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 Abstract- This paper presents a backstepping sliding-mode 
motion control method for simultaneous tracking and 
stabilization of a wheeled inverted pendulum.  Based on the 
nonlinear modeling of the vehicle incorporating static friction 
between the wheels and the motion surface, a decoupling 
approach is utilized to decompose the overall system into two 
subsystems: an inverted pendulum subsystem and a yaw motion 
subsystem, and the backstepping technique together with the 
sliding mode control method is then used to synthesize a unified 
controller in both kinematic and dynamic level.  In the kinematic 
level, a virtual control is designed to accomplish simultaneous 
tracking and stabilization, while in the dynamic level, two 
sliding-mode controllers are designed such that the robot can be 
steered to follow desired trajectories or go from one pose to 
another pose. Simulations results and experimental results are 
conducted to show that the proposed unified control method is 
capable of satisfactorily achieving both tracking and regulation. 

Index Terms—backstepping, stabilization, sliding-mode control, 
trajectory tracking, wheeled inverted pendulum. 

I. INTRODUCTION 

ECENTLY, wheeled inverted pendulums have been 
widely investigated in both academia and industry; and 

they have been successfully applied to construct several 
autonomous service robots, such as soccer robots, reception 
robots. The wheeled inverted pendulums are very useful in 
constructing many kinds of service robots working with people. 
Hosoda et al. [1] detailed the basic design of human-symbiotic 
robot EMIEW whose linear motion speed was up to 1.67 m/sec; 
their EMIEW was designed using a two-processor system 
structure. On the other hand, many researchers [1]-[15] have 
shown that the wheeled inverted pendulums have gained many 
applications, including self-balancing two wheeled 
transportation and soccer games. With the advent of modern 
control technology, such platforms with sophisticated control 
functions and safety features can be cost down so that they have 
highly potential to satisfy stringent requirements of various 
autonomous service robots with high linear speed.  

Design, modeling and control of wheeled inverted 
pendulums have been widely studied by several researchers. 
Lin [2] constructed a nonlinear mathematical modeling for a 

 
Ching-Chih Tsai, Chien-Cheng Yu, Shih-Min Hsieh and Feng-Chun Tai are 

with the Department of Electrical Engineering, National Chung Hsing 
University, Taichung, 40227, Taiwan. 

Chien-Cheng Yu is also with the Department of Electronic Engineering, 
Hsiuping University of Science and Technology, Taichung, Taiwan. 

(Corresponding author Ching-Chih Tsai, email: cctsai@nchu.edu.tw) 
(email:ccyu@hust.edu.tw,shiesh2000@mail.post.gov.tw,fctai@nchu.edu.tw) 

The authors deeply acknowledge final support in part from National Science 
Council, Taiwan, ROC, under contract 96-2221-E-005-106-MY2, and in part 
from the ministry of education, Taiwan, ROC, under ATU plan. 

kind of wheeled inverted pendulum considered as two-wheeled 
self-balancing mobile platform. Sasaki et al. [3] constructed a 
lightweight self-balancing personal riding-type wheeled mobile 
platform (PMP); the PMP steering control was achieved by 
changing the position of the rider’s center of gravity. Grasser et 
al. [4] presented an unmanned mobile inverted pendulum, and 
Pathak et al. [5] studied the dynamic equations of the wheeled 
inverted pendulum by partial feedback linearization. Ha et al. [7] 
presented the trajectory tracking system for navigation of the 
inverse pendulum type self-contained mobile robot; however, 
this method was limited to simple straight line motion and 
simple turning. For both trajectory tracking and stabilization 
problems, much effort has been spent on nonholonomic mobile 
robots in [16, 17], but little attention has been paid to address 
the same problems for wheeled inverted pendulums. 
Furthermore, no attempt has been paid to design a simultaneous 
tracking and stabilization controller for wheeled inverted 
pendulums with frictions and uncertainties caused by different 
payloads and terrain [1, 2, 5, 7].  

From controller design of view, the control of the wheeled 
inverted pendulums can be thought of as an under-actuated 
control problem, which has been investigated by several 
researchers [18-20]. In particular, Lo and Kuo [18] provided a 
decoupled sliding-mode control to stabilize a nonlinear system 
with four state variables, Lin and Mon [19] offered a 
hierarchical decoupling sliding-mode control to regulate a more 
general class of under-actuated control systems, and Wang et al. 
[20] presented two systematic sliding-mode design methods for 
a class of under-actuated mechanical systems. However, the 
approaches [18-20] have not been applied to the wheeled 
inverted pendulums yet! 

Fuzzy wavelet networks (FWN) have been proved to 
excellently approximate time-varying nonlinear functions or 
nonlinear dynamics [21]. This property can be easily applied to 
controller design. For example, Lin [22] brilliantly used FWN 
to on-line learn a nonsingular terminal sliding mode controllers 
for robot manipulators, thus accomplishing out excellent 
trajectory tracking performance.    

Hence, the goals of this paper are to apply backstepping 
technique and sliding mode control approach to develop a 
simultaneous tracking and stabilization (STS) controller, and to 
verify it by using simulations and experimentations on an 
experimental wheeled inverted pendulum. The proposed 
control method will be shown to be useful and powerful in 
achieving satisfactory trajectory tracking and stabilization in 
presence of parameter variations, uncertainties and frictions.  

Ching-Chih Tsai, Fellow, IEEE, Chien-Cheng Yu, Shih-Min Hsieh and Feng-Chun Tai 
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Fig. 1. Schematic diagram of the wheeled inverted pendulum [5]. 

The unified STS controller not only is of theoretical interest, 
but also has some practical advantages over the use of separate 
stabilization and tracking controllers, such as only one 
controller and transient improvement because of no switching. 
This paper is written in two principal contributions; one is that 
the proposed STS controller is proven globally asymptotically 
stable via the Lyapunov stability theory, and the other is that the 
merit and applicability of the proposed controller is exemplified 
by means of an experimental wheeled inverted pendulum.  

The rest of the paper is outlined as follows. Section II revisits 
the mathematical modeling of the wheeled inverted pendulum 
and briefly states the problem formulation. Section III presents 
the STS controller for the wheeled inverted pendulum. In 
Section IV, simulations are several experiments are conducted 
to show the effectiveness and performance of the proposed 
control method. Section V concludes the paper. 

II. DYNAMIC MODEL AND PROBLEM STATEMENT 

A. Mathematical Modeling  
To steer the wheeled inverted pendulum, mathematical 

model is a necessary such that the robot with the designed 
controllers can successfully achieve desired control objectives. 
Fig. 1 depicts the free body diagram of the mobile inverted 
pendulum. Since the procedure to establish a mathematical 
model of the mobile inverted pendulum has been derived in 
some detail in [5], the section will omit the similar modeling 
process, but put emphasis on the difference.  The presented 
model not only has the same equations of motion of the vehicle, 
but also includes viscous friction, which depends on the 
moving speed of the platform, and static friction opposite to the 
moving direction. For the sake of simplicity, Table 1 lists all the 
used symbols and their definitions. By using the Lagrange’s 
mechanics [5], it is easy to construct the nonlinear system 
model of the vehicle with both viscous and static frictions in the 
following state-space form. 

λ

..
TM(q)q+ V(q,q) = E(q)τ + A (q)               (1) 

where 6 1 [ ]r lx y θ α φ φ× =q   represents the 
configuration variables of the system; the pair (x, y) denoting 
the position of the vehicle, θ  the orientation, α  the tilt angle, 
and both rφ  and lφ  the encoder information on the right and 
left wheels, respectively. Moreover, λ  is the constraint-force 

vector, and [ ]T
r lτ τ τ=  is the torque vector. In (1), 

Table 1. List of the parameters and variables 
Symbol  [unit] Parameter and variable name 

Ixx, Iyy, Izz Moment of inertia of the pendulum body  
Vr [m/sec) Reference linear velocity 
ωr [m/sec] Reference angular velocity 

R [m] Radius of the wheels 
cx, cz The center of mass of the pendulum body Gb 
τ Input torque vector for right and left motors 
τr Input torque applied to the right motor 
Τl Input torque applied to the left motor 

Iwa, Iwd [Kg m2] Moment of inertia of a wheel about its axis and diameter  
ϕr, ϕl [rad] Angles of  the right and left wheels 
θ [rad] Yaw angle  

Mb [Kg] Mass of the pendulum body 
Mw [Kg] Mass of the each wheel 
α [rad] Tilt angle of the wheeled inverted pendulum 
b [m] Half of the distance between both driving wheels 

(x, y)[m/sec] Position of the wheeled inverted pendulum  
v, ω Linear and angular velocities of the wheeled inverted pendulum 

3 6

0 0 0 1 1 0
0 0 0 1 0 1

sin( ) cos( ) 0 0 0 0
cos( ) sin( ) 0 0
cos( ) sin( ) 0 0

T

b R
b R

θ θ
θ θ
θ θ

×

− 
=  − 

− 
 = − 
 − − 

 E(q)

A(q)

        (2) 

Note that the three nonholonomic constraint of the vehicle 
due to no-slip is expressed by =3?6A(q) q 0 ,  and  the 
null-space of ( )A q is given by the matrix S(q) as 

      ( ) ( )6 3

0 0 0 1 0 0

1 1cos sin 0 0

0 0 1 0

T

R R
b b

R R

θ θ×

 
 
 =
 
 −  

S(q)     (3) 

With the matrix ( )S q  , one obtains ( ) ( ) ( )q t S q v t= . Further, 
the Lagrange multipliers λ in (1) can be eliminated by 
pre-multiplying with TS , thus obtaining  

( ) ( ( , )) ( )T T TS MS v S MSv V q q S E q τ+ + =

            (4) 

To have a more useful system model, one discards the last 
two variables of the configuration variables and re-define the 
following two vectors, qr and Vr, and the augmented state 
vector x. 

 ,   , r
r r

r

x
qy

q V v v
V

αωα

θ
ωθα

 
           = =               

 



 



x            (5)  

Taking the time derivatives of the augmented state vector x 
gives  

( )τ=x f(x) + g x                               (6) 

where ,   
   
   

  
1 1

22

f (x) g (x)
f(x) = g(x) =

g (x)f (x)
 and  
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With the use of the transformation of both yaw and pitch 

torques, τy and τp, into the wheel torques τl and τr, 
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and defining 
T

p yτ τ τ =    , (6) becomes 
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
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 (9) 

From (8), it follows that the dynamic model of the pendulum 
is governed by two parts of equations: kinematic and dynamic.    

[ ]cos sin
T T

rq x y v v αθ α θ θ ω ω = = 


      (10) 

and 
21 21

22 22

2323

( ) ( ) 0
( ) ( ) 0

0 ( )( )

p
r

y

f x g x
V v f x g x

g xf x

αω
τ

τ
ω

     
      = = +                  









           (11) 

The kinematic part reveals the relations between the position, 
orientation and inclination of the pendulum and their velocities, 
whereas the dynamic part involves with the relations between 
the three accelerations and the two torques, τp and τy. 
Furthermore, from (10) and (11), it indicates that two 
controllers for τp and τy can be synthesized independently from 
each other and then combined together to accomplish the 
control goal. 

B. Problem Formulation  
The design goal of the STS control method for the pendulum 

system model described by (10) and (11) is to keep the 
trajectories of the pendulum asymptotically follow 
time-varying reference trajectories or desired positions and 
orientations of a fixed reference configuration in one unified 
control framework, and to main the tilt angle of the pendulum at 
origin. To formulate the problem, let  ( ),  ( ),  ( )x t y t tθ   be the 
differences between the real position xc(t), yc(t) and the angle 
θ(t) of the nonholonomic mobile robot with the desired 
reference trajectory, qrc(t)=[xrc(t), yrc(t), θr(t)]T∈R3, in the 
Cartesian coordination, i.e.,  

( )  ,   ( )  ,   ( )c rc c rc c rcx t x x y t y y tθ θ θ= − = − = −

       (12) 
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Moreover, the desired reference trajectory qrc(t) satisfies the 
following kinematics equation. 

( ) ( ) cos( ) ,   ( ) ( )sin( ) ,   ( )rc r r rc r r r rx t v t y t v t tθ θ θ ω= = =    (13) 

where vr(t) and ωr(t) represents the desired time varying linear 
and angular velocities.  

The aim of the STS control method is to design the two 
torques, τp and τy, such that ( ) 0,  ( ) 0,  ( ) 0x t y t tθ→ → →

   as 
t → ∞  and the pitch angle α  is maintained at zero. Worthy of 
mention is that, in (13), if vr(t) and ωr(t) are zero, then the 
desired reference trajectory qrc(t) becomes a fixed reference 
configuration, and the simultaneous and stabilization law turns 
out a regulation law. 

