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Abstract—Motion planning is an important factor affecting the 
efficiency of industrial robot manipulators. This paper develops 
an asymmetric 7-segment S-curve motion planning architecture 
for enabling industrial robot manipulators to complete tasks in 
the shortest time possible while still satisfying physical constraints. 
If S-curve motion planning is performed in the Cartesian space, 
the moving path of the industrial robot manipulator can be 
specified. However, because of the nonlinear mapping between the 
Cartesian space and the joint space, physical constraints in the 
joint space may be violated. To cope with the aforementioned 
problem, this paper proposes an approach that exploits 
evolutionary computation algorithms to determine the 
parameters of the asymmetric 7-segment S-curve so as to achieve 
time-optimized motion planning without violating the physical 
constraints in both Cartesian space and joint space. The results of 
simulations and experiments conducted on a 6-DOF industrial 
manipulator indicate that the proposed approach is feasible. 

 Index Terms—Asymmetric S-curve, Motion Planning, Industrial 
Manipulator, Evolutionary Computation Algorithm  

I. INTRODUCTION 

iding the wave of Industry 4.0 while facing the challenge 

of ever-increasing labor costs and the impact of the 

COVID-19 pandemic, the trend of industrial 

manufacturing/production has shifted towards automation and 

customization. In order to meet the needs of customization as 

well as small-volume and large-variety production, the 

multi-axis industrial robot manipulator is one of the best 

solutions and is now widely used in various fields due to its 

high degree of freedom. For an industrial robot manipulator to 

execute a specific task such as contour following, two of the 

most important goals are reduction of contour error and 

improvement of work efficiency. With a well-designed control 

scheme, the contour error can be reduced such that the 

contouring accuracy can be substantially improved. As for the 

improvement of work efficiency, appropriate motion planning 

is crucial. Ideal motion planning on the velocity command will 

not only satisfy all physical constraints such as kinematics 

constraints (i.e. joint velocity, joint acceleration, joint jerk) and 

dynamics constraints (i.e. joint torque), but also achieve the 

goal of time optimization. In general, motion planning can be 

performed either in the joint space or in the Cartesian space. 

One of the advantages of motion planning on the joint velocity 
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profile is that it is straightforward and easy to implement, as the 

servomotors are installed at the joints. Another advantage is 

that it is free of kinematics singularity. Nevertheless, it also has 

a major drawback. Since the mapping between the joint space 

and the Cartesian space is highly nonlinear, the original work 

path without motion planning in the joint space may be very 

different from the one having motion planning in the joint space. 

As a result, motion planning in the joint space is not suitable for 

contour following tasks. On the other hand, for motion planning 

in the Cartesian space, given a feedrate profile under motion 

planning, an interpolator is developed to generate motion 

commands in the Cartesian space. The motion commands in the 

Cartesian space are then converted into commands in the joint 

space to check whether or not the kinematics and dynamics 

constraints are satisfied. However, because of the nonlinear 

mapping between the Cartesian space and the joint space, 

kinematics or dynamics constraints in the joint space may be 

violated and a kinematics singularity may also occur. To cope 

with the aforementioned difficulty, this paper focuses on 

motion planning problems in the Cartesian space for industrial 

robot manipulators. There have been many past studies on the 

motion planning problem in the Cartesian space. In [1], the 

velocity profile is represented by 5th-order quantic splines. A 

heuristic approach is employed to gradually increase the 

velocity while satisfying the jounce constraint. Boryga and 

Graboś used 5th-order, 7th-order and 9th-order polynomials to 

construct velocity profiles such that the jerks for the start point 

and the end point of the moving path are zero so as to reduce 

vibration and improve positioning accuracy [2]. In [3], 

B-splines are used to construct the velocity profile; the binary 

search method is used to raise the control points one by one 

until the pre-determined maximum searching time is reached. 

