
Design and Implementation of SLAM by Piecewise Linear Feature Based RBPF for Service Robots 

 

46 

resolution of 0 .5  . Because each measurement is assumed 
individual, the observation model can be calculated by the 
product of the individual measurement likelihood [27], as the 
following equation 

1( ) ( )R r
r kp p z k k kz x ,M x ,M     (6) 

where the observation is represented as 1 2{ , , , }R
k k kz z zkz  , and 

R is the number of the observation data.  

In real application, some noises occurred in the sensor 
measurement [27], so we modeled three kinds of noise in the 
observation to improve the accuracy of our system. The first 
noise is caused by the atmospheric effect on signal and this 
noise restricts the resolution of the sensor. We modeled this 
noise as a Gaussian distribution, as the following equation 

* *( , )  ,if 0
( )

,otherwise0

r r r
k k SMNr k Max

SMN k

N z z z z
p z

   


kx ,M

 
(7) 

where *r
kz  is the real distance between the sensor and the object 

in the thr  angle of measuring, SMN  is the standard deviation of 

this Gaussian model, and Maxz  is the maximum distance which 

the sensor can work effectively in. When the measured distance 
is within the maximum distance, an adjusted distance is 
calculated by  

* 2

2

( )

2* 1
( , )

2

r r
k k

SMN

z z

r r
k k SMN

SMN

N z z e 
 




     (8) 

Otherwise, the measured distance will be replaced by zero.  

The second noise is caused by the random noise of the laser 
ranger sensor itself. Hence, we modeled this noise as a uniform 
distribution as the following equation 

*
1

 ,if 0
( )

,otherwise
0

r
r k Max

MaxRand k

z z
zp z


  


kx ,M    (9) 

The third noise is caused by the limitation of the sensor. 
When the robot meets a narrow gap between obstacles, or a 
black object, the laser sensor may measure a super big value. 
Therefore, we detect the measured value and when it is bigger 
than the maximum distance, we replace the measured distance 
by the maximal distance, as the following equation 

 ,if 1
( )

0 ,otherwise
k

r
Maxr

Max k

z z
p z


 


kx ,M      (10) 

After that, we integrate these three noises to model our 
observation model by the following equation 

( , )

T

SMN SMN
r
k Max Max

Rand Rand

w p

p z w p

w p

   
       
      

kx M      (11)
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Fig. 1. The overall flow chart of the RBPF SLAM. 

where SMNw , Maxw , Randw  are the weights of each probability 

distribution function, and their summation is equal to one. 

Therefore, the probabilistic form of SLAM can be 
represented by multiplying the observation model and the 
motion model, as the following equation 

-1( ) ( , ) ( , )p p p1:k 1:k 1:k 1:k 1:k k 1:k 1:kX ,M Z ,u M X Z x Z u  (12) 

In this paper, we apply the RBPF to our SLAM system as 
shown in Fig. 1, to improve the system accuracy. We first initial 
several particles and each particle will estimate a trajectory of 
the robot and a map by matching the observation model with 
the built map. A fitness function is designed for evaluate the 
quality of the particles individually and in its entirety. The 
particles have good fitness values will be remained and others 
will be replaced by new particles.  

The map in SLAM system can be represented by several 
kinds of features, such as point features, line features, or image 
features. Choosing a suitable feature type is the first issue in 
this problem. For real time implementation on a service robot, 
we adopt piecewise linear features to construct a map. Line 
features can decrease the computation load and time of map 
matching and robot localization.  

Before extracting the features, we have to convert raw data 
of the laser range finder into the robot’s coordinate [28] by the 
following equation 

, , ,
,

, , ,

cos( )

sin( )

l r lr
k k k kl k

k l r lr
k k k kk

x zx
p

y zy
  


  

 
 

    
              

  (13)
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Fig. 2. An example of data conversion. 

where ,kz  is the measured distance at the th  angle at time k, 

and ,
l

k is the angle of  . r
kx , r

ky , and r
k  represent the robot’s 

location and orientation. Hence, the measured distance can be 
translate to a position in the robot coordinate as ,

l
kx  and ,

l
ky . 

