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Abstract— This paper presents a novel adaptive predictive 
proportional-integral-derivative (PID) control using a new 
recurrent fuzzy broad learning system (RFBLS) for setpoint 
tracking control and disturbance rejection of a class of nonlinear 
discrete-time dynamic systems with time delay. The proposed 
controller, abbreviated as RFBLS-APPID, is formed from an 
online RFBLS identifier for online parameter tuning and 
identification, and an adaptive predictive RFBLS-PID control 
for accurate setpoint tracking and disturbance rejection. The 
three-term PID controller gain parameters are automatically 
tuned by the RFBLS identifier. The setpoint tracking of the 
proposed RFBLS-APPID control method is well exemplified by 
conducting simulations employing two well-known nonlinear 
digital discrete-time time-delay dynamic systems, thus showing 
its effectiveness and superiority.  

 
Keywords: PID Control, intelligent control, predictive control, 
recurrent fuzzy broad learning system (RFBLS) 

I. INTRODUCTION 

PID parameter tuning refers to adjusting the PID 
controller's three-term parameters, proportional, integral, and 
derivative gain, to achieve the system’s required control 
performance. In industry and academia, the self-tuning of PID 
control has been long considered a significant parameter 
search problem. Many researchers have proposed several 
methods for self-tuning PID gains. The author in [1] and [2] 
proposed a self-tuning method for the PID control, and later a 
fuzzy wavelet neural network (FWNN) was presented by [3] 
which was considered as the earlier wave of neural network 
application for the PID control. The authors in [4]–[6] 
proposed an improvement of the FWNN method. Aimed to 
improve the FWNN learning capabilities, the authors in [7]–[9] 
proposed the ORWNN, ORFWNN, and RBFNN methods for 
online parameter tuning for the PID controllers.  

To improve the learning efficiency without complex 
architecture, the author in [10,11] proposed a broad learning 
system (BLS) and later in [12] and [13] constructed a more 
efficient broad learning system by employing neuro-fuzzy and 
labeled it as fuzzy BLS (FBLS). This FBLS is a method that 
incorporated Takagi-Sugeno fuzzy system inside the BLS by 
adding the enhancement node to enhance learning capabilities. 
In its applications, FBLS has been used by several researchers. 
The authors in [14], [15] applied the FBLS to the 
tool-grinding servo system, and the authors in [16], [17] 
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applied it to the wafer cleaning machine in the semiconductor 
industry. 

Recently, an improvement of the FBLS method has been 
proposed in two ways. Recurrent FBLS abbreviate as RFBLS 
by the authors in [16] and Output Recurrent FBLS or 
ORFBLS by the authors in [18] who aimed to improve the 
RFBLS learning capabilities, this paper is proposed.  

The research objective of this paper is to propose a new 
RFBLS system identifier and a new adaptive predictive PID 
controller to form an RFBLS-APPID control method by 
modifying the controller structure of the RFBLS method 
proposed in [16]. The remaining sections of the paper are  
structured as follows. Section II introduces the new proposed 
RFBLS control structure. Section III describes the new 
RFBLS identifier along with its updated laws and convergent 
proof. Section IV elaborates on the proposed control design 
and presents the real-time control algorithm along with the  
investigation of the asymptotical stability analysis of the 
proposed controller. Section V compares the proposed 
RFBLS-APPID control method through two simulation 
studies using two well-known digital nonlinear discrete-time 
time-delay dynamic systems models. Section VI draws the 
conclusions and presents two future research topics. 

II. NEW RFBLS CONTROL STRUCTURE 

By improving the control structure proposed by [16], we 
propose a new RFBLS control structure depicted in Fig. 1. 
This RFBLS structure consists of an input layer, fuzzy 
subsystem layer, defuzzification layer, enhancement layer, 
and an output layer.  The detailed explaination of  each layer is  
described as follows. 

A. Input Layer 

The input node u on the input layer is composed of M 
numbers of nodes that are connected directly to its designated 
fuzzy-sets nodes. 