In [4], the tool path is represented in NURBS form. The 

feedrate profile is represented by a cubic spline, which is a 

function of the parameters of the NURBS curve. Optimization 

algorithms are used to find the shortest moving time. In [5], the 

tool path is represented by a NURBS curve, while the velocity 

profile is constructed by a sine curve. The critical point and the 

breakpoint on the tool path are found by scanning the tool path 

in advance. As such, the velocities at the critical point and the 

breakpoint will be further adjusted. In [6], the tool path is 

represented by a NURBS curve; a bi-directional scan approach 

is employed to search for the physical limit of the critical point, 

and the S-curve motion planning for the feedrate profile 

between two critical points is then performed. The results in [7] 

reveal that the velocity profile represented by a 3rd-order 

S-curve performs better under vibration than the velocity 

profile represented by a trapezoidal curve. In [8], a square-wave 

jerk curve is used to construct a 3rd-order S-curve. A look-ahead 
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algorithm is employed to lessen the velocity jump problem 

between two adjacent linear segments so as to maintain a 

constant feedrate throughout the entire task. In [9] and [10], a 

square-wave jerk curve is used to construct an asymmetric 

3rd-order S-curve, in which the time durations for the 

acceleration zone and the deceleration zone differ. In [11], a 

square-wave jerk curve is used to construct an asymmetric 

3rd-order S-curve motion planning algorithm for 5-axis 

machine tools, in which the time durations for the positive jerk 

zone and the negative jerk zone differ. Compared with the 

asymmetric 3rd-order S-curve adopted in [9] and [10], the one 

adopted in [11] is more asymmetric and more flexible for 

motion planning. In addition, the time optimal solution is 

obtained using an optimization algorithm.   
Similar to the idea adopted in [11], the time durations for the 

positive jerk zone and the negative jerk zone are different in the 
motion planning algorithm proposed in this paper. In addition, 
two zero-jerk sections have been added. As a result, the 
asymmetric S-curve for motion planning proposed in this paper 
has seven segments. With the characteristic of asymmetry, the 
velocity profiles can be planned flexibly. In addition, this paper 
proposes an approach that employs the Particle Swarm 
Optimization (PSO) algorithm to search for the optimal 
parameters of the asymmetric 7-segment S-curves that will yield 
a solution to satisfy both Cartesian space and joint space 
physical constraints while being near time-optimal. Finally, a 
6-DOF industrial manipulator is used as an experimental 
platform, in which simulations and experiments are carried out 
to verify the effectiveness of the proposed approach. 
Simulations and experimental results have indicated that the 
asymmetric 7-segment S-curve motion planning approach 
developed in this paper performs better in machining time 
compared with other S-curve-based approaches. 

The remainder of this paper is organized as follows. Section 
II gives a brief view on S-curve acceleration/deceleration and 
particle swarm optimization. Section III introduces the proposed 
asymmetric 7-segment S-curve motion planning approach. 
Section 4 provides the simulation and experimental results.  
Section 5 is the conclusion.  

II.  BRIEF REVIEW ON S-CURVE ACCELERATION/DECELERATION 

AND PARTICLE SWARM OPTIMIZATION 

This section will provide a brief review on S-curve 
ACC/DEC (acceleration/deceleration). In this paper, the Particle 
Swarm Optimization (PSO) algorithm is used to search for the 
optimal values of the parameters of the S-curve ACC/DEC 
architecture. Hence, a brief review on PSO will be also given in 
this section. 

A. S-curve Acceleration/Deceleration (ACC/DEC) 

S-curve ACC/DEC is one of the most common ACC/DEC 

planning methods. Its main advantage is that it has a continuous 

acceleration and deceleration curve which can prevent the 

servomechanism from encountering sudden acceleration and 

deceleration changes, while its velocity profile is smoother, as 

well. S-curve ACC/DEC motion planning can be divided into 

three parts: the acceleration zone, constant speed zone and 

deceleration zone. In order to simplify the calculations, the 

S-curve is usually symmetrical; that is, the time durations of the 

acceleration zone and the deceleration zone are the same. 