Fig. 2 illustrates an example in which the yellow circle is the 
robot and the red dots represent the translated observed 
positions in the robot coordinate. 

After that, we will search consecutive points to construct a 
line. How many points are needed to be a line is a tricky 
problem, in this paper, we define five consecutive points is the 
lowest criterion of a line. Therefore, we calculate the Euclidean 
distance between two adjacent points. If the distance is lower 
than a threshold, these two points are treated as consecutive 
points. The threshold is defined as the following equation 

1 , 1, 2( )sin( )l
k kth c z z Ra c          (14) 

where Ra  is the angular resolution of the laser range finder. 

1c  and 2c  are adjusting coefficients. Therefore, this threshold 

is variant with the measured distances, ,kz and 1,kz  . The 

larger the distance is, the bigger the threshold is. When we have 
extracted the consecutive points, we then use the line regression 
skill [28] to calculate the parameters of each line. A line is 
represented by the following features: the positions of two end 
points, relation coefficient of linear regression, and center of 
gravity, slope, and intercept of the line. In this paper, we choose 
to use polar coordinate to construct a map, because the rotation 
and shift in polar coordinate is faster and simpler than in 
Cartesian coordinate.  

A line in polar coordinate is represented as follows: 

cos sinx y           (15) 

where x  and y  are the variables in the Cartesian coordinate. 

 is the slope, and   is the intercept of this line. They are 

calculated by the following equations 
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tan2( )

2
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yy xx

S
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S S




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cos sing gx y              (17) 

where ( , )g gg x y  is the coordinate of the center of gravity of 

this line, Sxx  and Syy  are the variances, and Sxy is the  

 
Fig. 3. Illustration of similarity comparison. 

covariance. The relation coefficient is calculated by the 
following equation 

xy

xx yy

S
r

S S
          (18) 

If the absolute value of the relation coefficient is smaller 
than the threshold, rth , this line will be abandon. This 
calculation ensures these points are really on the same line. 
Besides, we also check the length of the line, and too short lines 
will be discarded. Before constructing the line into the map, we 
add another step to check whether the points close to the two 
end points belong to this line or not. If the nearby point is close 
enough to the end point and meets the features of the line, this 
point will be added into the line and the features of the line will 
be recalculated.  

Therefore, we can get all features of an observed line iF  

and represent it as  

( , , , , , , )fs fe f f fg f f
i i i i i i iF p p g r N      (19) 

where fs
ip and fe

ip  are the two end points, fN  is the number 

of the points on this line. Fig. 2 also shows some line features.  

Therefore, the observed map is a set of observed lines and can 
be represented as  

1 2{ , ,..........., }, 1,.....,IF F F F i I       (20) 

After the SLAM system extracting the line features from the 
raw data, the next step is to match these lines with the 
established map lines. At first, the center of gravity, slope, and 
intercept of the line need to be rotated and shifted by the 
following equations 

, &
, &

, &

cos( ) sin( )

sin( ) cos( )

fg R S Ro Ro fg Sh
fg R S

fg R S Ro Ro fg Sh

x x x
g

y y y

 
 

       
         

      
 (21) 

, &f R S f Ro                   (22) 
, & , & , & , & , &cos( ) sin( )f R S fg R S f R S fg R S f R Sx y       (23) 

where Ro , Shx , and Shy  are the rotated angle and the shifted 

distances of the line which are estimated by the robot motion 
model. The symbols with a superscript R&S are the translated 
features of the line.  

Then, we calculate the similarity of the translated line with 
the established line by comparing their absolute difference 

between the slopes,  , and the overlap length Lo . If both of 

them are smaller than the predefined thresholds, th   and Loth , 
we then calculate the difference between these two lines. For  
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(a)                                                      (b) 

Fig. 4. The result of the matching pairs. (a) The matched line pairs. (b) The 
rotation slope and the intercept difference of the line pairs. 