III. CONTROLLER SYNTHESIS 
This section is devoted to applying the backstepping 

technique to develop a STS controller for wheeled inverted 
pendulum. The design procedure is divided into two levels: 
kinematic and dynamic. In the kinematic level, virtual controls 
for v(t), ωr(t) and ωα(t) are designed based on the subsystem 
(10), in order  to stabilize the tilt angle and achieve that 

( ) 0, ( ) 0, ( ) 0x t y t tθ→ → →

   as t → ∞ , while; in the dynamic 
level,  the control laws for the two torques, τp and τy, are  
established based on the subsystem (11) and three backstepping 
errors, which are the difference between the virtual controls and 
actual trajectories. The following two subsections elaborate the 
controller synthesis in both levels. 

A. Kinematic Level : Virtual Motion Command Generator 
For the subsystem (10) describing kinematic behavior of the 

vehicle pose and its inclination, the three variables v(t), ωr(t) 
and ωα(t) are regarded as virtual controls. To stabilize the 
inclination of the vehicle, it is easy to propose the virtual 
control 

1( ) ( )t kα αω φ α α= −                                  (14) 

so as to regulate the tilt angle to zero exponentially. On the 
other hand, to achieve ( ) 0, ( ) 0, ( ) 0x t y t tθ→ → →

   as 
t → ∞ in the kinematic level, one considers the first three 
equations of the subsystem (10) as a well-known kinematic 
model of a mobile robot with differential driving, and apply the 
STS control approach developed by Dixon et al. [23] to the STS 
goal. The following elucidates some details of our STS 
controller, which will be later shown to be superior to the one 
by Dixon et al. [23], because the STS controller adopts the 
following new globally invertible transformation.  

 1

2

cos 2 sin sin 2 cos 0
cos sin 0

0 0 1

w k k k k x
z y
z

θ θ θ θ θ θ
θ θ

θ

   − + − − 
     =     
        

 







(15) 

where k>0, w(t)∈R1 and z(t)=[z1(t) z2(t)]T∈R2   are the auxiliary 
tracking error vectors, and ( ) ( ) ( ) 1,  ,  x t y t t Rθ ∈

   are given in 
(12). From (6), we have the inverse transformation  

( )

( )
2

2 1

2

1 1sin sin 2 cos 12 2
1 1cos cos sin 02 2

0 0 1

z kk kx w
y z zk k

z

θ θ θ

θ θ θ

θ

 +    
    − −= +    
          







 (16) 

Note that, from (16), if w(t), z1(t), z2(t)∈L∞, then 
( ) ( ) ( ),  ,  x t y t t Lθ ∞∈

  . Moreover, it is easy to show that 

( ) ( ) ( )( )1 2lim , , 0
t

w t z t z t
→∞

= , then 

( ) ( ) ( )( )1 2lim , , 0
t

w t z t z t
→∞

=                     (17) 

Furthermore, differentiating (15) and using (10),(12-13) obtain  

( )

( )

1

22

1 2

sin cos
0 0 1

1 0cos

        2 sin

T

r

r

r r

vk k x y
k z

w
zkv z

k

k z v z

θ θ
ω

ω

ω

 − +   
     −      =          −     

+ −

 



    (18) 

 ( )1 2

2

cos1 sin cos
0 1

r

r

z v zvx y
z

z
θ θ

ω ω
− −     

= = −     
     


 





  (19) 

Combining (18) and (19) in a vector-matrix form, the 
dynamics of the tracking error becomes 

T Tw k J z kf
z

µ
µ

= +
=





                                  (20) 

where JT∈R2×2 is the skew-symmetry constant matrix defined by 

0 1
1 0

TJ
− 

=  
 

                                          (21) 

and f∈R1 is an auxiliary signal given by  

( )1 22 sinr rf z v zω= −              (22) 

Further, μ(t)=[μ1(t) μ2(t)]T∈R2 is called the auxiliary control 
input having the following form  

21 cos
      

r

r

v zv
T

ω ω
−   

= −   
   

μ                        (23) 

where T(t)∈R2×2 is expressed by  

( )1      sin cos
0                   1

x yθ θ − 
=  

 
T

 

                (24) 

To achieve STS control goal, one defines an auxiliary error 
signal 2)(~ Rtz ∈ , where )(~ tz  is the difference between the 
auxiliary signal 2)( Rtzd ∈  and the auxiliary tracking error 
vector )(tz , i.e.  

( ) dz t z z= −                                              (25) 
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To stabilize the open loop error system of (20), one further 
defines another auxiliary control signal u(t) in (23) by 

2a k zµ µ= −                                             (26) 

where the control term μa(t)∈R2 is given by 

1
12a d d

d

k w f Jz zµ
δ

 +
= + Ω 

 
                        (27) 

Hence, the auxiliary signal zd(t) in (25) can be given by  

1
1 d2  zd

d d
dd

k w fz kw Jz
δ
δδ

 +
= + Ω + 

 



            (28) 

where 2(0) (0)T
d d dz z δ= , and the auxiliary control item 

Ω1(t)∈R1 and δd(t)∈R1 are expressed by   

1
1 2 2 d

d d

k w fk kw
δ
δ δ

 +
Ω = + +  

 



                     (29) 

t

d e 1
0

ααδ −=                                                  (30) 

where f(z.vr.t) is defined in (22), and 1
1 2 0 1,   ,   ,  ,  k k k Rα α ∈  

are positive constant control gains. 

Remark 1: Based on (28) the definition of δd(t), equations 
(27-30) may have singularities, namely, as δd(t) decays 
exponentially to zero, the terms in (27-30), such as 

( ) 2
1 3

T
d dk w k z z f Jz δ −+ + , ( ) 2

1 3
T

d dw k w k z z f Jz δ −+ + , 

( )2 2
1 3

T
d dw k w k z z f Jz δ −+ +  will be unbounded as t approaches 

∞. In the next section we will show how the singularity can be 
circumvented if appropriate control gains are selected. 

Remark 2: Differentiating zt
D(t)zd(t) with respect to time yields 

( ) 1 3
122

T
t T d
D d d d d

dd

k w k z z fd z z z kw Jz z
dt

δ
δδ

  + +
= + Ω +  

   





 (31) 

which, with (28), leads to  

( ) 2t Td
D d d d

d

d z z z z
dt

δ
δ

=


                             (32) 

Using (28), we have 

( ) ( ) ( ) 2 2T
d d d dz t z t z t δ= =                        (33) 

which is the unique solution of (32), where ||•|| is standard 
Euclidean norm. 

To develop the closed-loop error control system of (20), one 
substitutes (27) into (20) to obtain  

( )2
T T T T

a aw k k z J z kf k J z kfµ µ= − + = +             (34) 

and then substitutes (21) into (34) to have  
T T T
a a dw k Jz k J z kfµ µ= + +                                     (35) 

Moreover, by substituting (27) into (35) and using (33), the 
closed-loop error system for w(t) is obtained from  

1
T
aw k Jz kk wµ= −                               (36) 

Next, by differentiating ( )z t  with respect to time, and 

substituting ua(t) in (27) and z  in (20) into ( )z t  and utilizing 
(27-29), one obtains dynamics of the closed-loop error system 
for ( )z t  governed by  

 2az kwJ k zµ= −

                                (37) 

The globally exponentially stability of the aforementioned 
error system can be easily proven by selecting a radially, 
unbounded and quadratic Lyapunov function V(t)∈R1 by 

21 1( )
2 2

TV t w z z= +                                 (38) 

This main result is summarized as below.  

Theorem 1: Let k,k1,k2,α1 be real positive constants satisfying 
min(kk1, k2)> α1. Then the control laws (26-30) make the 
closed-loop error system (20) globally exponentially stable, i.e., 

( ) ( ) ( ) 3
2,  ,  tx t y t t e αθ α −≤

  , where α2∈R1 and α3∈R1 are 

positive constants. 

Remark 3: The virtual controls for v and  ω  are obtained 
from (23) and expressed by    

22

3

cos
      

r

r

v zv
T T

φ
µ

φω ω
   

= +    
     

                (39) 

B. Dynamic Level: Sliding-Mode Torque Controller 
In this subsection, the dynamic part (11) of the vehicle will 

be employed to design two control laws for the two torques, τp 
and τy, using the backstepping sliding-mode control method. 
Such a controller is synthesized via two control modules. One is 
called sliding-mode yaw rate torque control module that 
involves with how the torque τy is generated such that  the 
actual yaw rate tracks the virtual command  ϕ3 in (14) ; the other 
is named by sliding-mode posture and speed torque control 
module that tracks both virtual commands ϕ1 and ϕ2 such that 
the wheeled inverted pendulum eventually follows a desired 
speed velocity command vr and maintains the pendulum  
without falling in finite time. In the sequel, the design 
procedures of both control modules are elaborated as well. 

1) Sliding-Mode Yaw Rate Torque Control Module 
Since the virtual control for  ω  has been developed in (39) 

and the dynamic part is decoupled for the torque τy, the 
backstepping error for ω  is then given by   

3ωη ω φ= −                                   (40) 

and the sliding-mode surface for ω  is chosen by Sω ωη= . 
Differentiating for Sω  gives  
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3 23 3( ) y
R bS f x
Gω

α

ω φ τ φ⋅
= − = + −  

                   (41) 

which leads to the subsequent sliding-mode control law for ω  

23 3 1 2[ ( ) sgn( ) ]y s s
G

f x K S K S
R b

α
ω ω ω ωτ φ= − + − −

⋅
      (42) 

where 1sK ω  and 2sK ω  are two real and positive constants. With 
the control law (42), (41) becomes   

1 2sgn( )s sS K S K Sω ω ω ω ω= − −                      (43) 

From (43), the fact that Sω approaches zero in finite time is 
easily shown by choosing the Lyapunov function V1=0.5Sω2. It 
is worthwhile to note that Sω must tend to zero as quickly as 
possible such that ω approaches the virtual control ϕ3 in finite 
time. 

2) Sliding-Mode Posture and Speed Torque Control Module 
Next, move to derive the second sliding-mode posture and 

speed control law for the torque τp. With the aforementioned 
virtual controls of ωα and v in (14) and (39), both backstepping 
errors are respectively expressed by  

1 ( )Kα α α αη ω φ ω α= − = − −  ,   2v vη φ= −               (44) 

and their sliding surfaces are respectively defined by Sα αη=  
and v vS η= . Taking the time derivatives of both sliding 
surfaces and using the dynamic part in (11) yield 

21 21

2 22 22 2

( ) ( )

( ) ( )
p

v v p

S K f g K

S v f g
α α α α αη ω α τ α

η φ τ φ

= = + = + +

= = − = + −

x x

x x



   

  

 

         (45) 

In (45), there is only one torque that has to stabilize both 
dynamics of  Sα  and vS ; this is so-called underactuated control 
problem. Among several approaches which have been useful 
for this kind of underactuated control problem, a hierarchical 
decoupling sliding-mode control method in [19] is used to 
accomplish the control goal, and proposed as  follows;  

                              1 2vS r S r Sα= +                                   (46) 

where 1r  and 2r  are two constants. Differentiating S obtains  

( ) ( )1 2 1 22 22 2 2v pS r S r S r f g r Sα ατ φ = + = + − + x x           (47) 

Let the torque τp be  

( ) ( )
( )

1 22 1 2 2 1 2

1 22

sgns s
p

r f r r S K S K S
r g

αφ
τ

− + − − −
=

x

x

 

       (48) 

where 1sK  and 2sK  are two real and positive constants. 
Substituting (48) into (47) yields  

 1 2sgn( )s sS K S K S= − −                           (49) 

Similar to the previous case, it is easy to show that S  
approaches zero in finite time by selecting the Lyapunov  

 
Fig. 2. Fuzzy wavelet network. 

function V2=0.5S2. Worthy of mention is that 22 ( )g x  must be 
nonzero for every x. Once the sliding surface  S  approaches 
zero, it is easy to show that , 0vS Sα → in finite time from the 
main result in [20].  

Theorem 2: Let 1r  and 2r  be two constants and 22 ( )g x  be 
always nonzero for every x.  Then both sliding-mode control 
laws (42) and (48) make the three backstepping errors, ωη , vη , 
and αη , to approach zero in finite time. 

IV. INTELLIGENT MOTION CONTROL USING FUZZY WAVELET 
NETWORKS 

This section will develop an intelligent motion controller 
using fuzzy wavelet networks (FWN). The controller synthesis 
procedure is composed of two steps. First, the 
fuzzy-wavelet-networks approximator is introduced to 
proximate the nonlinear terms in (42) and (48). Second, on-line 
learning rules of the motion controllers using FWNs are 
respectively established to achieve simultaneous tracking and 
stabilization. 

A. Fuzzy-Wavelet-Network Approximator 
Fig. 2 shows the schematic diagram of the fuzzy wavelet 

networks whose parameters are given as follows. 

{ }2 2( )2 2( ) [1 ( ) ] ji i jix c
j i ji i jix x c e ωϕ ω − −

= − −            (50) 

where j=1, …, n, i=1, …, m, and the kth output is described by 

1
( ) 1, ,

N

k kj j
j

f w x k mϕ
=

= =∑                       (51) 

Hence, (51) can be expressed in a vector-matrix form 

( ) ( ), , , , ,Tϕ=f x c ω W W x c ω                        (52) 

Next, use the fuzzy wavelet networks to approximate the 
nonlinear term f . Let the ideal approximation result is 

* * *( , )
T

fϕ= +* *f W x c ,ω ε                        (53) 

where *W is optimal weight vector; *ϕ  is optimal fuzzy 

wavelet basis function vector; *
fε  is small and bounded error 

vector. 