B. Fuzzy Subsystem Layer 

Following the control structure in Fig. 1, the input node 
Us1 is designated to Ai

k1 and input node Us2 is designated to 
Ai

k2…and input node UsM is designated to Ai
kM .Thus, we have 

the fuzzy rules described by  

     i i
sk k 1 2 M iz = f u ,u ,...,u , k = 1,2,...,K  

which adopts the Takagi-Sugeno fuzzy system first-order and 
aims to get a better learning performance. The new proposed 
structure is proposed by feedbacking the output of the 
enhancement node system into its second epoch back to its 
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enhancement node, and the fuzzy rules are changed as 
follows. 
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Fig.1. The structure of the proposed new RFBLS. 

where i
kt denotes the coefficient with 0 1i

kt   ranges of 

values, fta  is the fuzzy subsystem weighting vector and 

( 1)siF t  denotes the fuzzy subsystem output after the first 

iteration of the learning process. The ith fuzzy subsystem for 
the kth fuzzy rule fire strength is given by.  


1

( )
Mi i

sk kt stt
u 


  

Then, for each fuzzy rule the weighted fire strength is 
described as follows; 



1

i

i
i sk
sk K i

skk










 

Adopting the Gaussian membership function i
kt in 

correlation to the fuzzy set i
ktA  gives 


2

2

( )
exp

kt

i
i st kt

i
kt

u c




 
  

 

 

where i
ktc  and i

kt are respectively the Gaussian membership 

function center and width. 
C. Defuzzification Layer 

The defuzzification layer is the output of the fuzzy 
subsystem which is directly linked to the output layer in line 

with the enhancement layer output matrix m
eH W . Each fuzzy 

subsystem needs to be a multi-output model, as shown by the 

C component inside the training target 1xCY  . The 
following is the ith fuzzy subsystem output vector for each of 
us training samples. 
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where i
kc  is the part parameter consequent for every fuzzy 

rule in the ith fuzzy subsystems and i i
kc kt   (c=1, 2,…, C) is 

formed by the coefficient i
kt . For the output matrixof  the ith 

fuzzy subsystem, the top layer's aggregated output of n fuzzy 
subsystems becomes 

 1

1 1

n nn i i i i C

i i
F F D  

 
      

D. Enhancement Layer 
This subsection declares a defuzzification output by 

combining the output vectors from all fuzzy rules in the ith 
fuzzy subsystem. In addition, nonlinear activation functions 
are used to feed all fuzzy subsystem intermediate vectors into 
the enhancement node layer. As a result, the vector output of 
the ith fuzzy subsystem in the training samples u without 
aggregation is indicated by 

  1 1 2 2, , ,i i i i i i
si s s s s sKi sKiZ z z z     

with the output matrix of the ith fuzzy subsystem in the form  


1 ,  1, 2, ,Ki

i siZ Z i n     

To maintain the symbol consistency, the intermediate 
output matrix of the n fuzzy subsystems is defined as 

   1 21 ( ..... )
1 2, , , nK K Kn

nZ Z Z Z       

where Zn is fed into the enhancement layer nodes. Considering 
Lj neurons in the  jth enhancement node group, the output 
matrix of the enhancement-layer nodes is arranged as follows;  

   1 21 (L ..... )

1 2, , , mL Lm
mH H H H       

with   1
( ) ( 1) jLn

j j hj hj ej jH t Z W a H t 


      being the 

output in a matrix form of the jth enhancement nodes group. 
Whj is the weighting matrix linking the fuzzy subsystem,  eja  is 

the weighting vector for the enhancement node, βhj is the bias 
term and along with the fuzzy subsystem output, Zn forms the 
output matrix of each enhancement node's group output that 
will be directly assigned to the output layer. 
E. Output Layer 

The top layer or output layer is the summation of the 
enhancement node’s weighted outputs along with all fuzzy 
subsystem outputs.  Let the enhancement layer weight matrix 

denote as 1 2( ) xCML L L
eW R      and the weights of the fuzzy 

subsystems toward top layer should be unity. At last, the final 
output of the FBLS is described as 


1

ˆ nn m i i i m
e ei

Y F H W D H W


      

III. RFBLS IDENTIFIER 

The new RFBLS identifier is a system identifier that learns 
the input-output behavior of a class of general nonlinear 
digital discrete-time time-delay dynamic control system 
models. The RFBLS identifier is used for online learning the 
subsequent NARMA delayed form. 


( 1), ( 2), , ( ),

( )
( ), , ( )

y

u

y k y k y k n
y k f

u k d u k n

   
  

  




 

where f denotes the smooth nonlinear function, the real system 
output y is with arrangement order of ny, the controller output 
u is with arrangement order of nu, and d represents the delay 
time. To develop an online iterative learning algorithm for the 
proposed identifier, the system model (13) can be written by 
following incremental control inputs described as below.  
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
( 1), , ( ( 1)),

( )
( ), , ( )

y

u

y k y k n
y k g

u k d u k n

   
       




 

whether the smooth nonlinear function g is obtained from 

modifying the function f and 11 z   .  