doing this, we sampling fN  points on the observed line with 
uniform distance. For each point we calculate the perpendicular 
distance with the map line and sum them up, as the following 
equation 

i, ,n
1 1

cos( ) sin( ) )
f fN N

f m f m m
i n n j i j j

n n

d d x y  
 

         (24) 

where nd is the perpendicular distance between the thn  

sampling point, ( ,
f

i nx , ,
f

i ny ), on the observation line and the 

established line, ˆ
jM . Fig. 3 is an illustration of the similarity 

comparison. Similar with observed lines, an established line 
ˆ

jM  and the established map can be represented as  

( , , , , , , )ms me m m mg m m
j j j j j j j jM p p g r N      (25) 

1 2{ , ,..........., }, 1,.....,JM M M M j J     (26) 

Because the length and point number of lines are variant, 
using a fixed value as the threshold to distinguish the similarity 
difference is not appropriate. Therefore, in this paper, we 
calculate the threshold in accordance with the sampling points 
on each line as the following equation 
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  (28) 

where , &
,
f R S

i nx  and , &
,
f R S

i ny  is the thn  sampling point which is 

rotated by the center of the robot pose and the slope threshold. 

3c  is the constant which is mainly determined by the moving 

speed of the robot.  

If the difference is smaller than the threshold, this line is 
viewed as a matched one, otherwise, this line will be treated as 
a new one and be added into the map. When the line is matched 
with more than one lines in the map, the line with smallest 
difference will be chosen. After that, we can get the matched 
pairs, as depicted in Fig. 4(a).  

Because the motion model of the robot used to calculate the 
rotated and shifted features of the observed lines are estimated 
only by the control command and some noises, the precision 
may be affected by many reasons. For further improving the 
accuracy both of the map and the localization, we use the 
matched lines to re-estimate the robot position. This step is also  

 
Fig. 5. An illustration of the robot pose displacement. 

called a correction step in which we use the observation model 
to correct the robot pose. 

The weighted average rotation slope and intercept 
difference of all matched lines are calculated first by the 
following equations 

1 1

Q Q

q q q
q q

l l 
 

          (29) 

1

/ Q
Q

q q
q

 


           (30) 

where ql , q , and q  are the length, the rotation slope, and 

the intercept difference of the thq  matched line pair, 

respectively. Q  is the number of all matching pairs.  

Because we use consecutive points to construct a line and 
extract its features, the longer the matched line is, the 
trustworthy the line is. Therefore, we weight these lines by their 
length. Fig. 4(b) is an illustration of the rotation slope and the 
intercept difference.  

When we calculate the average rotation slope and the 
intercept difference, they are then used to all of the lines. Hence, 
we can calculate the position of the robot and its moving 
distance in Cartesian coordinate by the matched map, as shown 
in Fig. 5. We first define the moving distance of the robot as  

1k kx x x            (31) 

1k ky y y            (32) 

Next, we have to estimate the moving distance by the 
established line. A line in the map in time k-1 can be 
represented as  

( - )cos( ) ( )sin( ) ( )m m m
k q k q q qx x y y           (33) 

where m
q  and m

q  are the slope and the intercept of the 

established line on the map on the thq  matching pair. When we 

subtract (33) form (15), we get the following equation 

cos( ) sin( )m m
q q qx y           (34) 

Then, we solve x  and y  by a weighted least square 

method, therefore we can get the moving distance of the robot, 
as following equation 
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where qw  is the weight of the thq  matching pair and it is 

calculated by  

1

( ) 
Q

q q q
q

w l l


          (36)

 
After these calculation, the robot pose is corrected. When 

the robot motion model correction is done, the observation 
model of the line features is then adjusted by the corrected robot 
pose. Therefore, the next step is to update the estimated map.  

There are three cases in the map updating according to the 
matching relationships between the established lines and the 
observed lines. In the first case, an observed line is not matched 
with any line in the map, so it will be treated as a new one and 
be added to the map.  

In the second case, an established line does not match with 
any observed line. It means the line feature should exist and be 
observed, but it is not. This circumstance happens when the 
environment features are changed, such as an object or people 
in the map is moved. For ensuring the features on the map are 
really disappear, but not caused by the sensor noise. Only when 
the features are not observed continuously during 30 iterations, 
they are erased on the map.  