Assumption 1: The norm of optimal weight, W , ω ,and c , 
are bounded, i.e., 
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*
Wb≤ < ∞W , * bω≤ < ∞ω and *

cb≤ < ∞c        (54) 

The actual fuzzy wavelet network estimate, f̂ , can be 
represented by  

ˆ ˆ ˆ ˆ ˆ( , , )Tϕ=f W x c ω                             (55) 

where ˆ ˆ ˆˆ, , ,cϕ ωW  are estimates of * * * *, , ,cϕ ωW in the fuzzy 

wavelet network. By defining * ˆ= −W W W , * ˆϕ ϕ ϕ= − , 
* ˆω ω ω= − , * ˆc c c= − , (53) can be rewritten as 

 
* * * * * *

*

ˆ ˆ( , , ) ( ) ( )
ˆ ˆ ˆ

T T
f f

T T T
f

x cϕ ω ϕ ϕ

ϕ ϕ ϕ

= + = + + +

= + + + +

f W ε W W ε

f W W W ε





 

 

    (56) 

Let  

*T
fϕ= +ε W ε

                                (57) 

Then 

ˆ ˆT Tϕ ϕ= + + +f f W W ε

                           (58) 

Furthermore, * ˆϕ ϕ ϕ= −  can be expanded by Taylor series as 

   
ˆ ˆ

c H c
c

ϕ ϕϕ ω ω
ω

∂ ∂
= + + = + +

∂ ∂
A B H

 

                 (59) 

where 

 
*

1 2 ˆˆ ˆˆ ˆ( )   ... 
ˆ ˆ ˆ ˆ ˆ ˆ

T
N

N N

ϕϕ ϕϕ ϕ ϕ ϕ
ω ω ω ω ω ω ×

∂∂ ∂∂ ∂ − ∂  = = = − = −  ∂ ∂ ∂ ∂ ∂ ∂ 
A



 (60) 

For j=1,…n, i= 1,…,m, where 

[ ]11 12 1 1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ  ...    ... T
m n n nmω ω ω ω ω ω ω=                           (61) 



( ) ( )
1

( 1) ( 1)

ˆ
0....0 / / 0....0

ˆ
j

j j j jn
j n N n

ϕ
ϕ ω ϕ ω

ω − × − ×

∂  
= ∂ ∂ ∂ ∂ ∂  

    (62) 
2 2 2

2 2

[2 ( ) ][ 2 ( ) ]
( )

1 ( )
ji i ji ji i jii

i i
ji ji i ji

x c x c
x

x c
ω ωϕ

ϕ
ω ω

− − − −∂
= −

∂ − −
           (63) 

Similarly,  

*
1

ˆ
ˆ

ˆˆˆ ˆ( )  ... 
ˆ ˆ ˆ ˆ ˆ

T
N

c c
N Nc c c c cω ω

ϕϕϕ ϕ ϕ ϕ
=
= ×

∂∂∂ ∂ − ∂  = = = − = −  ∂ ∂ ∂ ∂ ∂ 
B



    (64) 

[ ]11 12 1 1 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ  ...    ... T
m n n nmc c c c c c c=                                  (65) 



( ) ( )
1

( 1) ( 1)

ˆ
0....0 / / 0....0

ˆ
j

j j j jn
j n N n

c c
c

ϕ
ϕ ϕ

− × − ×

∂  
= ∂ ∂ ∂ ∂ ∂  

      (66) 

2 2

2 2

2 ( )[2 ( ) ]
( )

1 ( )
ji i ji ji i jii

i i
ji ji i ji

x c x c
x

c x c
ω ωϕ

ϕ
ω

− − −∂
= −

∂ − −
                  (67) 

With (58), (51) becomes 

ˆ ˆ ˆ( )
ˆ ˆ ˆ ˆˆ

T T

T T T T

c

c

ω ϕ

ω ϕ

= + + + + +

= + + + + +

f f W A B H W ε

f W A W B W W H ε



 



 

            (68) 

ˆLet T= +h W H ε , (68) can be rewritten by 

ˆ ˆ ˆ ˆT T Tcω ϕ= + + + +f f W A W B W h

                    (69) 

which h  has a  bounded infinity-norm, i.e., 
∞

< ∞h . 

B. Intelligent Adaptive Yaw Rate Controller Design Using 
FWN 

This subsection intends to develop the intelligent yaw rate 
controller using FWN. In doing so, rewrite (57) as  

23 3 1 2

1 2
3

[ ( ) sgn( ) ]

( ) sgn( )

y w w

w w
y

G
C f K S K S

R b
G K G KG

f S S
R b R b R b

α
η η η η

α η α ηα
η η

φ

φ

= − + − −
⋅

= − + − −
⋅ ⋅ ⋅

x

x





      (70) 

where ( ) ( ) ( )( ) ( )23 3 5,  0<yf x G R b f x G R b Kα αφ= ⋅ − ⋅ ≤  
  

To meet the reaching condition, one proposes the subsequent 
intelligent yaw rate controller by  

6 max 6
ˆ ( ) [ ]sgn( ), , 0y y y y yC f K g S g g Kη= − + − − ≥ >x      (71) 

where ˆ
yf  is the estimate of yf  using the FWN proposed in 

Section 4.1, namely that   

1 1

T* * * * * * * *= ...
n n

T
y y y y y y y y yf W Wε ε   = + Φ Φ +   W Φ     (72) 

and  

  T
1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ=[ ][ ]T
y y y y yn y ynf W W= Φ ΦW Φ               (73) 

Moreover, by defining * ˆ
y y y= −W W W , ˆ

y y y= −*Φ Φ Φ , one 
obtains  



*ˆ ˆ ˆ +yy y y y y y y y yf ε= T T T TW Φ + W Φ + W Φ + W Φ               (74) 

In order to achieve on-line tuning of the FWN parameters, 
including the center vector Cy=[cy11 cy21 cy31 … cy1n cy2n cy3n]T 
and the vector ωy=[ωy1 ωy2 ωy3 … ωyn]T, the expansion of Φ  is 
taken in a Taylor series as follows.  

ˆ ˆ
y y

y y y y y y y y y
yy

∂ ∂
= + + = + +

∂∂

Φ Φ
Φ C ω h A C B ω h

ωC

 

 

       (75) 

where ˆ
y y y= −*C C C ;  ˆy y y= −*ω ω ω ; ph is the vector 

containing higher order terms and satisfies ph b≤ . 

Substituting (74) into (75) gives  

ˆ ˆ ˆ ˆ( )T T T
y y y y y y y y y y yf ε= + + + +W Φ W A C B ω W Φ 

       (76) 

where *T T
y y y y y yε ε= + +W h W Φ    and ε  is assumed to 

satisfies maxy ygε < . 

Substituting yC into Sη
 gives 
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6

6

[ ]

ˆ[ [ ]sgn( )]

ˆ ˆ ˆ[ ( )sgn( )]

y y

y y y

T T
y y

R bS C f
G
R b f f K g S
G
R b K g S
G

η
α

η
α

η
α

ε

⋅
= +

⋅
= − + − −

⋅
= + + + − −y y y yW Φ W Φ





    (77) 

and  

{ }

6

max 6

6

ˆ ˆ(( ) )

( )

ˆ ˆ )

( )

ˆ ˆ

T

y y

y y

y

SR bS S
G S K g S

SR b
G g g S K S

S K S

η
η η

α η η

η

α η η

η η

ε

 + +⋅  ≤
 + + − − 

 + + +⋅  ≤
 − − − 

 ≤ ∆ + − 

T
y y y y y y y

T T
y y y y y y y

T T
y y y y y y y

W A C B ω W Φ

W ((A C B ω ) W Φ

W (A C + B ω ) W Φ

 





 



 



  (78) 

To obtain the parameter updating rules for ˆˆ ˆ, , and ,y y yW C ω  
we have  

2
3

1
2 2 2 2

y y y

T T T

W C

V Sη
ωλ λ λ

= + + +y y y y y yW W C C ω ω  

 

                             (79) 

Taking the time derivative of V3 gives 

( ) ( ) ( )3

6 2 2

2 2

ˆˆ ˆ

ˆ
ˆ

ˆ ˆˆ ˆ      

y y y

y

y y

T T T

y y
W C

T
y

W

T T T
y

C

V S S

K S S

W

η η
ω

η η

ω

λ λ λ

λ

λ λ

= + − + − + −

 
 = − ∆ + − + ∆ Φ
 
 

   
   + − + ∆ + − + ∆

     

y y y
y

y
y

y y
y y y y y

W C ω
W C ω

W
W

C ω
C A ω B W























   (80) 

Then the parameter updating rules can be selected as 

2

2

2

ˆ ˆ

ˆ ˆ

ˆˆ

y

y

y

y W y

T
y C

T

Sη

ω

λ

λ

λ

 = ∆ Φ


= ∆


= ∆


y y

y y y

W

C A W

ω B W







                             (81) 

where y∆ = R b
Gα

⋅ . Then 3 6 0yV K Sη≤ − ∆ ≤  and it implies that 

0Sη →  in finite time.  

Theorem 3: Consider the subsystem (15) with the proposed 
intelligent adaptive yaw rate control law (70) with the 
parameter updating laws (81). Then 3ω φ→  in finite time. 

C. Intelligent Adaptive Posture and Speed Controllers Design 
Using FWN 

This subsection is aimed at developing an intelligent 
adaptive posture and speed control law for Cθ, it is necessary to 
rewrite (48) in the following form. 

( ) ( )

( ) ( ) ( ) ( )

1 22 1 2 2 1 1 2 1
1 22

1 2
1 1

1 22 1 22

1
a S S

S S
p

C = r f r r S K sgn S K S
r g

K K
= f sgn S S

r g r g

θ φ − + − − − 

− − −

x

x
x x

 

 (82) 

where 
( ) ( )

22 2

22 22 1 22

(x)
(x)

(x)p 2 a
f r1f S
g g r g

φ= − +
x x
  . Moreover, 

2
1 2

22 1 22

1 ,
( ) ( )

rK K
g r g

≤ ≤
x x

, 1 2
1 2

1 22 1 22

,
( ) ( )

S SK K
K K

r g r gθ θ≤ ≤
x x

. 

Since the function pf  in (82) can be on-line learned by the 
FWN, it is good to propose the following adaptive control  

( ) ( ) ( )
1 2

1 1
1 22 1 22

ˆ ( ) S S
p

K K
C f sgn S S

r g r gθ = − − −x
x x

                    (83) 

where KS1, KS2>0, ˆ
pf  is the estimate of pf  using the FWN 

proposed in Section 4-A, namely that  
* * * * * * * *

1 1=[ ][ ... ]T T
p p p p p pn p pn pf W Wε ε= + Φ Φ +W Φ       (84) 

and  

  T
1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ=[ ][ ]T
p p pn p pnf W W= Φ Φp pW Φ               (85) 

Moreover, by defining ˆ= −*
p p pW W W , ˆ= −*

p p pΦ Φ Φ , one 
obtains  

*ˆ ˆ ˆ ˆ +T T T T
p pf ε= + + +p p p p p p p pW Φ W Φ W Φ W Φ                (86) 

In order to achieve on-line tuning of the FWN parameters, 
including the center vector Cp=[cp11 cp21 cp31 … cp1n cp2n cp3n]T 
and the vector ωp=[ωp1 ωp2 ωp3 … ωpn]T, the expansion of pΦ  
is taken in a Taylor series as follows.  

ˆ ˆ
∂ ∂

= + + = + +
∂∂

p p
p p p p p p p p p

pp

Φ Φ
Φ C ω h A C B ω h

ωC

 

 

    (87) 

where  ˆ= −*
p p pC C C ;  ˆ= −*

p p pω ω ω ; h is the vector 

containing  higher order terms and satisfies b≤ph . 

Substituting (87) into (86) gives  

ˆ ˆ ˆ ˆ( )T T T
p pf ε= + + + +p p p p p p p pW Φ W A C B ω W Φ 

    (88) 

where *ˆ T T
p pε ε= + +p p p pW h W Φ   and ε  is assumed to 

satisfies maxp pgε < . 