A.  Update Laws for the RFBLS identifier 
In this subsection, in order to acquire the learning 

algorithms parameters, i
ktc , i

kt , i
c , j

lW , 
eja  and 

fja  for the 

RFBLS identifier, the error objective function E(k) needs to 
be declared as follows; 

  
221 1

ˆ( ) ( ) ( ) ( )
2 2

E k e k y k y k    

For easy derivation, let  ( 1)           
Ti i i j

kt kt c l ej fjP k c W a a        

represent the parameter vector of the RFBLS identifier. The 
vector parameter P is updated iteratively using the deepest 
gradient descent method by (16). 


 

ˆ( ) ( )
ˆ( 1) ( ) ( ) ( ) ( )

( ) ( )

ˆ( )
            ( ) ( )

( )

E k y k
k k k y k y k
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y k
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 
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 
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 


 



P P P
P P

P
P

 

with   denotes as the learning rate which must be real and 

positive values for the new RFBLS identifier, and then using  
partial differential equations we have the updating algorithm 
as follows;  

? ? ? ?( ) ( ) ( ) ( ) ( ) ( ) ( )
      

( )

T

i i i j
kt kt c l fj ej

y k y k y k y k y k y k y k

k c W a a 

       
          P

 

Note that all parameter elements inside the RFBLS identifier 
parameter vector P are trained by utilizing (16). 

B.  Convergent Proof of the RFBLS identifier 

Following the Lyapunov stability theory, the 
asymptotically stability and convergent conditions of the 
proposed RFBLS identifier are summarized in the following 
theorem.  

Theorem 1: Let the RFBLS identifier vector parameter P 
be trained persistently by exciting the inputs using (16). If the 
identifier learning rate ƞ aligns with the inequality condition in 
(17), then the new proposed RFBLS identifier is uniformly 
asymptotically convergent.  


2

2

ˆ( )
0 2 / max

( )k

y k

k



 

P

 

Proof:  To show that The RFBLS identifier with the 
learning algorithm (16) and inequality condition (17) is 
asymptotically convergent, we choose the Lyapunov function 
in form  

22 ˆ( ) ( ) ( ) ( )ML k e k y k y k   .  

Theorem 2: The best identification learning rate of the 
RFBLS identifier complies with the condition stated in (18). 


2

*

2

ˆ( )
1/ max

( )k

y k

k





 P
 

Proof: The best identifier learning rate * obtained by 

solving the differential equation of ( ) / 0Md L k d  . 

Remark 1: To verify that the inequality (17) always holds 
when using Theorem 1, the identifier learning rate should be 
evaluated at each sample period. It can be observed that whenr 

the learning process begins, the upper bound of the 
ˆmax ( ) ( )y k k P is big, but as the learning process progresses, 

the bound becomes smaller and eventually becomes zero. In 
real-world applications, the use of a low identifier learning  
 

 
Fig. 2. The proposed RFBLS-APPID controller system. 

rate is suitable and rational for ensuring the RFBLS 
identifier's uniform asymptotical convergence over the 
learning process. 

IV. RFBLS-APPID CONTROL 

The basic idea to online tune the RFBLS-APPID control 
method is to utilize the prior RFBLS identifier to  do real-time 
tuning of the PID gains. Fig. 2 depicts the detailed description 
of the proposed RFBLS-APPID control system.  

A. Adaptive Predictive RFBLS-PID Control 

The proposed RFBLS identifier receives incremental 
control signals and delayed feedback outputs in the input layer 
and then uses the error between actual output y and estimated 
output ŷ or enn to continuously update the RFBLS identifier's 
parameters, and then employs the Jacobian transformation to 
update the gain parameters of the predictive PID controller's. 
The velocity form of the control law is stated as follows; 

 2( ) ( ) ( ) ( )p i du k k e k k e k k e k       

where three-term PID parameters are denoted as kp, ki, and kd. 
2( ) ( ) ( 1);  ( ) ( ) 2 ( 1) ( 2)e k e k e k e k e k e k e k           and 

( ) ( ) ( 1)u k u k u k    indicates the incremental control. The 

tracking error is of the form ( ) ( ) ( )e k r k y k   and r(k) 

represents the designated setpoint or command.  