In the third case, an observed line is matched with an 
established line, so these two line have to be merged into a line 
and its line features will be calculated to update the map. If we 
re-calculate all points on the merged line by (15)-(18), it will 
spend lots of computation load and time, therefore, we use a 
recursive least squares method [29] to calculate the merged line 
features by the following equations 
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cos sinm mg m mg m
q q q q qx y          (39) 

m f m
q q qN N N               (40) 

where , , ,m m mg m
q q q qg N  are the slope, intercept, center of gravity, 

and number of points of the established line, qM ,on the thq  

matching pair. , , ,f f fg f
q q q qg N  are these features of the 

observed line, qF , in the same pair. Using the above equations, 

we can get four features and construct a new line, next we have 
to calculate the two end points of this line. For doing this, we 
project these two lines onto the merged line qM   and find the  

 
Fig. 6. The result of finding the endpoints of the merged line. 

projected end points as shown in Fig 6. Hence, all features of 
the merged line are found, and the map will be updated by the 
updated lines. 

In RBPF based SLAM system, all particles will update its 
map and robot pose by the calculations mentioned above, only 
some particles which have good fitness values will represent 
the possibility distribution. Therefore, we have to define a 
fitness function to evaluate these particles after them updating 
the features of the map.  

Because we hope the observation model is as close to the 
built map as possible, the fitness function is defined as the 
following equations 

1

1 Q

q
q

fit w
R 

                                  (41) 

4 qc df
q qw N e                              (42) 

where R  is the number of laser measurement points, qw  is the 

weight of the matching pair q . qd is the distance between the 

map line and the observed line and it can be calculated by (24). 
4c  is a constant, in this paper, we set it as 0.005.  

Sometimes, the performance of the particles are not good 
enough, and they need to be resampled. This means the 
particles which have low fitness values will be replaced by the 
particles with high fitness values. However, if we resample the 
particles each time, the particle depletion problem may occur 
which means the important particles are depleted. Therefore, 
we adapt a selective resampling method [30] to solve this 
problem.  

In this method, the quantity of the current particles is 
calculated by the following equation 

2

1
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( )
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d

Qua
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



                             (43)

 
where dfit  is the fitness value of thd  particle and D  is the 

number of particles. The concept of the quantity calculation is 
when this particle set can well represent the real environment, 
the map and the robot pose in all particles will similar and 
results in the low variance between all particles. Otherwise, 
when the variance become large, it means they cannot represent 
the real situation. Therefore, we only resample particles when 
the quantity value is lower than 2D  [31]. This selective 

resampling method can not only reduce the risk of the particle 
depletion problem and but also decrease the computation load 
and time. 
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III. SLAM FOR INTERACTION WITH HUMAN BEINGS 

SLAM is a basic function for a mobile interacting robot 
because it allows the robot knows where it is and where it will 
go to. However, for real applications, there are some other 
functions have to be integrated in, or else, the robot cannot 
provide real personal services. Therefore, we develop and 
integrate three useful functions with the presented RBPF 
SLAM system, including path planning function, human robot 
interaction system, and accompany walking strategy. 

A. Path planning and Object location establishment 

When the robot has the environment map, it also needs a 
path planning function to plan its route between two specific 
positions. We first reduce the map size from 600x600 pixels to 
100x100 pixels, then inflate the map, and use the A-star 
algorithm to plan a path. However, this path contains too many 
points and it results in the robot move slowly and 
discontinuously. Therefore, we design a simplification method 
to reduce the path points.  

First, we detect the points on the same line, and discard all 
points on the line except for the first and the last point. And then, 
we consider the distance between two path points. If the 
distance is longer than a predefined threshold, a weighted 
average point of these two points will be calculated to replace 
these two points. After these, the path will become compact 
which allows the robot move safely and smoothly. 

Another basic function relative to SLAM is to mark the 
location of items. In this part, robot must integrate object 
recognition function to find the particular object and record its 
location in the map. When the robot successfully identifies the 
object, it will record its current location and the angle of head as 
the position of the object. Therefore, next time the robot needs 
to find or grasp the object, it will know where it should go to. 