Substituted the proposed controller into 1S  
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( ) ( )
( ) ( )

1 1 22 1 22 1 2 2

1 22 p

S r f r g C r r S

r g C f
θ α

θ

φ= + − +

 = + 

x x

x x

  

             (89) 

Moreover, it is easy to rewrite the following two terms: 

 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )

22 2
2

22 22 1 22

1 2
1 1

1 22 1 22

1

ˆ S S
p p

f rC S
g g r g

K K
f sgn S S f

r g r g

θ αφ+ − +

= − − − +

x

x x x

x
x x

 

      (90) 

With (88), one obtains    

( ) ( )ˆ ˆ ˆ( ) T T
p p p p pf f ε− = + + +p p p p px x W A C B ω W Φ 

    (91) 

and  

( )

( ) ( )

1 1

21 2
1 1

1 22 1 22

( )
ˆ

                            

T

p T T
p p p

S S

C f S S

K K
S S

r g r g

θ
ε

 +
  + =   + + + 

− −

p p p p p

p p

W A C B W
x

W Φ W Φ

x x

 

 

          (92) 

where *
max

ˆ, T T
p p p p p pgε ε ε≤ = + +p pW Φ W h   

Using the inequality A B A B+ ≥ − , one obtains 



( ) ( )


( ) ( )

1 1

21 2
1 1 1

1 22 1 22

1

21 2
max 1 1

1 22 1 22

ˆ( ) ( )

     

ˆ ( )

     ( )

T T
p

S S
p

T T

S S
p

C f S S

K K
S S S

r g r g

S

K K
g S S

r g r g

θ

ε

  + ≤ + +   

− − −

 ≤ + + 

− + −

pp p p p p p

pp p p p p p

x W A C B ω W Φ

x x

W A C B ω W Φ

x x

 



 



  (93) 

where * * *ˆ ˆˆ, ,= − = − = −p p p p p p p p pC C C ω ω ω W W W 

 ,  Since 

1 0r > and 1 22 ( ) 0r g x < , one obtains  

( ) ( ){ }
( )( )

1 1 1 22 1

2
1 1 22 max 1 2 1

ˆ ˆS

            

T T

S p S

S S r g x

K r g g S K S

 ≤ + + 

− + −

p p p p p p pW A C B ω W Φ

x

  



       (94) 

Next, move to find the parameter updating laws for 

max 1 2
ˆˆ ˆ ˆ ˆˆ , , , , ,pg K K p p pW C ω . In doing so, we propose 

2
4 1

( )1
2 2 2 2

p p p

T T T

C C w

V S
λ λ λ

= + + +p p p p p pC C ω ω W W   

 

             (95) 

Which leads to 

( )
( )

( ) ( ) ( )

4 1 1

2
1 max 1 2 1

ˆ ˆ ˆ

     

ˆ ˆˆ    
p p p

T T T T
p p p p p p p p p p p

S p p S

T T T
p p p

p p p
C W

V C S S

K g S K S

ωλ λ λ

= ∆ + ∆ + ∆

− + ∆ −

+ − + − + −

A W ω B W W Φ

C ω W
C ω W

 



 



 



 

        
(a)                                                               (b) 

Fig. 3. (a) Experimental wheeled inverted pendulum. (b) Bottom of the wheeled 
inverted pendulum. 

( )

( )

2
4 1 max 1 2 1

1

1

ˆˆ
ˆ ˆ      

ˆ
ˆ      

p p

p

S p p S

p pT T T
p p p p p p p

W C

pT T
p p p p

W

V K g S K S

S

S

λ λ

λ

= − + ∆ −

  
  + − + ∆ + − + ∆
  

   
 
 + − + ∆
 
 

W C
W Φ C A W

W
W B W











  (96) 

where 1 22 ( )p r g x∆ = . Then the parameter adjustment rules can 
be chosen by 

1

1

ˆ ˆ

ˆ ˆ

ˆˆ

p

p

p

W p

T
C p

T
p

S

Sω

λ

λ

λ

 = ∆


= ∆


= ∆


p p

p p p

p p p

W Φ

C A W

ω B W







                       (97) 

Then ( ) ( )2
4 1 max 1 2 1 1 max 1 0S p p S S p pV K g S K S K g S= − + ∆ − ≤ − + ∆ ≤ , 

( )1 maxif 0S p pK g+ ∆ > , implies 1 0S → in finite time  

Theorem 4: Consider the subsystem (15) with the proposed 
intelligent adaptive posture and speed control law (82) with the 
parameter updating laws (97). Then 3pθ φ→ , 2v φ→  as t → ∞ . 

V. SIMULATIONS AND DISCUSSION 
In the section, simulations and experimental results are 

performed to examine the performance and merit of the 
proposed control method on an experimental wheeled inverted 
pendulum. After a brief description of the experimental 
wheeled inverted pendulum, four simulations are performed to 
examine the feasibility and effectiveness of the proposed 
motion control method. With those tuned control parameters 
obtained from simulation results, two experimental results are 
then conducted to show the performance and applicability of 
the proposed method. 

A. Brief Description of the Experimental Wheeled Inverted 
Pendulum  

Fig. 3 displays the picture of the experimental wheeled 
inverted pendulum. As shown in Fig. 3 (b), this wheeled 
inverted pendulum is composed of two 24V DC motors with 
gearbox and two stamped steel wheels with 16” tires, two 
12-volt sealed rechargeable lead-acid batteries in series, and  
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Fig. 4. Block diagram of the control architecture for the vehicle. 

TABLE 2. ALL THE PENDULUM’S PARAMETERS USED FOR SIMULATIONS. 
Parameter [unit] Value Parameter [unit] Value 

Mb [kg] 35 L [m]  0.45 
Mw [kg]  5 b [m]  0.2 

Ixx [kg·m2]  2.1073 R [m]  0.25 
Iyy [kg·m2]  1.8229 Cz [m] 0.25 
Izz [kg·m2] 0.649 G [m/sec2] 9.8 

Iwa [kg·m2] 0.1563 ̅L [m] 0.45 
Iwd [kg·m2] 0.0781   

two motor drivers. The system adopts a digital signal processor 
(DSP) TI 320F28335 from Texas Instrument as a main 
controller, one gyroscope and one tilt sensor as the two sensors. 
The DSP mounted on the robot platform controls the posture 
and linear speed of the platform by using one gyroscope and 
one tilt sensor which are employed for measuring the rate and 
the angle of the inclination of the platform. In addition, the 
DSP-based controller also provides controls for the yaw rate of 
the platform using one high-performance optical gyroscope. 
The two optical encoders installed on the driving wheels are 
employed to achieve dead-reckoning calculation of the 
platform. 

Fig. 4 depicts the block diagram of the control architecture 
for the robot. In Fig. 3, there are three main control modules: 
the virtual motion command generator, slide-mode posture and 
speed control module, and, and slide-mode yaw rate control 
module. The virtual motion command generator provides ideal 
linear and angular speed commands for the speed and yaw rate 
control modules for steering the robot to exactly follow the 
desired trajectories. The posture and speed control module is 
responsible for achieving speed following as well as 
maintaining the robot posture. The yaw rate control module is 
aimed at tracking the desired yaw rate commands from the 
virtual motion command generator. 
 

B. Simulations and Discussion 
This subsection presents simulation results of STS 

controllers using MATLAB/Simulink under three cases: 
stabilization, straight line tracking, and circular tracking and. 
Table 2 lists the coefficients of the wheeled inverted pendulum 
used for simulations. In the simulations, the robot got started at 
the initial posture (0 m, 0 m, π/6 rad); the reference trajectories 
for trajectory tracking  and the reference configurations for 
stabilization are assumed to start at  (2 m, 2 m, π/4 rad) such that  
the initial values of the auxiliary signals are w(0)=1.5348,  
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Fig. 5. Simulation result of the overall motion control system for regulation. 
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Fig. 6. Simulation result of the proposed controller for line trajectory tracing. 

1 2(0) 0.5,  (0) 0.9912.z z= =   Therefore, the controller’s 
parameters for the virtual motion command generator are set by 
k=0.25, k1=1 and k2=0.25, α1=0.2, and 

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

1
2 22

0 0 2 cos 6 0 2 sin 6 + 6 4

0 2 cos 6 0 2 sin 6 6 4
T

dz

α π π π π

π π π π

= − + − −  

= − + − −  

 

thus satisfying the inequality min(kk1, k2)>α1. Furthermore, the 
parameters for both sliding-mode control modules are given by 
r1=1.0, r2=0.2, Kα=1.0, KS1=2.0, KS2=2.0, KSω1=2.0, and 
KSω2=2.0, respectively. Worthy of mention is that the 
parameters of both sliding-mode control modules are easy to set 
up, but the three parameters of the virtual motion command 
generator are difficult to tune. All the three simulations were 
conducted using MATLAB/Simulink codes. 

1) Stabilization 
The first simulation was conducted to investigate the 

performance of the proposed STS motion control law (42) and 
(48) for stabilization. The initial pose of the wheeled inverted 
pendulum mobile robot was assumed at (x0, y0, θ0)=(0m,0m,30o) 
and the final pose was set by (x, y, θ)=(10m, 5m, 0o). Fig. 5 
depicts the simulation result of the pendulum moving from the 
initial posture to the desired posture. Through the simulation 
result, the mobile robot with the proposed STS controller is 
shown capable of reaching the desired postures with 
satisfactory performance. 

2) Straight-Line Trajectory Tracking 
The second simulation was to study straight-line trajectory 

tracking performance of the proposed STS motion control law. 
The initial pose of the robot was given by  
(x0,y0,θ0)=(0m,0m,30o) and the desired line trajectory was 
described by ( ) ( )0 0 0( ),  ( ),  ( ) ,  ,  r r rx t y t t x v t y v t tθ θ ω= + + +  
where vr = 0.6 m/s, ωr = 0.  Fig. 6 shows the simulation result of  
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Fig. 7. Simulation result of the proposed controller for circle trajectory tracking. 

the proposed control method. The result in Fig. 6 clearly 
indicates that the STS control laws are capable of steering the 
robot to follow the desired straight-line path. 

3) Circular Trajectory Tracking 
The third simulation for the STS motion controller was to 

steer the wheeled inverted pendulum mobile robot to follow a 
circular trajectory described by 
( ) ( ) ( )( )0 0 0( ),  ( ),  ( ) cos ,  sin ,  rx t y t t x r t y r t tθ ω ω θ ω= + + +  

where 3 m,  0.2 rad/srr ω= = . Fig. 7 shows the simulation 
result of the wheeled inverted pendulum mobile robot with the 
proposed STS controller for circular trajectory tracking. The 
result indicates that the STS control laws perform well for 
steering the robot to exactly track the desired circular trajectory. 

VI. CONCLUSIONS 
This paper has presented a simultaneous tracking and 

stabilization (STS) method for wheeled inverted pendulums 
using backstepping and sliding-mode control techniques. The 
mathematical modeling of the pendulum has been decoupled 
into kinematic and dynamic parts in a state-space framework, 
and a unified STS controller has been synthesized in the two 
kinematic and dynamic levels. In the kinematic level, a STS 
controller has been constructed to achieve both goals of 
trajectory tracking and stabilization in a one unified control 
framework. In the dynamic level, the sliding mode control 
approaches have been employed to find the control torques 
acting on both wheels so as to accomplish out the overall 
control goals. Through simulations results, the proposed STS 
controllers have been shown useful and effective in providing 
appropriate control actions to steer the robot to achieve 
simultaneous tracking and stabilization. An interesting topic for 
future work might be to conduct experiments on a physical 
wheeled inverted pendulum. 
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Abstract—In recent years, robots have been quickly integrated 

into people’s daily lives. To allow the robots to navigate 
autonomously, accurate maps have to be provided. Therefore, it is 
important to make robots to obtain maps automatically and 
improve the efficiency of autonomous exploration. In this paper, 
we propose a method based on the rapidly-exploring random tree 
(RRT) and frontier 2D-SLAM exploration techniques. The 
proposed system is divided into three parts. First, we construct an 
initial map with laser range data, and use RRT and frontier 
detector to identify the frontier points of the initial map. The 
frontier points are then filtered and clustered to reduce the total 
number and the computation load. Finally, the score of each 
frontier point is calculated and the mobile robot is directed to the 
unknown areas until the map is constructed. In the experiments, 
the performance is evaluated in various synthetic scenes and real 
indoor environments. The results show that our system is able   to 
successfully complete the autonomous exploration task in a 
reasonable time. 

Index Terms— SLAM, autonomous exploration, rapidly- 
exploring random tree. 

I. INTRODUCTION 
OBILE robots can move around in the real world 
environments. They are usually controlled by software 

and use various sensors to identify their surroundings. This 
allows them to navigate autonomously, and is probably able to 
replace human beings in some environments to execute specific 
tasks. One important prerequisite for mobile robots to perform 
various jobs is to explore the unknown environments 
successfully. This requires efficient exploration strategies for 
complete coverage and map construction. Using the sensor 
information acquired in the environment, path planning and 
region exploration can be carried out with minimum cost and 
time while ensuring the integrity of the map building. 

This paper presents an approach which uses an RRT 
exploration strategy and a frontier-based image segmentation 
technique to find the frontiers between the explored region and 
unknown space. After filtering and scoring, the mobile robot is 
guided to the frontier point with the highest score to retrieve 
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more map information. RRT is a path planning algorithm which 
can add nodes to the tree by sampling space using randomly 
generated points [1]. Based on RRT we can extend the search to 
unknown areas, and the probability of the extended space is 
proportional to the size of the Voronoi region [2]. Since the 
larger Voronoi region is closer to the unknown, the RRT 
algorithm tends to find the unexplored region and is suitable for 
the robot exploration task. 