B. Learning Algorithms for RFBLS-APPID Control Gains 

This subsection describes the learning algorithm of the 
RFBLS-APPID controller by defining the predictive cost 
function relying on j-step-ahead predictive performance.  

  
221 1

?( ) ( ) ( ) ( )
2 2

p pN N

d

j d j d

J k j e k j y k j y k j
 

         

where Np is the predicted output horizon. In general, ˆ( )y k j  

is the j-step-ahead prediction of system estimate output ŷ(k).  
r(k+j) means the j-step-ahead of the k-time sampling number 
of the given future reference signal. For easier derivations, set 

Pc to be ( ) [   ]T
c p i dk k k kP . Then, for every updating time 

( ) ( 1) ( ) [ ( ) ( ) ( )]T
c c c p i dk k k k k k k k k       P P P  is obtained from 
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
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p pN N

c c c c
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J k e k j y k j
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k k k
  

 

    
      

  
 P

P P P
 

Moreover, the partial differential form of the predictive cost 
function over the controller parameter vector is written as 

( ) ( ) ( ) ( )
  

( ) ( ) ( ) ( )

T

c p i d

J k J k J k J k

k k k k k k k

    
       P

 and c  is the control learning rate 

which must be real and positive.  Thus, the learning algorithms 
in the incremental control form 

( ) [ ( ) ( ) ( )]T
c p i dk k k k k k k    P  are found by   
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j d
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
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  
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ˆ( )= ( ) ( ) 2 ( 1) ( 2)
( )

pN

d c
j d

y k j
k k e k j e k e k e k

u k




 
     


  

To minimize the computation complexity for the 
predictive RFBLS-PID controller, consider the condition of 

( ) ( 1) ( )pu k N u k u k        . Based on that speculation, 

the RFBLS identifier can determine system estimate output 
ŷ(k+j) using the  j-step-ahead predictor, and later the Jacobian 
transformation term in form ˆ( ) ( )y k j u k    can be obtained.  

Before closing this subsection, it is worthwhile to mention 
why the RFBLS identifier can improve the adaptability of the 
predictive PID controller. This is because once the system 
model has been changed and/or its parameters have been 
altered, the RFBLS identifier parameters will update 
iteratively to adjust the three-term PID parameters 
simultaneously to obtain satisfactory tracking performance. 

C. Stability Analysis 

In this subsection, we focus on the investigation of the 
sufficient condition for the proposed RFBLS-APPID system 
to be uniformly asymptotically stable. Before analyzing the 
controller stability, it’s mandatory to assign the total of future 
tracking errors obtained by employing the Lyapunov function.  

 2 21 1
?( ) ( ( ) ( )) ( )

2 2

p pN N

C
j d j d

L k r k j y k j e k j
 

        

This term ˆ( )e k j  is defined in (25). The time difference 

or incremental form of the Lyapunov function ( )CL k  is  

  
1
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2
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C
j d

L k e k j e k j e k j


          

Theorem 3: The learning rate for the RFBLS-APPID with 
the convergent condition of the proposed RFBLS-APPID 
controller satisfies the following inequality in (27).  
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 

  
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Proof: Theorem 3 can be proven by assigning the 
Lyapunov function, ( )CL k , and let its time difference become 

negative definite, namely that ( ) 0CL k  . 

Theorem 4: Moreover, the most effective control learning 
rate is adopted in (28).  
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Remark 2: The upper bound of the  control learning rate, 

c ,will reach infinity when Δ2e(k) )=e(k)=Δe(k=0. During the 

start-up process, the control learning rate must be kept small. 
Furthermore, the Jacobian transformation of ˆ( ) ( )y k j u k    

gives a significant impact on the learning rate selection. 

D. Real-Time Control Algorithm 

This subsection aims to propose a real-time control and 
identification algorithm employing the RFBLS identifier as a 
system parameter identifier and an adaptive predictive PID 
controller. The RFBLS identifier is designed to learn the 
incremental dynamic model of the proposed structure model 
in (14). By employing the Jacobian computation and the 
online gain updating procedures stated in (22) - (24), the 
proposed RFBLS-APPID controller is well-tuned. The 
detailed steps are listed as below.  