However, limitations in symmetrical properties may lead to 

lengthy machining time. In order to achieve the goal of 

time-optimal operation, this paper derives an asymmetric 

7-segment S-curve, as shown in Fig. 1. Compared with the 

symmetrical S-curve, the asymmetric 7-segment S-curve has 

several advantages. One of the advantages is that the time 

durations for the acceleration zone and the deceleration zone 

can be planned flexibly. Another advantage is that the 

asymmetric 7-segment S-curve can achieve a higher velocity in 

a shorter time duration.  
According to the acceleration profile shown in Fig. 1, the 

acceleration command can be expressed as: 

1 1

1 1 1 2

1 1 3 2 2 3

3 4

5 4 4 5

5 5 4 5 6

5 5 4 7 6 6 7

, 0

,

( ) ,

( ) 0 ,

( ) ,

( ) ,

( ) ( ) ,

J t t K

J K K t K

J K J t K K t K

a t K t K

J t K K t K

J K K K t K

J K K J t K K t K

  
 

 
 
    
 

   
    
 

    
 
      

           (1) 

 

 

 

By integrating a(t) with respect to time, the velocity 
command can be expressed as: 
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By integrating v(t) with respect to time, the position 

command can be expressed as: 
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Fig. 1. Asymmetric 7-segment S-curve 
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B. Particle Swarm Optimization (PSO) 

Particle swarm optimization is a method for the 

optimization of continuous nonlinear functions [12], [13]. At 

the outset, all particles will randomly search for a solution in 

the multi-dimensional solution space and obtain the fitness 

value of the solution. As the number of iterations increases, 

each particle will modify the direction for finding solutions 

based on its own experience and the best experience of every 

particle. By means of cooperation and competition among 

particles, the best solution with the best fitness value can be 

found. 

 
Fig. 2. Particle Swarm Optimization 

 

Fig. 2 illustrates the idea of particle swarm optimization. 

Assume that there are N particles to search for the best solution 

in a D-dimensional solution space. The position of particle n is 

Xn=(xn1, xn2,…, xnD)  and the best position of particle n (Personal 

best) is Pbestn=(pbestn1, pbestn2,…, pbestnD). The best position of 

all particles (Global best) is Gbest=(gbest1, gbest2,…,gbestD). 

The next velocity is  Vn=(vn1, vn2,…, vnD), while the next 

position of the particle can be calculated using (4) and (5): 
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where w(k) is the inertia weight, c1 and c2 are the acceleration 

constants, and rand is a random number in the range of [0,1]. 

Fig. 3 shows the flowchart for the particle swarm optimization 

algorithm. 

 
Fig. 3. Flowchart of the PSO algorithm 

 

III. THE PROPOSED ASYMMETRIC 7-SEGMENT S-CURVE 

MOTION PLANNING APPROACH 

The procedures of the proposed asymmetric 7-segment 
S-curve motion planning approach will be elaborated in the 
following. 

Suppose that the path length is L and the velocity at the 

endpoint of the path is zero. Substituting 
7
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Expanding (6) will result in 
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By solving (7) for aA and aD, one will have 
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(8) 

From Fig. 1, it is clear that both aA and aD are positive. In 

particular, both aA and aD described by (8) must satisfy the 

following inequality: 

0

0

A

D

a

a




                                                                             (9) 

If inequality (9) is satisfied, then one can obtain the 

following constraints for the jerk profile in the Cartesian space: 
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where Jmax is the maximum jerk in the Cartesian space. 

From Fig. 1, it is also clear that the maximum velocity will 

be reached at time instant K3. Substituting  3
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into (2) will yield the maximum velocity. As a result, one will 

have the following constraints: 
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where amax is the upper bound of the maximum acceleration in 

the Cartesian space and vmax is the upper bound of the maximum 

velocity in the Cartesian space. 