In previous works, Yanauchi proposed an algorithm based 
on frontier exploration [3]. In the method, he defined the line 
between the known and unknown regions as the frontier, 
generated candidate frontier points for environmental 
exploration, and comprehensively evaluated the exploration 
cost and associated information of each frontier point. 
According to the score, the optimal frontier point for the next 
step was determined. It was then used to direct the robot to the 
optimal frontier point, and increase the known area until the 
entire space is fully explored. 

General frontier detection algorithms process the entire map 
data. This can be a time consuming process and slows down the 
exploration. Keidar et al. [7] proposed a wavefront frontier 
detector (WFD) based on a graph search which only detects the 
frontiers of known areas in the map, and a fast frontier detector 
(FFD) based on processing only the new laser readings data. 
Both algorithms do not process the entire map data and provide 
more efficient solution for uninterrupted exploration. 

Bourgault et al. presented a different exploration algorithm 
using an information-based strategy [8]. They consider the 
localization and mapping problems concurrently with 
exploration. This reduces the uncertainty of the robot pose 
estimate and thus helps to maximize the map information. In 
order to calculate the robot’s motion loss, moving distance and 
other issues, some researchers have introduced the concept of 
next best view (NBV) into the autonomous exploration of 
mobile robots [9]. The next best exploration point of a mobile 
robot is selected according to the corresponding evaluation. 

This paper uses ROS (robot operating system) as a frame- 
work. The exploration system consists of SLAM, path plan- 
ning, and exploring strategy [10]. The SLAM task is carried out 
by the Gmapping algorithm [11]. Gmapping adopts a highly 
efficient Rao-Blackwellized particle filer which uses grid based 
mapping with multiple particles. Navigation Stack provided by 
the ROS framework takes the information from odometry, 
sensors and goal poses, and outputs the safe velocity commands 
to the mobile robot. It enables the mobile robot to reach the  
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Fig. 1. The system flowchart of the proposed technique. Our exploration 
strategy consists of two detectors, a filter and a task allocator. 

exploration goals and avoid obstacles. Global planner based on 
Dijkstra’s algorithm [12] plans a path from the mobile robot’s 
position to the exploration goal. Local planner is a reactive 
algorithm which uses the dynamic windows approach [13]. 
Both techniques are adopted in this work for autonomous 
exploration of a mobile robot. 

II. EXPLORATION STRATERY 
The system flowchart of the proposed technique is shown in 

Fig. 1. SLAM and path planning used in this work are 
introduced in Section I. First, an initial map is built based on the 
sensor information, and RRT and frontier based algorithms are 
used to search the frontier points of the initial map. Next, we 
filter the frontier points to reduce the total number of points and 
computation, and cluster them with the mean shift algorithm 
[14]. Finally, the score of each frontier point is calculated and 
the mobile robot is guided to the frontier point of highest score 
until the environment is completely explored. 

A. RRT-based Detector 
The RRT-based detector is used to search the frontier 

points around the mobile robot. If a point lies in an unknown 
region of the map and the growing RRT tree touches it, 
we will consider the point a frontier point. The detector is 
similar to the RRT algorithm, the tree starts from an initial 
point xinit. At each iteration, a random point xrand is 
generated in the space. The node of an RRT tree is 
selected as xnearest, which is nearest to xrand. xnearest extends 
a distance from xrand  to generate xnew. Then, it checks if 
xnew lies in an unknown region of the map, or if there is any 
unknown region between xnew and xnearest. If one of the 
above two conditions is true, xnew is considered as a 
frontier point and sent to the filter. The RRT tree is reset 
and other nodes are deleted. 

 
Fig. 2.   RRT-based detector 

The next iteration of the RRT tree starts from the 
current position of the mobile robot. That is, xinit is equal 
to xcurrent. If neither condition is true, it indicates that there is 
no obstacle at xnew and no obstacle between xnew and 
xnearest. Then xnew is added as a new node to the RRT tree 
and is wired to xnearest. It will return to generate a new xrand, 
and the RRT tree continues to grow. The RRT tree is 
shown in Fig. 2. 

B. Frontier-based Detector 
The frontier-based exploration algorithm is currently the 

most widely used method for autonomous exploration. It is 
used to find the frontier points of the open space. When the 
mobile robot moves and constructs a new map, the frontier- 
based detector can instantly identify the frontier points on the 
map. Our frontier-based detector uses image segmentation 
techniques to extract the boundaries between known and un- 
known regions of the map. The extraction process is 
illustrated in Fig. 2. 

We first construct the initial map from SLAM and convert 
the occupancy grid map to a grayscale map as shown in Fig. 
2(a). The map is binarized to observe the distribution of 
obstacles as illustrated in Fig. 2(b). Then, we perform the 
dilation and NOT operations to obtain an image (see Fig. 2(c)), 
and apply the edge detection on the initial map to obtain an 
image including the obstacles and the boundaries between 
known and unknown regions of the map.  Fig.  2(d) shows the 
edge detection result. An AND operation is carried out   on 
Fig. 2(c) and Fig. 2(d) to eliminate the obstacles of the map. 
Consequently, we can derive an image only containing 
frontiers as shown in Fig. 2(e). The midpoints of the edges are 
finally selected as the frontier points (see Fig. 2(f)). The 
smaller length frontiers can be filtered out by adjusting the 
degree of obstacle dilation. 
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Fig. 3. The filtered frontier points 

                        

               (a) Initial map.                         (b) Obstacles in the map.      (c) Dilate and NOT operations. 

 
       (d) Edge detection.                      (e) Frontiers of the map.                 (f) The frontier points. 

Fig. 4. The process of the frontier-based detector to extract the frontier point 
 

The purpose of using two different detectors in this work is 
to compensate the disadvantages of the two methods. RRT will 
re-grow at the current position of the mobile robot when it finds 
the frontier point near-by. However, the mobile robot might 
miss the unexplored corners in some situations. Thus, we 
combine a frontier-based detector to search the entire space 
instantly, and this allows the mobile robot to explore more 
efficiently. 

C. Filter 
The filter receives all detected frontier points from the RRT 

and frontier based detectors, and there might be many points 
very close to each other. If all these points are sent to the task 
allocator to calculate the scores, it will take too much 
computation resource. Thus, we use mean shift algorithm to 
cluster these frontier points, and eliminate invalid and old 
frontier points to reduce the computation. This approach shifts 
each point in the direction of increasing probability. The points 
move iteratively to a higher density region until it converges.  
Fig. 3 shows the filtered frontier points. 

D. Task Allocator 
 The task allocator receives the points processed from the 
filter and selects the point with the highest score among all the 
frontier points to assign to the mobile robot to perform   the 
exploration task. Given a frontier point pf and the current 
mobile robot position pr, the score of each frontier point is 
calculated by 
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Fig. 5. Calculating the information gain of a frontier point 

where the information gain Sinfo is the amount of information 
that can be obtained at the frontier point. The value Sinfo is 
derived by calculating the area of the unknown region within 
the radius r of the frontier point.  It calculates the size of the 
unknown area in the blue square that are located in the red 
circle as shown in Fig. 5. dE is the Euclidean distance between 
the current position of the mobile robot pr and the frontier point 
pf . We take dE as the expected cost of moving the mobile robot 
to the frontier point pf . However, the robot needs to consider 
other factors in the environment, and it is difficult to take a 
straight line to reach the frontier point. Thus, we multiply dE by 
a constant c2 to represent the cost of the mobile robot navigating 
to the frontier point. 

In order to reduce the mobile robot’s repeated exploration 
in two regions, we multiply the frontier point within the mobile 
robot radius dr by a constant c1. The information gain of the 
frontier point in the range will be enlarged, and this allows the 
mobile robot to be biased toward exploring the nearby areas. 
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where pm is the frontier point that the mobile robot is navigating 
to, so that the information gain of the frontier point near the task 
point is increased. When the nearby area is completely explored, 
it will go to the next area, effectively reducing the possibility of 
the mobile robot repeatedly exploring. 

III. EXPERIMENTS 

The proposed RRT and frontier based exploration system is 
compared with the greedy frontier-based algorithm [15] and 
RRTs algorithm [16]. The information gain radius is 1.0 m and 
we let dr =3.0 m. Each environment is successfully tested for 20 
times, and we select 10 normal working results. The moving 
speed of the mobile robot is 0.3 m per second. 

The mobile robot platform used in the experiments is a 
Pioneer P3-DX. A laptop computer with Intel Core i7-7700 
CPU @3.6 GHz and 8 GB RAM is used as the computing 
platform. The operating system is Ubuntu 16.04 with ROS 
Kinetic. A SICK LMS 100 laser range scanner with the 
working range of 0.5 m ~20 m, -450◦ ~ 255◦, 50 Hz, and an  
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Fig. 6. RRT-based and frontier-based exploration strategies for the laboratory 
environment. The left map takes less exploration time. 

Astra RGB-D camera with the range of 0.6 m ~ 8 m, horizontal 
60◦, vertical 49.5◦ are used for data acquisition. In addition, an 
embedded computer with Nvidia Jetson TX2 is used for 
onboard processing. 

The laboratory environment for our real world experiments 
and the results are shown in Figs. 6 and 7. Table I shows our 
exploration approach compared with the RRTs algorithm. It 
reduces 7.3% exploration time and 18.5% navigation path 
length. The second experiment is carried out in a classroom 
corridor environment. The results are shown in Fig. 8. Table II 
shows our exploration technique compared with the RRTs and 
greedy frontier-based algorithms. Compared to RRTs, our 
algorithm reduces 32.6% in the exploration time and 36.1% in 
the navigation path length. As for the comparison with the 
greedy frontier-based algorithm, ours reduces 22.3% in the 
exploration time and 24.1% in the navigation path length. 

 
Fig. 7. RRTs algorithm for the laboratory environment. The left map takes less 
exploration time. 

TABLE I 
THE EXPLORATION TIME (S) AND EXPLORATION PATH LENGTH (M) 

IN THE REAL ENVIRONMENT. 
 Exploration Time (s) Exploration Length (m) 

Algorithm Ours RRTs Ours RRTs 
1 86.20 127.90 19.08 29.59 
2 116.20 103.68 18.58 26.45 
3 70.20 72.82 13.40 15.59 
4 113.81 96.40 21.74 21.40 
5 90.01 90.20 16.98 19.08 
6 112.80 101.60 24.06 26.09 
7 74.21 112.20 16.85 27.79 
8 77.01 95.41 17.47 19.72 
9 93.00 90.60 20.65 21.03 

10 101.80 117.40 22.87 28.18 
Average 93.52 100.82 19.16 23.49 

 
 

 

 
Fig. 5. The results of the classroom and corridor environment 

 
 

TABLE II 
THE EXPLORATION TIME (S) AND EXPLORATION PATH LENGTH (M) IN THE CLASSROOM AND CORRIDOR ENVIRONMENT. 

 Exploration Time (s) Exploration Length (m) 
Algorithm Ours RRTs Greedy frontier-based Ours RRTs Greedy frontier-based 

1 105.75 95.20 124.78 22.47 23.50 24.13 
2 87.13 127.61 104.01 19.71 24.90 22.77 
3 74.94 126.80 104.11 17.05 30.72 25.22 
4 93.51 150.00 92.33 21.54 38.03 21.88 
5 86.54 146.60 119.84 16.96 36.97 28.59 
6 68.61 141.06 88.11 18.57 32.94 21.68 
7 63.06 111.60 104.18 16.09 24.02 23.69 
8 69.57 105.21 107.76 15.03 24.93 25.43 
9 96.68 101.00 120.56 21.77 24.04 27.99 

10 83.50 124.60 100.78 16.48 30.58 23.33 
Average 82.93 122.97 106.65 18.57 29.06 24.47 

 

 
 

 

(a) RRT-based and frontier-based exploration 
strategies for the classroom and corridor 

environment. The left map takes exploration 
time. 

(b) RRTs algorithm for the classroom and 
corridor environment. The left map takes less 

exploration time. 

(c) Greedy frontier-based algorithm for the 
classroom and corridor environment. 
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IV. CONCLUSION 
In this paper, we propose an autonomous exploration 

system based on RRT and frontier. It allows the mobile robot to 
explore independently in an unknown indoor environment. 
Since RRT is a random search algorithm, when the space 
contains many obstacles or the robot is in narrow space, the 
algorithm will converge slower with inefficient results. When 
exploring a new unknown areas, it cannot immediately grow 
toward new known regions, causing the slow search of frontier 
points. The mobile robot will then go to other frontier points, 
which may cause repeated exploration. In order to solve the 
above problems, this paper has added a frontier-based 
exploration strategy that enables instant search for the frontier 
points. Our system has preliminary results in the exploration of 
basic functions with experiments in simulation and real world 
environments. The results have demonstrated the feasibility of 
the proposed technique. 
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 Abstract-This paper presents a distributed formation control 
system with a trajectory generation method using   consensus 
algorithm, potential field (PF), particle swarm optimization 
(PSO) and real-coded genetic algorithm (RGA) for a group of 
small-scale unmanned helicopters (SSUHs) whose low-level 
trajectory tracking controllers have been constructed by using 
the fuzzy basis function networks (FBFN).  The distributed 
formation trajectory generator using a virtual leader-follower 
structure is proposed by an improved 3D potential function with 
consensus algorithm, and the key parameters of the generator 
are optimally searched by using the combination of PSO and 
RGA algorithms, called PSO-RGA algorithm. The performance 
and merits of the proposed method is exemplified by conducting 
four simulations on a group of four small-scale unmanned 
helicopters cooperatively flying over environments with 
complicated terrain. These simulation results indicate that all the 
following helicopters not only exactly achieve consensus tracking 
and track their positions and headings given by the virtual leader, 
but also attain good abilities to achieve collision and obstacle 
avoidance among helicopters and obstacle avoidance between the 
helicopters and complex terrain. 