B. Human robot interaction system and GUI 

For interacting robots, how to interact with people is the 
most important issue and it affects experience of human directly. 
People expect convenient, feasible, and intelligent interaction 
manners. Therefore, we design a graphical user interface (GUI) 
and integrate face recognition, skeleton recognition, and speech 
system to provide a suitable interaction. For the robot, variant 
interaction manners allow it provides more feasible and stable 
interaction, while for human beings, this means there are more 
choices they can choose.  

The first function integrated in the human robot interaction 
system is the person recognition. The robot recognizes a person 
by his/her face and skeleton. The face recognition function 
utilizes the Haar-like feature [32] to detect the face and the 
Fisherface method [33] to establish the face models. Once the 
robot starts to provide a service to a person, it detects the face 
form the images obtained by its camera, and trains a face model 
of the person. So, it can ensure the person it service to is the 
correct one. The skeleton detection and recognition ability is a 
backup function for person recognition. When his/her face is 
unable to be seen, the robot recognizes by his/her skeleton 
information.  

The skeleton detection also provides another function, 
avoiding a person. When the robot moving around the 
environment or following a person, it can avoid the other 
people by detecting them. Some detection and recognition 
results are shown in Fig. 7, in which the first detected person 
are marked as red color, as Fig. 7(a), and the other two persons 
are marked as orange and green colors, as shown in Fig. 7(c). 

There are two main manners the robot interacts with the 
person, a GUI and a speech system. The robot will introduce 
itself before starting service, and recognize the command form 
the person. For example, when the robot accompanies the 
person shopping, the person asks the robot to help him/her pick 
a merchandise, the robot can receive the command and execute 
it. The GUI is mounted on a touch screen by which a person can 
choose the service he/she needs, and the corresponding 
information will be shown on the screen.  

Speech is the most natural interaction manner for human 
being, however, the accuracy of speech recognition decreases 
when the words and sentences increase. On the contrary, the 
touch screen is the most accurate and trustworthy manner 
among the human robot interaction. Combining these two 
interaction manners provides a convenient and feasible way. At 
the first, the person uses the GUI to command the robot, so the 
robot can receive the command fast and correct. During the 
service, the person can command the robot by the current 
situation through speech. It means that the person need not stop 
the motion what he/she is doing and move to the back of the 
robot to operate the touch screen, instead, he/she can speak to 
the robot directly.  

 
 

(a) (b) (c) 
Fig.7 The results of skeleton detection and recognition. 

 

 
Fig. 8. Illustration of relative position and moving angle.
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C. Accompanying walking strategies 

Accompanying walking with a person is another important 
function for the robot while interacting with human beings. 
This function can use in many situations, such as 
accompanying a person to shop, following a person to a specific 
position, learning new information about the environment. 
However, maintaining a suitable position and walking speed 
relative to the person is not an easy problem. 

In psychology researches, the suitable and comfortable 
distance between two persons are determined by the 
relationship of these two persons. Based on the classification of 
Hall [20], the robot should maintain a social distance (typically 
between 1.2 and 3.5 m) which allows the robot to receive 
commands directly and not to encroach on the personal area of 
the person.  

In addition to maintain a distance, we also expect the robot 
can maintain a relative angle with the person, as shown in Fig 8, 
in which dr and d  is the desired relative distance and angle 
between the person and the robot, respectively. For doing so, 
first, the robot needs to detect and to calculate the position of 
the person, in this paper, we do these by a RGBD camera. The 
person’s position in vision coordinate will be transfer to the 
world coordinate.  

Next, the robot has to predict the walking velocity of the 
person. We use the Taylor series expansion (TSE) velocity 
estimator [34] to implement, because it has a good response 
velocity transients and is easy to implement. Theoretically 
speaking, the higher order terms we use to estimate the velocity, 
the more precise the estimated velocity is. However, there are 
more noises in higher order terms in practice. Therefore, we use 
the 3rd order TSE to estimate the velocity of human. In discrete 
signal processing, we fix every time step which we sample the 
position, so the 3rd order TSE estimator can be written as 
follows: 

1 1 2

1 1
ˆ = ( ) ( 2 )

2 8k k k k k k k       v Δx Δx Δx Δx Δx Δx      (44) 

where kΔx  is the displacement in time step k and 

1k k kx x  Δx . ˆ kv  is the estimated velocity in time step k  

and it can be represented as ˆ [ ]x y T
k k kv vv . 