Substituting T1 T7 and J1, J3, J5, J7 into (3) will yield the 
position command. It is evident that the position command starts 
from zero in Fig. 1. In other words, to obtain actual position 
command p(t), one needs to take the initial coordinate of the 
starting point of the work path into account. By using actual 
position command p(t) in the Cartesian space and robot inverse 
kinematics, one can obtain joint angle  qi(t), joint velocity ( )iq t  , 

joint acceleration ( )iq t , and joint jerk ( )iq t . For the ith joint, 

the joint angle constraint, joint velocity constraint, joint 
acceleration constraint, and joint jerk constraint are listed in the 
following:   
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where 
miniq and 

maxiq are the lower bound and the upper 

bound of the ith joint angle, respectively; 
maxiq  is the upper 

bound of the ith joint velocity; 
maxiq  is the upper bound of the ith 

joint acceleration; and 
maxiq is the upper bound of the ith joint 

jerk.  

To check whether the joint torque is satisfied or not, one 

needs to compute the joint torque through the dynamic model 

of the robot manipulator [14] described by (13) 

     ,M q q C q q q G q                                 (13) 

where M(q) is the nn inertia matrix; ( , )C q q  is the  nn 

Coriolis and centripetal matrix; and G(q) is the n1 gravity 

vector.  

Before using (13) to check whether the joint torque 

constraint is satisfied, the system model parameters in (13) 

need to be identified in advance. In general, to perform system 

identification, (13) is rewritten in the form of a barycentric 

parameter as described by (14). The approach proposed in [15] 

is employed in this paper to identify the system parameters:  

( , , )q q q                                                           (14) 

where regression matrix ( , , )q q q consists of joint position, 

joint velocity, and joint acceleration; and  is the vector of 

barycentric parameters to be identified. 

After the system model parameters have been identified, 

one can compute the joint torques at each time instant. 

Inequality (15) is the joint torque constraint:  

 
max

max ( )i it                                                  (15) 

where 
maxi is the upper bound of the ith joint torque.  

Since the goal is to find the best solution for T1 T7 of the 

asymmetric 7-segment S-curve, the particle position in the PSO 

algorithm is a set of 7-dimensional values, and each dimension 

corresponds to T1 T7. When the particle has a new position 

solution, it is necessary to check whether this solution satisfies 

the constraints described by (12) and (15), and then calculate 

the fitness described by (16).  

1 2 3 4 5 6 7

1
fitness

T T T T T T T
 

     
                (16) 

 

The search process is illustrated as follows： 

 

Step 1: Initialize particle position Xn 

The positions of all particles are randomly distributed in the 

search space. 

Xn=(Tn1, Tn2, Tn3, Tn4, Tn5, Tn6,Tn7), n=1,2,…, N 

N is set as 500. 
max

0,  ni iT T   
 where

maxiT is an estimate 

of the maximum value of each time instant. 

 

Step 2: Check physical constraints 

○1 Cartesian space physical constraints 

1 max 3 max 5 max 7 max

max max

3 max

 :       ,         ,        ,         
 :   0    ,     0     
 :    ( )  

A D

jerk J J J J J J J J
acceleration a a a a

velocity v K v

   
   


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   

 

5 6 7 1 2 3

1 1 2 3 4

5 5 6 7

5 6 7 2 2 3 42

6 6 7 7
3 3

1 2 3

4

w

(

6 2 6 2

3 3 3 )
2

)
6 3

2 (3 6 6 )
3

here  ,   

=(
( 3 )

(2 3

2 ( )

)

A D

L T T T L T T T

T T T T T
T T T T

T T T T T T T
T T T T

T

T T

a a

T T

T

   

  
 

 



 
 

 
 




 


 
      

   

○2 Joint space physical constraints 

 
 
 
 

min max

max

max

max

max

 :     ( )

 :    max ( )

 :    max ( )

 :    max ( )

 :    max ( )

i i i

i i

i i

i i

i i

angle q q t q

velocity q t q

acceleration q t q

jerk q t q

torque t 

 









 

 

Step 3: Calculate fitness 

If particle Xn  has satisfied all the physical constraints in Step 

2, then its fitness can be calculated. If not, then the fitness is 

set as 0. The fitness function is set as follows: 

1 2 3 4 5 6 7

1
fitness

T T T T T T T
 

     
 

 

Step 4: Update 
nbestP  & Gbest  

In the first iteration, each particle’s =
nbest n bestP X G is  Xn 

with the minimum fitness. In subsequent iterations, if the 
current fitness(Xn) of the particle is less than fitness(

nbestP ), 

then  
nbestP needs to be updated; otherwise, the previous one 

is kept. Gbest  also needs to be updated when fitness(Xn) of a 
certain particle is less than fitness(Gbest). 