Index Terms—Consensus, formation control potential field, 
real-coded genetic algorithm, small-scale unmanned helicopter. 

I. INTRODUCTION 
ECENTLY, multi-robot systems have been extensively 
used not only for industrial applications, but also for 

many other applications in military, aerospace, human 
services, education and our daily life. On basis of interaction 
types occurring in typical applications, mobile multi-robot 
systems can be classified into five categories: collective, 
cooperative, collaborative, coordinate and adversary [1]. 
Cooperative formation control problems using the 
combinations of collective and cooperative techniques   
have received much attention in control community [2-4]. 
Such cooperative formation control technologies have gained 
many applications to actual vehicles, robots and agents, 
including unmanned aerial vehicles (UAVs), artificial 
satellites, and autonomous mobile robots, automatic guided 
vehicles (AGVs) in manufacturing, and distributed sensor 
networks [3-4]. Moreover, since distributed intelligence has 
been regarded as a powerful paradigm for multi-robot systems 
[1], distributed control has been considered as a useful and 
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practical method for multi-robot control systems due to the 
fact that each distributed controller on each robot only obtains 
required information from itself and its neighboring robots. 

Cooperative formation control problems have been widely 
addressed by many researchers [5-8]. Generally speaking, 
formation controllers for unmanned helicopters are designed 
to not only achieve desired formation without collisions 
between vehicles, but also maintain the achieved formation 
while tracking a desired path as a team. Most of these control 
approaches have been designed using consensus algorithms 
since such control methods take the advantages of network 
flexibility, but few have been done using other approaches, 
such as 3D potential functions [9], hybrid modeling and 
control [10-12], virtual structures [13], behavior schemata 
[14], leader-follower structure [15], local control 
architectures[15-16], graph theory [17-20] and so on. 
Although those methods in [9-10] have been shown to achieve 
satisfactory formation control performance for unmanned 
multi-helicopters in free space, the cooperative formation 
control problem in terrain-dependent environments remains to 
be done for small-scale unmanned multi-helicopters with 
distributed control approaches. 

Small-scale unmanned helicopters in military applications 
have been shown suitable for a variety of military tasks in 
complicated terrain and environments; those tasks include 
enemy reconnaissance, route survey, electromagnetic 
interference or attack specific targets and so on. In spite of 
their limited payload and endurance and other factors, such 
helicopters show their strengths and merits in contact with the 
enemy in the junction area of operations. Before the war 
intelligence grasps and deploys effective fighting force, these 
SSUHs can increase the contact with the enemy, thereby 
reducing the possibility of early injury of soldiers to perform 
reconnaissance mission. Except military applications, SSUHs 
can be applicable to many civil applications, such as bridge 
diagnosis, detailed area mapping, close-up inspection, 
environmental monitoring and protection, agriculture, mineral 
exploration and exploitation and so on.  

To find the optimal control signals for multi-UAV 
formation, many researchers have proposed methods using 
PSO and GA. For example, Duan et al. [21] proposed a hybrid 
PSO-GA algorithm to find the best control signals for 
multi-UAV formation reconfiguration.   Similar to the 
hybrid PSO-GA algorithm, a variety of the combinations of 
PSO and RGA have been investigated by many researchers  
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Fig. 1. Illustration of forces and moments acting on a small-scale unmanned 

helicopter (SSUH). 

[22-25]. Two examples in [24-25] were used to show how the 
combined PSO-RGA algorithms were effective in not only 
solving for inverse kinematics of seven-degrees-of freedom 
manipulators, but also designing optimal PID controllers.  
However, this PSO-RGA algorithm in series has not yet been 
applied to tune the PF-based formation controller for a group 
of small-scale unmanned helicopters. 

In recent years, the concept of the fuzzy basis function 
networks (FBFN) has become increasingly important. It has 
been known that the FBFN can approximate any continuous 
function over a compact set and have high accuracy and fast 
learning ability. Moreover, FBFNs have also been proved to 
excellently approximate time-varying nonlinear functions or 
nonlinear dynamics. This merit can be easily applied to 
controller design for such systems. For example, Tsai et al. 
[26] proposed an intelligent adaptive control method along 
with FBFN for trajectory tracking of an autonomous 
small-scale helicopter. Motivated by [26], the low-level 
FBFN-based motion controller would be helpful and powerful 
in tracking   formation trajectories generated for a group of 
SSUHs flying together in formation.    

The objectives of the paper are to establish a distributed 
formation control system with a novel trajectory generation 
method for a group of SSUHs cooperatively flying over 
complicated terrain using consensus algorithm, potential field 
(PF) and PSO-RGA algorithm, and to verify the effectiveness 
and merit of the proposed control method via simulations. The 
merit of the distributed formation controller for each SSUH is 
that each controller only takes required information from itself 
and its neighboring SSUHs via the communication topology.  
By comparing to the state of the art in the field of formation 
control, the paper is novel in proposing an effective and 
practical distributed formation control law for a group of 
SSUHs in a complicated environment with static and dynamic 
obstacles.   

The rest of this paper is constructed by follows. Section II 
briefly describes modeling and low-level FBFN-based control 
of single small-scale unmanned helicopter. In Section III, the 
distributed formation control system is presented and then its 
formation trajectory generation method is proposed by using 
the improved 3D potential function and consensus algorithm. 
Section IV investigates the asymptotical stability and 
consensus analysis of the proposed formation trajectory 
generation method.  Section IV uses the PSO-RGA 
algorithms to offline find the best controller parameters 
optimally. Simulations are done in Section VI to demonstrate 
the performance and merit of the proposed system. Section 
VII concludes the paper. 

II. MODELING, LOW-LEVEL CONTROL AND PROBLEM 
STATEMENT 

The overall dynamics of a small scale helicopter is 
considered as a rigid-body dynamics actuated by thrust force 
and wrench moments resulted from other dynamics which 
include rotor wing aerodynamics, rotor flapping dynamics, 
engine dynamics and actuator dynamics in [27]. The 
controller design must be entirely based on the rigid-body 
dynamics without other state variables since they can be 
hardly measured online. Therefore, the rigid-body model of 
helicopter is briefly recalled here for the control design 
purpose, and then the low-level trajectory tracking controller 
using the FBFN on-line approximator is briefly described, in 
order to test the planned global paths by the proposed method. 

A. Modeling a SSUH 
Fig.1 illustrates forces and moments exerting on an 

autonomous small scale helicopter. With the symbols 
notations in Fig.1, the equations of motion of a helicopter are 
given by the Newton-Euler equations and summarized as 
follows [26-27]. 

I IP ν=                                         (1) 

I I B B
3

1 1( ) ( )T Mge u u
m m

ν = + ℜ Θ + ℜ Θ K         (2) 

B( ) ( ) ( )sk ωℜ Θ = ℜ Θ                                      (3) 

B B B B B B
2 3m m tr mr MI I Q e Q e uω ω ω= − × − − + J    (4) 

where I TP x y z  = and I   T
x y zν ν ν ν=    are position and 

velocity of the helicopter center of gravity (c.o.g.) with 
respect to the inertial frame in North-East-Down (NED) 
orientation, I

je  and B
je are denoted the thj  unit vectors of 

the inertial frame and body frame, m R∈  and 3 3
mI R ×∈  

respectively denote the total mass and the moment inertial 
matrix of the robotic helicopter. The Euler angle vector 

[ ]B   Tφ θ ψΘ =  and the helicopter angular rate vector 

B   x y z

T
ω ω ω ω  = defined in the roll-pitch-yaw sequence are 

with respect to its body frame. The four independent inputs to 
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this model are lift force control denoted by B B
3T mru T e= − , and 

three directional torque controls denoted by 

[ ]B   T
M mr mr tru L M N= 3R∈  where mrT is represented a thrust 

force and , , mr mr trL M N  are defined the three moments. Both 
B
Tu  and B

Mu  are applied along the body frame. mrQ  and 

trQ  respectively represent the anti-torques on the main rotor 
and tail rotor. Both matrices J  and K  are related to the 
helicopter mechanical characteristics and expressed by 

1         0         0 

     0         1    0

     0                 0         1

b

mr mr

b

mr mr

k
+

T h
k

+
T h

 
 
 
 

=  
 
  

J

-10 0

1 -10

0 0 0

mr

mr tr mr

h

h l h

 
 
 
 

=  
 
 
 
 

K    (5) 

Furthermore, ( )ℜ Θ is the helicopter’s rotation matrix from 
the body axes to the inertial axes and B( )sk ω  means the 
skew-symmetric matrix of the body angular rate. 

The four independent inputs to this model are lift force 
where mrh  denotes the height of rotor head above the 
helicopter centre of gravity and a constant stiffness coefficient 

bk  is used to represent the restraint torque in the blade 
attachment to the rotor head and the anti-torques on the rotors. 
Because the lift force mrT  ensure greater than zero, the 
matrix J  is bound to be positive definite. Besides, trl  is 
the distance from the c.o.g. to tail rotor hub. 

B. Low-Level Trajectory Tracking Control 
This subsection is devoted to briefly describing the 

low-level trajectory tracking controller of the autonomous 
helicopter using FBFN in [26]. For the trajectory tracking, the 
three positions and the heading of the helicopter are chosen as 
the desired outputs, and the desired trajectories are given by 
the position vector, I ( )dP t , the heading angle, ( )d tψ  and 

their time derivatives ( I
dP , I

dP , I
dP , dψ , dψ ). The control 

objective is to find the control laws for B
Tu  and B

Mu  such 

that all the output errors ( iδ , i =1, ... ,4  and jε , j =1, 2) 
can converge towards zero for any initial condition. For 
tracking any trajectories of an autonomous helicopter, the 
proposed method is based on the full rigid body dynamics 
(1)-(4) where the coupling forces in (2) are not neglected. All 
control inputs of the thrust ( B

Tu ) and moments ( B
Mu ) are 

explicit early in the second error dynamic equation ( 2δ ). To 
successfully complete the trajectory tracking controller in [26], 
backstepping control design and two techniques of the 
dynamic extension are adopted for the thrust control and the 
moment controls respectively, and the on-line FBFN 
approximator is employed to on-line approximate the small 
body forces and expressed as Bˆˆ ˆ ( ) /T

MW S Ku m∆ = ≅ ℜ Θ   

j
IP i

IP

VL
IP

jd
VL
I

P

y

x

z

k
IP

0i
IP

0j
IP

 

id
ith SSUH
desired 
position

 

ith SSUH

 

(a)                            (b) 
Fig. 2. An example of communication topology in the helicopter formation 
control system: (a) the four follower SSUHs with the fifth SSUH as the 
virtual leader; (b) symbols used for formation flight.  

where Ŝ  is the estimate of the output vector of the hidden 
layer, and Ŵ  denotes the estimate of the connective weight 
matrix W=[wjk]N×3 between the hidden layer and the output 
layer. In this paper, the FBFN is adopted as estimator in order 
to illustrate a coupling effect of unmanned helicopter. The 
node numbers of the input layer, the hidden layer, and the 
output layer are 8, N, and 3 respectively, where N is a positive 
integer. Both input and output layers are linear, and the 
activation function used by all nodes the hidden layer is a 
Gaussian function.  

To accomplish the low-level motion control for each 
SSUH in [26], it is required to first find the so-called pseudo 
control signals ( mrT , ω ) and then compute the actual control 

signals ( B
Tu , B

Mu ), thereby obtaining the actual force control 
B
Tu  and the actual moment control B

Mu  as below, 

 
B

0 0

t t

T mru T d dτ τ= ⋅∫ ∫   (6) 

 
B 1 B B B B B

2 3M m m tr mru J I I Q e Q eω ω ω−  = + × + + 

 (7) 

C. Modeling a Multi-SSUH System 
Assume that the communication topology of n follower 

SSUHs is a directed subgraph G , and n SSUHs can be 
regarded as n nodes. The relevant weighted adjacency matrix 
of the subgraph G  is denoted as [ ]ija=A  

and 0,  ,  {1,2, , }ija i j n≥ ∀ ∈  . Moreover we assume 0iia = . 
The Laplacian matrix L  of the directed subgraph G is 
defined as = −L D A  where 1 2( , , , )ndiag d d d= D  and 

1

n
i ijj

d a
=

= ∑ . Similarly, the overall multi-SSUH system 

under consideration consists of the n follower SSUHs and a 
virtual leader SSUH considered as the ( 1)thn +  SSUH. The 
interconnection topology of the overall multi-SSUH system is 
also a directed graph G , and its Laplacian matrix L  is given 
by = −L D A . Fig. 2 illustrates a formation example of the 
four follower SSUHs with the fifth SSUH as the virtual leader 
where the least information is exchanged. In order to achieve 
this formation control objective, three assumptions about the 
communication topology are made in the following. 
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Assumption 1: The subgraph G  with its relevant Laplacian 
matrix L  is directed, connected and has a spanning tree. 