Step 1:  Obtain and save the data of u(k) and y(k). 
Step 2:  Obtain d, nu, and ny for the RFBLS identifier based on 

the experimental input-output data. 
Step 3: Assign η, K, and c  as the positive values and real 

numbers, initialize kp, ki, and kd from the Ziegler-Nichol 
PID tuning method, and initialize the size of RFBLS 

parameters values of i
c , i

ktc , i
kt , j

lW , 
eja  and 

fja , as 

small random numbers.  
Step 4: Evaluate ˆ( )y k  in the RFBLS identifier from (12). 

Step 5:  Compute the PID controller control signal output 
( ) ( 1) ( )u k u k u k     via (19). 

Step 6: Use (16) to update the RFBLS identifier, use (17) to 
confirm the learning rate ƞ, and employ the most 
effective identification learning rate in (18). 

Step 7: Use (22)-(24) to update the PID control gains, use (27) 
to confirm the control learning rate c , and later utilize 

the most effective control learning rate in (28). 
Step 8: Reiterate Steps 4 - 7. 

The entire closed-loop system is proven to be uniformly 
asymptotically stable by incorporating adaptive learning of 
the RFBLS-APPID controller and RFBLS identifier. To 
produce adequate conditions, the Lyapunov function is 
selected  from the summation of the two previously mentioned 
Lyapunov functions, Lm(k) and Lc(k), i.e., ( ) ( ) ( )m CL k L k L k  . 

By pursuing the proof procedures similar to the  previous 
Sections II and III, it is simple to clarify that 

( ) ( ) ( )m CL k L k L k      should be in form of 

negative-definite only in the condition that the RFBLS 
identifier convergent condition (17) and the controller 
asymptotically convergent (27) can stand simultaneously. 

Theorem 5: Suppose that the parameter values and 
assumptions of the adaptive predictive PID controller and the 
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RFBLS identifier are held in Theorems 1 and 3, respectively. 
If the RFBLS identifier convergent condition (17) and the 
controller asymptotically convergent (27) are both fulfilled, 
the entire closed-loop system equipped with the learning of 
RFBLS-APPID controller and RFBLS identifier is shown 
uniformly asymptotically stable. 

Remark 3: By using Theorem 5, it is important to clarify 
the rules of choosing the parameters in computer simulations 
and the results of experiments in the subsequent five 
guidelines. First, the RFBLS's system input order nu and 
learning output order ny are set to be more than or equal to the 
system input and output orders. Second, the predictive output 
horizon Np is set to be more than or equal to the time delay d. If 
the uncertainties of the system are high, the system time delay 
must be smaller than Np. Third, to reduce the computational 
load, the number of the fuzzy rules K assigned to as small as 
possible. Fourth, during numerical experiments or even in 
simulations, the learning rate of the RFBLS is reduced to meet 
the inequality (17) requirement. Fifth, the control learning rate 

c  must satisfy the inequality (27). In real applications, the 

control learning rate is kept as low as possible. 

V. COMPARATIVE SIMULATIONS AND DISCUSSION 

In this section, the proposed new RFBLS-APPID 
controller’s performance will be compared to the four 
well-known adaptive predictive PID controllers, RBFNN-PID 
[9], ORFWNN-APPID [8], FWNN-APPID [6], 
FBLS-APPID [14], [16], and as well the predecessor of the 
RFBLS-APPID in [17,19], by exemplifying the two 
well-known nonlinear digital dynamic system models in 
Example 1 and 2 in [6].  

Before doing the numerical simulations, the RFBLS 
parameters follows the subsequent assignment : the number M 
of the inputs is 5, the fuzzy set number of each input is 4, the 
number of the fuzzy rules is K=4, and the number of the 
enhancement node group is  m=4 with the sampling or epoch 
number being k=1000.  

 
Example 1: Employing the nonlinear digital time-delay 

dynamic system model from [20], [21], the simulation system 
model is governed by  

3 2( ) ( 1) 0.2 ( 1) ( ) 0.08 ( ) ( ) ( )y k y k y k u k d u k d k v k          

where ( )k  is Gaussian white noise, v(k) denotes the load 

disturbance, and the delay time d is assigned by 7. The desired 
setpoints r(k) and given load disturbances v(k) are shown 
below. 

0, 0
0.5, 500 750 0, 0 600

( ) 0.1,  250    , ( )
0.3, 750 1000 0.1, 600 1000

0.4, 250 500

k d
k k

r k d k v k
k k

k

 
   

    
     

 

The following parameter settings for comparison 
simulations are 2,  2,  0.6,  7y u pn n d N      and 0.1c  . 