 

Step 5: PSO termination 

In this paper, the termination condition is reached when the 

number of times G_best remains unchanged reaches 100. If 

the termination condition is satisfied, then stop the algorithm. 

Otherwise, go to the next step. 

 

Step 6: Update particle velocity and position  

Update the particle velocity and position according to (2) and 

(3), then go to Step 2. 
 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

In the simulation, three different types of S-curve are 
compared—an asymmetric 7-segment S-curve, a symmetric 
7-segment S-curve and an asymmetric 5-segment S-curve [11]. 
Each type of S-curve is conducted on the work path separately. 
The work path is designed to avoid the robot singularity in 
advance and its information is shown in Table . 

 

TABLE I WORK PATH INFORMATION 

 

The simulation results of motion planning of different types of 

S-curve are listed in Table II.  

 
TABLE II MOTION PLANNING RESULTS FOR DIFFERENT TYPES OF S-CURVE 

 

time T1(s) T2(s) T3(s) T4(s) T5(s) T6(s) T7(s) total(s) 

asymmetric 

7-segment 
0.462 0.418 0.479 0.048 0.751 0.029 0.308 2.495 

symmetric 

7-segment 
0.464 0.419 0.464 0.010 0.464 0.419 0.464 2.704 

asymmetric 

5-segment 
0.856 0.790 0 0.719 0.320 - - 2.685 

 

It can be seen from Table II that the asymmetric 7-segment 

S-curve developed in this paper has the shortest machining time. 

Compared with the symmetric 7-segment S-curve and the 

asymmetric 5-segment S-curve, the machining time for the 

proposed asymmetric 7-segment S-curve can be reduced by 

7.7% and 7.1%, respectively. 

The motion planning results obtained by the asymmetric 

7-segment S-curve in the simulation are used as the joint angle 

commands for the 6-DOF industrial manipulator in the 

experiment. The experimental results are shown in Figs. 4~9. 

 

 

 
Fig. 4. Experimental results of motion planning (Cartesian space) 

      Simulation        Experiment        Limitation        Time segments 

 

 

 

 
Fig. 5. Experimental results (joint angle) 

 
Trajectory 
information 

X 
(cm) 

Y 
(cm) 

Z 
(cm) 

 
(deg) 

 
(deg) 

 
(deg) 

Trajectory 

length 

(cm) 

Start point 57 -25 25.3 
0 0 180 72.28 

End point 17 20 65.3 
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Fig. 6. Experimental results (joint velocity) 

 

 

 
Fig. 7. Experimental results (joint acceleration) 

 

 

 
Fig. 8. Experimental results (joint jerk) 

 

 

 
Fig. 9. Experimental results (joint torque) 

 

It can be seen from  

Fig. 4~9 that the motion planning results satisfy physical 
constraints in both Cartesian space and joint space. Especially 
in Fig. 8, a certain joint almost reaches the upper/lower bound 
of the constraint in each time segment, meaning motion 
planning can give full play to the capabilities of the machine 
and approach time optimization. 

V. CONCLUSION 

Motion planning is an important factor that affects the 
efficiency of industrial manipulators. Using the proposed 

PSO-based asymmetric 7-segment S-curve motion planning 
approach, the motion planning results satisfy both the Cartesian 
space physical constraints and joint space physical constraints. 
In addition, the obtained path command is near time optimal. 
Moreover, the results of both simulations and experiments 
conducted on a 6-DOF industrial manipulator indicate that the 
proposed approach is feasible.   
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