Assumption 2: Every SSUH must be connected from the 
leader on the network, but all of the SSUHs are not 
necessarily directly connected from the leader.  
Assumption 3: Movement of the leader must be independent 
from any SSUH. 
Assumption 4: Every SSUH gets information regarding its 
position and heading and formation patterns; especially, 

id denotes the desired relative displacement vector between 
the thi  SSUH and leader, as shown in Fig. 2(b).  

According to Assumption 1, the Laplacian matrix 
( 1) ( 1)n nR + × +∈L is symmetric and has only one zero eigenvalue 

and all other nonzero eigenvalues with positive real parts.  
On basis of Assumptions 1-3, all the entries in the last row of 
Laplacian matrix ( 1) ( 1)n nR + × +∈L are zeros, and there exists a 
diagonal matrix 1( 1) ( 1){ ,..., } n n

n n ndiag a a R ×
+ += ∈B  where it 

has at least one positive diagonal entry such that the 
summation of both matrices, i.e., L+B, is invertible and  has  
all the nonzero eigenvalues with positive real parts; therefore, 
there exist a symmetric and positive-definite matrix S, and a 
symmetric and diagonal matrix R such that 

( ) ( )T+ + + =R L B L B R S  where the superscript T denotes 
the transpose operation in vector and matrix operations. 
Moreover, matrix R can be found by R=diag{r1,…,rn}, where 
[1/r1,…,1/rn]T=(L+B)-1[1,…,1]T [28-29]. 

D. Problem Statement 
The formation mission is to let n SSUHs follow their 

leader in formation as shown in Fig. 2. In achieving this 
mission, the distributed formation trajectory generation 
approach in this paper is stated as follows. Since the low-level 
FBFN-based motion controller of each SSUH has been 
designed and shown asymptotically stable, the aim of the 
proposed formation trajectory generation method is to 
generate stable formation trajectories for all the followers if 
the leading trajectory of the virtual leader is given. Worthy of 
mention is that the generated trajectories not only keep all the 
followers flying together in formation, but also accomplish 
collision and obstacle avoidance when the static and dynamic 
obstacle appear randomly in the flight routes. Note that the 
distributed formation control system is synthesized to meet 
Assumptions 1-4. 

III. FORMATION CONTROL USING IMPROVED 3D POTENTIAL 
FIELD AND CONSENSUS ALGORITHM 

In applying the potential field method, all the SSUHs are 
regarded a particle, and the environment is represented as a 
potential field which generates attractive or repulsive forces. 
In this section, a modified PF (MPF) method is proposed 
based on the well-known leader-follower structure and 
consensus concept. Fig. 3 depicts the block diagrams of the 
proposed MPF-based formation control system, where the 
terrain contour flight trajectory of the virtual leader is  
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Fig.3. Block diagram of the proposed distributed MPF formation control 
system. 

generated by our previous RGA-and-elastic-band trajectory 
planning method with a time-varying flight speed [30]. In the 
MPF method, the potential field of each SSUH is composed 
of four force components caused by the virtual leading force, 
mutual influencing force, collision-avoidance force, and 
obstacle avoidance force. Therefore, the total MPF force is the 
summation of the four forces. Unlike the conventional PF 
method, this modified PF scheme incorporates with the 
concept of consensus algorithm to address a more general 
distributed formation control problem.  Below is the detailed 
description of each force in the proposed MPF method. 

A. Virtual Leading Force 
The virtual leader is the key reference point of each 

formation and dominates the formation movement. Depending 
on the underlying control system its trajectory can either be 
given as navigation points or as continuous trajectory. The 
virtual leading force of each follower SSUH is expressed by 

( )
( ) ( )

I I I I|
( 1) 0

I I I I
( 1) ( 1) 1

VL
i i n VL VL i VL i

i n VL i VL i n VL i n

a k

a k a k

+

+ + +

 = × − − − 

= − × − = − × −

F P P P P

PP P P
    (8) 

where I
VLP  stands for the position vector of the virtual leader; 

I
iP  and I

0iP  respectively represent the current and desired 
position vectors of SSUH i , as shown in Fig. 2(b), 
respectively; I I I I

0,   ,i i i i VL i= − = +P P Pd dP   1,..., 1i n= + ; 
kVL>0 is the positive gain to be determined. Note that 

1 0n+ =d , namely that there is no relative displacement vector 
between the leader and itself such that I I I

1 1n VL n VL+ += + =P PdP . 
Physically, this virtual leading force component guides each 
SSUH directly to its desired position relative to the virtual 
leader. If the velocity of the virtual leader is known for any 
follower SSUH which directly accesses the position and 
velocity information of the leader, the second virtual leading 
force vector for the whole multi-SSUH system is proposed by  

1 I
3(( ) )( )VVL

VL
−= + + ⊗ ⊗F L B I b Pd                 (9) 

where 1[ , , ]T
n=  

d d d  and 1( 1) ( 1)[ , , ]T
n n na a+ +=b   is a 
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nonzero vector which has at least one unity entry. From (9), it 
is easy to find the distributed consensus formation control law 
for the thi  SSUH in formation as follows;  

 I

1

n
VVL

i i ij j VL
j

l b
=

+ ∑F = Pd           (10) 

where the matrix +L B  is invertible and has its inversion 
denoted by 1( ) [ ],   , 1,...,ijl i j n−+ = =L B . Note that ijl  is 
not zero in the path of the communication topology; otherwise, 

ijl  is zero. On the other hand, the second term control law for 
the ith SSUH in (10) can also be calculated by a recursive 

formula 
1

I
2 2

1 1
( ) +

n n
VVL VVL
i ij i i VL ij j

j j
a b b a

−

= =

   
= +   

   
∑ ∑F P F  such that 

2
VVL VVL

i i i+F = Fd , 1,...,i n= . 

B. Mutual Influencing Force 
The contribution of another helicopter to the modified 

potential field is expressed by: 

( )
( ) ( )

I I I I
0 0

I I I I I I( ) ( )

ij ij ij j i j i

ij ij j i VL j VL i ij ij i j

a k

a k a k

 = × − − − 

 = × − − + − + = − × − 

F P P P P

P P P Pd d P P
  (11) 

where I
iP  and I

jP  are respectively the current position 

vectors for SSUH i  and SSUH j ; I
0iP  and I

0jP  are 
respectively the desired position vector pointing to SSUH i  
and SSUH j  in the formation. It is assumed that all the 
mutual influence force gains, ijk , , 1, ,i j n=  , are identical, 

and let 0ij mutk k= > . In the swarm of SSUHN  SSUHs, the 
total mutual influencing force for SSUH i  is given by 

1

SSUHN
mut

i ij
j=

= ∑F F                                 (12) 

This force preserves the formation by affecting the 
helicopters to remain in their desired distances among 
themselves. 

C. Collision-Avoidance Force 
For safety issue, it is necessary to set up a safety space 

which is defined for each helicopter. For the sake of simplicity, 
it is defined as a sphere with positive radius min

sav savr r= , where 
min

savr  is the minimum distance for save avoidance. The 
collision-avoidance force is expressed by 

1           for  < 
 

0                                    otherwise

jisav
ca ji savca

ij ji ji

r
k r

  
  × − ×  =   


d
d

F d d (13) 

where jid  is the vector between SSUH i and j. 

Obviously, the collision-avoidance force will be generated  

            
 
 

Fig. 4. Obstacle detection of the sensor mounted in front of each helicopter. 

if something enters the sphere, pointing away from the 
invading SSUH. To ensure collision avoidance, it is required 
to let the collision-avoidance force go toward infinity in the 
center of this sphere. Oppositely, if no something others into 
the sphere, the collision-avoidance force will become zero. 
Therefore the collision-avoidance for SSUH i whose safety 
sphere away from others is defined by

2
•  represents the 

vector 2-norm throughout the paper. If ji savr≥d  the 

collision-avoidance force becomes zero. This allows a smooth 
insertion of the collision avoidance force component and 
guarantees a continuous potential field. Moreover, cak  is the 
collision-avoidance gain to be tuned. To enhance the 
collision-avoidance performance, the safety distance savr  
should be chosen properly, depending on the helicopter’s 
velocity, IP , and it is expressed by  

 min I
sav sav savr r k= + × P                        (14) 

where savk is the safety gain and min
savr  is the minimum 

distance for a save avoidance. Thus, the total amount of the 
collision avoidance term is given by: 

1,
     

N
ca ca

i ij
j j i= ≠

= ∑F F                          (15) 

D. Obstacle-Avoidance Force 
During the contour flight, it is often easy to encounter 

with some obstacles which may be unpredictable terrain, 
buildings, trees, or other aircraft. Under these obstacles, the 
helicopters will consider them harmful, especially in tactical 
flight situation. Therefore, it is necessary to shift out these 
threat points by building up enough repulsion force, thus 
making UAV formation flight safe.  

The obstacle can be detected in terms of distances and 
angles by the sensor mounted in front of each helicopter. Note 
that the sensor has its physical limitations on detecting the 
obstacle.  

 ( )2

1 1      for  <ˆ  

0                                          otherwise
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k
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  
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d d (16) 

1
main
scanh 2

main
scanh …. 1

main
scanh 2

main
scanh …. δ

main
scanV

R side
scanV −L side

scanV −

δ



iRobotics 
Vol. 2, No. 1, March, 2019 

23 

where savr  is given in (14); oak  is the gain should be found, 
Line
scanh  stands for terrain high of detected obstacle at 

pre-navigation point that front of the SSUH and kid  
represents the distance between SSUH i and the kth obstacle. 
As shown in Fig. 4, the sensor continuously monitor the 
foreground from its right starting line, R side

scanV − , to the left one, 
L side

scanV − , where δ  is the angle from the flight direction line, 
mian

scanV . Afterward, the height of the detected obstacles can be 
found.  By on-line scanning obstacles in front of each 
helicopter, we propose the subsequent obstacle-avoidance 
force and the total obstacle-avoidance force for each 
helicopter, assuming that there are detected M , W and W 
obstacles at proposed scan line mian

scanV , R side
scanV −  and L side

scanV − , 
respectively. Finally, the total forces of detected obstacles are 
expressed by 

1 1 1
( , ) ( , ) ( , )

M W W
oa oa oa oa
i main L side R side

k z z
i k i z i z− −

= = =

= + +∑ ∑ ∑F F F F   (17) 

E. Total MPF Forces 
By summing the aforementioned force components which 

meet the constraints for helicopter flight control, one obtains 
the magnitude and direction of the continuously total forces 
for SSUH i  at its present position.  

VL VVL mut ca oa
i i i i i i= + + + +F F F F F F               (18) 

Due to the physical limitations of each SSUH, it is 
necessary to define the maximum amplitude for the total force 
vector for each SSUH while keeping its direction: 

{ }maxmin  ,  /i i i iF=F F F F                 (19) 

where Fmax will be the upper limit regarding the total MPF 
force’s strength and therefore a limitation for the SSUH’s 
speed. Fmax should be chosen dynamically to use the 
maximum SSUH speed. This can be realized by taking the 
SSUH’s NED (North-East-Down) velocity IP into account: 

I
max min vF F k= + P                             (20) 

where minF  is the minimum value and vk  is the  gain. 
When one SSUH is accelerating, the distance to the vehicle’s 
reference position will also increase, thereby speeding up the 
SSUH until its maximal velocity is reached. Once the total 
force vector iF  has been obtained from (18), the reference 
trajectory for each SSUH is calculated by  

I I( ) ( )i i it t t t+ ∆ = + ∆P P F                        (21) 

where t∆  is the step size. On the other hand, since 
/i iF F  represents for the direction of SSUH i, the heading 

angle of the thi  SSUH at time t  is given by 
( ) ( / ) (0 0 1)

i

T
d i itψ = ×F F . 