The initial three-term PID gain parameters are assigned 

followed by 0.6,  0.3 and 0.1.p i dk k k     

Example 2: Employing the nonlinear digital time-delay 
dynamic system model from [20] and [21], the simulation 

system model is governed by 

2

2

2

( ) 0.9722 ( 1) 0.3578 ( ) 0.1295 ( 1)

0.3103 ( 1) ( ) 0.04228 ( 2)

0.1663 ( 2) ( 1) 0.03259 ( 1) ( 2)

0.3513 ( 1) ( 1) 0.3084 ( 1) ( 2) ( 1)

0.1087 ( 2) ( ) ( 1) (

y k y k u k d u k d

y k u k d y k

y k u k d y k y k

y k u k d y k y k u k d

y k u k d u k d 

      

    

      

        

      ) ( ).k v k

 

TABLE I. THE CONTROLLER’S PERFORMANCE INDEXES COMPARISON FOR 

SIMULATION EXAMPLE 1 

CONTROLLER 

NAME 
MAX 

ERROR 
RMSE ISE IAE ITAE 

RBFNN- 
PID [9] 

0.3026 0.0443 1.962 14.598 5224.517 

ORFWNN- 
APPID [8] 

0.3018 0.0442 1.955 14.590 5181.255 

FWNN 
-APPID [6] 

0.3024 0.0443 1.960 14.592 5218.029 

FBLS- 
APPID [14] 

0.3008 0.0442 1.953 14.548 5176.013 

RFBLS- 
APPID [19] 

0.3005 0.0442 1.950 14.540 5159.464 

PROPOSED 

RFBLS-APPID 
0.3008 0.0442 1.9458 14.5866 5212.033 

 

TABLE II. THE CONTROLLER’S PERFORMANCE INDEXES COMPARISON FOR 

SIMULATION EXAMPLE 2 

CONTROLLER 

NAME 
MAX 

ERROR 
RMSE ISE IAE ITAE 

RBFNN- 
PID [9] 

1.2793 0.1344 18.0695 38.4014 18242 

ORFWNN- 
APPID [8] 

1.0029 0.1185 14.0375 34.6003 14676 

FWNN 
-APPID [6] 

1.0030 0.1171 14.0375 33.4541 13870 

FBLS- 
APPID [14] 

1.0024 0.1180 13.9252 33.2663 14878 

RFBLS- 
APPID [19] 

1.0088 0.1157 13.7115 31.7528 13600 

PROPOSED 

RFBLS-APPID 
1.0010 0.1152 13.2779 32.7008 13468 

 
Figure 3. Setpoint tracking results and control signals of Example 1. 
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Fig.  4. Setpoint tracking results and control signals of Example 2. 

where d =3, 2, 2, 0.5, 3y u pn n d N      and 0.5c  . 

The designated setpoint r(k) and load disturbance v(k) are 
detailed as follows.  

0, 0 250
1 0 500

( ) 0.05,     250 750 ,   ( )  
0 500 1000

0.1, 750 1000

k
k

v k k r k
k

k

 
 

    
   

 

The initial three-term PID parameters are assigned 
followed by 0.8,  0.1 and 0.2.p i dk k k    After 

conducting computer simulations for both examples, the 
comparative results in Table 1 and Table 2 prove the 
superiority of the new proposed RFBLS-APPID controller 
compared with existing adaptive predictive PID controller 
methods in terms of the maximum error, root means square 
error (RMSE), integral absolute error (IAE), integral of 
square error (ISE) and integral of time-weighted absolute 
error (ITAE). Note that the smaller value is better. Moreover, 
Fig. 3 and Fig. 4 sequentially show the setpoint tracking 
control results and controller signals for simulation results 
using Example 1 and Example 2. The results show that the 
proposed method is well managed to adapt and tune the PID 
gain parameters to follow the set point even under Gaussian 
white noise and load disturbances. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper has presented a new RFBLS-APPID control 
method for a class of single-input-single-output nonlinear 
digital time-delay dynamic systems. The proposed 
RFBLS-APPID controller has been composed of an RFBLS 
identifier for system identification, and an adaptive predictive 
RFBLS-PID control for accurate setpoint tracking and 
disturbance rejection. Through comparative simulations, the 
proposed RFBLS-APPID method proves its superiority in 
comparison with the existing adaptive predictive PID 
controllers.  In future work, the proposed RFBLS-APPID 
method would be applied to control the temperature or 
pressure control of a semiconductor manufacturing apparatus 
[19] or MIMO systems [22]. 
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