Following, the robot has to calculate a suitable position it 
should move to and the position can be calculated by the 
following equation 
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                      (45) 

where h
kx  and h

ky  are the position of the person. 

[ ]d dx dy Tr r r is the desired relative distance between the 

person and the robot. R is a rotation matrix which transfers the 
vision observation coordinate to the robot control coordinate 
and it can be calculated by the following equation, 

 
(a) 

 
(b) 

Fig. 9. simulation results of accompany walking strategy. 
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where h  is the moving angle of the person. Because the robot 
always faces the position of the person and tries to maintain the 
person in her vision center, d  can be treated as the moving 
angle of the robot in the world coordinate, the subtraction angel 

between h  and d allows the robot to tune itself and to keep 
facing the person.  

Based on the planned position, the robot can maintain a 
relative position of the person. However, if there is an obstacle 
on the way of the robot, obstinately maintain the relative 
position is not workable. Instead, the robot should adjust the 
relative angle to avoid the obstacle. 

Fig 9 shows a simulation result of following a person. The 
relative distance and angle are set as 6 and 0.9m. The 

positions of the person given by the simulator and estimated by 
the TSE estimator are shown as the green and blue points in the 
inner cycle in Fig 9, respectively. The calculated suitable robot 
positions are shown as the red points in the outer cycle, and the 
green cycles are the results of robot path planning. One can see, 
these two trajectories maintain a suitable distance and the robot 
maintain a position behind the person. This simulation 
demonstrates the efficiency even in some narrow areas. 



Li et. al.  
Design and Implementation of SLAM by Piecewise Linear Feature Based RBPF for Service Robots 

 

52 

 
(a) 

 
(b) 

Fig. 10. The performance of the SLAM system. (a) The graphic configuration of 
the experimental field and the sampling points. (b) The constructed map by 
SLAM system. 

 
Fig. 11 The constructed map of a circle item. 

IV. EXPERIMENTS 

A. Accuracy of SLAM 

We first examine the accuracy of our RBPF SLAM system. 
The experiment field is about 26 10 m , and some furniture 
were placed inside. Fig. 10(a) is the configuration of the 
experiment field and Fig. 10(b) is the constructed map by the 
SLAM system. Generally speaking, the map built by the 
proposed SLAM system is really similar with the real 
environment.  

In this environment, the trash can is the difficult item, 
because its shape. Because we choose piecewise linear feature 
as the basis of the SLAM system to reduce the computation 
complexity, circle object will be represented as many lines. Fig. 
11 shows the details of the map and the difference of the trash 
can. One can see the proposed SLAM can also deal with the 
circle environment with an acceptable error. 

The accuracy of localization was examined by sampling 10 
points in this environment, driving the robot to each sampling 
point, and checking the localization results. For each location,  

TABLE 1 THE ACCURACY OF LOCALIZATION. 

Point Error in x-axis(mm) Error in y-axis(mm)
Error in orientation

(degree) 
Point mean Std. mean Std. mean Std. 

S 12.3 7.57 8.09 2.37 -0.44 0.19 
A 1.21 17.65 89.77 6.88 0.12 0.24 
B 2.21 3.48 62.23 1.68 -0.66 0.19 
C 21.9 3.06 39.44 4.68 -0.03 0.11 
D -15.4 4.62 -87.94 4.61 -0.97 0.11 
E 68.1 8.19 -101.15 4.99 -0.46 0.27 
F 37.5 2.79 -257.3 7.80 -0.35 0.08 
G 12.6 16.97 -145.14 11.87 0.07 0.23 
H 95.9 10.92 -143 2.07 -0.18 0.18 
I -116.7 3.57 -79.23 2.63 0.59 0.11 

Mean 38.4 7.88 101.3 4.96 0.39 0.17 

 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 12 Snapshots of the experiment I. (a) The customer placed an order by the 
touch screen. (b) The robot moved to the location of the first merchandise. (c) 
The robot recognized and grasped the first object. (d) (e) The robot grasped the
second and third objects. (f) The robot went back to the customer.  

 
we measured 100 times and the results are tabulated in Table 1. 
The average error of x-axis and y-axis are 38.4 millimeters and 
101.3 millimeters, respectively, and the average error of 
orientation is 0.39 degree. Though it is not the most accurate 
SLAM method so far, it is good enough for an interacting robot. 

B. Interacting application scenarios  

For demonstrating the interacting functions, we set up 
another experiment field and constructed two application 
scenarios. The experiment field simulated a market with eight 
shelves and more than 60 kinds of merchandises, such as 
foodstuff, cookies, beverages, and the articles for daily use. The 
first scenario is called 「Help Me Shop」, and the snapshots of the 
experiment are shown in Fig. 12. In this scenario, the robot will 
help the customer to take all merchandises he/she wants, so that 
the customer need not to walk around the supermarket. First, the 
customer placed a shopping order by the touch screen, as Fig 12 
(a), the robot then received the shopping list, calculated the 
optimal picking sequence, and planned the route by the SLAM 
system and the location of the merchandises. After that, the 
robot picked the merchandise sequentially, as shown in Fig. 12  
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(a) (b) 

 
(c) (d) 

 
(e) (f) 

Fig. 13 Snapshots of the experiment II. (a) The robot detected the skeleton of 
the customer. (b) The robot followed the customer by tracking his skeleton. (c)
(d) The robot continuously kept a safe distance with the customer during 
shopping. (e) The customer asked the robot to grasp a good and the robot 
recognized the command and grasped it. (f) The customer commanded the end 
of the shopping.  

 

(b)-(e). Finally, the robot passed all merchandises on the 
shopping cart to the customer, as Fig. 12 (f). 

This experiment has demonstrated the efficiency of the 
integration of the SLAM system, object recognition system, 
and the human robot interaction GUI. The robot used the 
SLAM system to move to the correct positions of the 
merchandises, and grasped the merchandises accuracy no 
matter where the merchandise placed.  

The second experiment scenario is called 「Stand by Me」. 
In this scenario, the robot follows the customer with a relative 
distance while he/she carries the goods, so that the customer 
need not carry the shopping cart. The robot first detected the 
skeleton of the customer, and kept tracking him and 
maintaining a suitable distance during shopping. Some 
snapshots are shown in Fig. 13. The robot illustrated itself first 
and recorded the skeleton of the customer, as Fig 13 (a). When 
the customer shopped in the market, the robot followed the 
person and helped him carrying the goods, as Fig. 13 (b)-(d). In 
the meantime, the detected skeleton was used to calculate the 
distance between the robot and the customer to maintain a fixed 
distance. Besides, the customer can command the robot to help 
him take the good on the shelf anytime during shopping, as 
shown in Fig.13 (e). When the customer wanted to end the 
shopping, he commanded the robot by speech, and the robot 
stopped, as Fig. 13 (f).  Different from the first scenario, this 
one demonstrated another two interaction matters, speech 
communication and skeleton recognition, and illustrated the 
feasibility of the interaction. The robot can recognize the 
customer by several ways and communicate with him 
intelligent.  

V. CONCLUSION 

This paper has proposed a piecewise linear feature based 
RBPF SLAM along with some application functions for 
interacting service robots. The proposed SLAM system allows 
the robot to construct the environment map and to localize itself 
before or during providing personal services. Besides, we also 
integrated some other functions with the SLAM system to 
really provide personal services, including path planning, 
object location establishment, human robot interaction system, 
and accompany walking strategy. Therefore, the robot can 
recognize the person it interacts with, receive commands by the 
human robot interaction system, establish the location of an 
object, plan a path, and move to the object. The effectiveness of 
the proposed SLAM system has been illustrated in the 
experiments, the accuracy of established map and robot 
location are both good enough for a service robot. We also 
constructed a market scenario with two useful applications to 
demonstrate what the robot can do and how it interacts with 
human. The experiments have demonstrated the robot integrated 
several functions to provide feasible and intelligent interaction, 
and further provided the customer convenient and comfortable 
shopping experiences.  
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