IV. EXPONENTIAL STABILITY AND CONSENSUS TRACKING 
This section will show exponential consensus tracking of 

the generated formation trajectories of the proposed MPF 
trajectory generator if VL VVL mut ca oa

i i i i i i= + + + +F F F F F F  is 
given by considering the moving speed of the leader.  In 
doing so, we first prove that the generated formation 
trajectories for all the SSUHs in formation is exponentially 
stable if VL VVL mut

i i i i= + +F F F F  is applied, and then discuss 
the effects of the collision and obstacle–avoidance forces on 
the formation trajectories. This is because the summation of 
the first two forces affects the formation stability, while the 
collision and obstacle–avoidance forces circumvent any 
possible collisions. To show the formation stability, we 
rewrite (21) as I I I

0lim ( ( ) ( )) /i t i i it t t t∆ →= + ∆ − ∆ =P P P F  or 
I ( )t =P F where I I I

1[( ) , , ( ) ]T T T
n=P P P  

  and 

1[ , , ]T T T
n=F F F . Below is the main result for considering 

the issue by focusing on the impact of the only first three 
forces on formation stability.  

Theorem 1: Assume that the FBFN-based trajectory tracking 
controllers for all SSUHs in formation are semi-globally 
uniformly ultimately bounded (SUUB). Then the generated 
formation trajectories of the proposed MPF trajectory 
generator for all the SSUHs in formation is exponentially 
stable and the asymptotical consensus tracking is satisfied if 
the errors of the generated trajectories meet I

i i=P F where 
VL VVL mut

i i i i= + +F F F F .  

Proof: To show the formation stability of the generated 
trajectories by the formula I ( )i it =P F , 1, ,i n=  , or 

I ( )t =P F one defines the position tracking error vector for 
the system as  

 
1

1
( )

n

i ij i j
j

a
+

=

= −∑e P P  (22) 

which leads to  

 I I
3 0( ) ( )= + ⊗ −e L B I P P  (23) 

where I I I 3
0 10 0(( ) ... ( ) )T T T n

n R≡ ∈P P , , P and 
I I I 3

1(( ) ( ) )T T T n
n R≡ ∈P P , ..., P . Taking the time derivative of 

the position tracking error vector e gives 
I I I

3 0 3 0( ) ( ) ( ) ( )= + ⊗ − = + ⊗ −e L B I P P L B I F P  

 . 

To show the stability of the generated formation 
trajectories, we rewrite the summation of the virtual leading 
force and mutual influencing forces of the thi  SSUH in 
formation as 

1
I I I

1 1
( ),  1,...,

n n

i i ij j VL ij ij i j
j j

l b a k i n
+

= =

+ − − =∑ ∑F = Pd P P   (24) 

Note that the virtual leader is regarded as the ( 1)thn +  
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SSUH, and ( 1)i n VLk k+ = , 1, ,i n=  . Thus, the total force 

control vector iF  can be rewritten in a vector-matrix form.  

1 I I
3 3(( ) )( ) ( )VL mutk−+ + ⊗ ⊗ − ⊗F = L B I b P L I P

d    (25) 

where 
3( 1)

1 3 1 1( , )  ,   , )  T T I T T T T n
n n n R +

+≡ ∈TF = F , ...,F 0 P ( , ...,P P P ; 

⊗  denotes the Kronecter product ; the graph Laplacian 
( 1) ( 1)n nR + × +∈L  of the formation network composed of the n 

SSUHs and leader is 

1( 1) 1 1 1( 1)
1

2 2( 1) 2 2( 1)
1

1 ( 1) ( 1)
1

0 0 0

n
VL

n j n n
jmut

n
VL

n n j n
jmut

n
VL

n n n nj n n
jmut

k a a a a
k

ka a a a
k

ka a a a
k

+ +
=

+ +
=

+ +
=

 + − − 
 
 

− + − 
 =  
 
 

− + − 
 
  

∑

∑

∑

L





   





   (26) 

where 0iia =  and 1
( 1) 1 21

n
i n ij i i inj

a a a a a+

+ =
− − − −∑  for 

1, ,i n=  . Since 1( ) 0n t+ =d  for any time, then, by 
following the proof process, it is easy to rewrite the total force 
control vector as follows;  

1 I I I
3 3 0

1 I 1
3 3 3

1 I 1
3 3

(( ) )( ) ( )( )

(( ) )( ) ( )( )

(( ) )( ) ( )

VL mut

VL mut

VL mut

k

k

k

−

− −

− −

+ + ⊗ ⊗ − ⊗ −

= + + ⊗ ⊗ − ⊗ + ⊗

= + + ⊗ ⊗ − + ⊗

F = L B I b P T I P P

L B I b P T I L B I e

L B I b P T L B I e













d

d

d

    (27) 

where 3( , ,..., ) nF F F R∈T T T T
1 2 nF =  the matrix T  is 

reduced from the graph Laplacian L  and given by   
1

1( 1) 1 12 1
1

1

2 2( 1) 2 2
1

1

1 2 ( 1)
1

n
VL

n j n
jmut

n
VL

n n j n
jmut

n
VL

n n n n nj
jmut

k a a a a
k

ka a a a
k

ka a a a
k

+

+
=

+

+
=

+

+
=

 
+ − − 

 
 

− + − 
=  

 
 
 

− − + 
 

∑

∑

∑

T





   



   (28) 

Note that the matrix /VL mutk k= +T L B  is invertible and 
has all the nonzero eigenvalues with positive real parts, as 
mentioned in Section 2.4. With the total force control vector 
in (27), the error dynamics of the generated trajectory error 
becomes 

I I
3 0 3 0

1 I 1 I
3 3 3 0

( ) ( ) ( ) ( )

( ) ( (( ) )( ) ( ) )VL mutk− −

= + ⊗ − = + ⊗ −

= + ⊗ + + ⊗ ⊗ − + ⊗ −

e L B I F P L B I F P

L B I L B I b P T L B I e P

 



 

d
   (29) 

Since I I
0 VL− = − ⊗P 1 P 

d where [1, ,1]T nR= ∈1  , it 
follows that ( ) 0+ = + = + =L B 1 L1 B1 b b , and (29) 
becomes  

I
VL= − ⊗e b P

I
VL+ ⊗b P 1

3 3

1
3

(( ) )( ( )

( ) ( )
mut

mut

k

k

−

−

− + ⊗ + ⊗

= − + + ⊗

L B I T L B I e

L B T L B I e
  (30) 

Next, it is easy to show that the product matrix 
1( ) ( )−+ +L B T L B is also invertible and has all the nonzero 

eigenvalues with positive real parts. Therefore, exist a 
symmetric and positive-definite matrix Z , and a symmetric 
and diagonal positive-definite matrix R  such that 

1(( ) ( ) )−+ +R L B T L B  1(( ) ( ) )T−+ + + =L B T L B R Z . Thus, 
we choose the following positive-definite and radially 
unbounded Lyapunov function 1V  as 

 1 3( ) ( )( ) / 2TV = ⊗e R I e                        (31) 

Taking the time derivative of (31) along the trajectories of 
(27) , one obtains  

1 1
1 3

3

( ) ( (( ) ( ) ) (( ) ( ) ) )( )

    ( ) ( )( ) 0

T T
mut

T
mut

V k

k

− −= − + + + + + ⊗

= − ⊗ <

e R L B T L B L B T L B R I e

e Ζ I e



    (32) 

which is negative-definite, showing that the error of the 
generated trajectory approaches zero as time goes to infinity, 
namely that lim 0

t→∞
=e . From (23), one obtains 

I I I
0lim = 0

t→∞
− =P P P , i.e., I I

0lim( ) 0i it→∞
− =P P  since the matrix 

+L B  is invertible. This means that all the n  follower 
SSUHs converge to their desired position specified by the 
virtual leader, thus forming a stable formation pattern even if 
the leader is moving at the speed vector of I

VLP . Once the 
stable formation pattern has been generated by the force 
vector VL VVL mut

i i i i= + +F F F F , it is easy to show that 
I I I Ilim 0t i j VL VL→∞ − = − =P PP P , i = 1, , n and j = 1, , n , 

thereby achieving the globally exponential consensus tracking. 
This completes the proof.  

Remark 1: Since each SSUH may not get its desired position 
from the leader due to the communication topology, the 
generated force vector VL VVL mut

i i i i= + +F F F F meets the 
requirement and it is distributed and decentralized. 
Furthermore, the overall force vector 

VL VVL mut ca oa
i i i i i i= + + + +F F F F F F  is also distributed and 

decentralized owing to the fact that the collision-avoidance 
and obstacle-avoidance forces are made by the thi  SSUH 
that detects any local SSUHs and/or obstacles nearby itself. 

Remark 2: The exponential stability of the generated 
formation pattern is still guaranteed if the overall 

VL VVL mut ca oa
i i i i i i= + + + +F F F F F F  is applied and if the 

destination is far from any obstacles. Obviously, in some 
cases, if all the SSUHs fly together in formation and there are 
no obstacles surrounding them, then the last two forces die out, 
and the first three forces will bring all the SSUHs to reach 
their desired position and exponential consensus condition as 
predicted by Theorem 1. Note that, in some cases, the total 
magnitude of the collision and obstacle force will be equal to 
the attraction force summed by  VL VVL mut

i i i+ +F F F  , but the 
direction is opposite, thereby causing a dead-locking problem 
such that the exponential consensus tracking is not achieved.  
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Fig. 5. PSO-RGA computing procedure. 

This problem can be circumvented by using a modified 
collision and obstacle force vector approach, and utilizing a 
Lyapunov function to show the exponential stability of the 
overall formation system. However, the method requires a full 
connected communication topology, which is not suitable for 
any directed communication topology. Another alternative is 
to use periodic switching topology method which does not 
affect the exponential stability, but may avoid the 
dead-locking problem. 

V. PARAMETER TUNING OF THE PF FORMATION 
CONTROLLER USING PSO-RGA 

This section is devoted to applying the PSO-RGA 
algorithm to optimally search for the three best parameters, 
kVL, kij=kmut and kv, of the MPF-based trajectory generator for 
formation control of the multi-helicopter system. Particle 
swarm optimization (PSO) is known as a kind of evolutionary 
computation algorithm based on swarm intelligence method. 
The basic concept of PSO comes from simulation of social 
behavior and evolutionary computation theory, and its basic 
working idea is that m particles in the D-dimensional 
searching space are attracted towards the optimal solution 
found by given particles’ neighbors and by the particles’ 
cognition and experience when those particles work through 
their searching space. 

On the other hand, real-coded genetic algorithms (RGA) 
have been regarded as adaptive, heuristic and biological 
search methods with four basic operators: selection, 
reproduction, crossover and mutation. Real-coded genetic 
algorithms (RGA) are different from binary genetic 
algorithms (BGA) due to no coding and decoding 
computational requirements for all chromosomes. The key 
idea behind RGA is to construct the fitness function to 
evaluate all chromosomes in a population, and to choose the 
best chromosomes with the best fitness in order to reproduce 
new chromosomes via the selection operator. The used  

 
Fig. 6. Illustration of low-level, contour and NOE flights for the multi-SSUH 

system. 

PSO-RGA algorithm takes the advantages of aforementioned 
PSO and RGA algorithms. 

 Since simultaneous tuning of the three parameters in the 
formation controller is difficult via a try-and-error rule, the 
PSO-RGA algorithm proposed in [25] will be used to reduce 
design time and effort, and even obtain improved formation 
control performance. The used PSO-RGA algorithm takes the 
advantages of aforementioned PSO and RGA algorithms. Fig. 
5 shows the detailed flow chart of the used PSO-RGA 
algorithm which is described as follows.    

Step 1: Update the PSO velocity strategy. Compute the fitness 
value of each individual in the population. Compare the 

position value of ( )iX t  for each particle with the value 

resulting from its current evaluation. ( )iX t is replaced if the 

latter value is better; otherwise, retain it. Finally, take ( )iX t  
as the particle’s current location.  

Step 2: Update the PSO position strategy.  Update the 

optimal local position ( )iP t of each particle and the best 
global position. If the new position is outside the feasible 
space, set the position of the particle at the margin of the 
feasible space nearest the new position by the following rule. 

[ ]
[ ]

if , ( 1) ( ) ( 1) / 2 (0,1)

else , ( 1) ( ) ( 1) /
iD iD iD

iD iD iD

rand mr x t x t v t N

x t x t v t σ

< + = + +

+ = + +
  (33) 

where rand  is a uniformly distributed random generator 
giving its value lying within the close interval [0,1]; mr  
represents the selected mutation rate; N(0, 1) is a standard 
Gaussian random variable; 1 2, Rσ σ≤ < ∈  is the 
deceleration factor of the particle i. 

Step 3: Execute RGA reproduction policy using 

1/ l
r i iiP f f

=
= Σ   where if  is the fitness value of the thi  

individual chromosome, and l is the size of group. For each 
particle j, use the aforementioned roulette wheel selection 
technique to choose jDx  from the set of all jX . 

Step 4: Perform the crossover operation with the crossover 
rate Pc using  

1 1 1 2 2 2 1 2( ), ( )x x x x x x x xλ λ= − − = + −           (34) 
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where 1x  and 2x  are the child chromosomes; ix and 

2x are respective parent chromosomes; λ  is a uniformly 
distributed random number such that [0,1]λ ∈ .  

Step 5: Do the RGA mutation strategy with the mutation rate 
Pm using  

( )( 1) ( ) 0, /jD jD ix t x t N f fβ Σ+ = +            (35) 

where ( )jDx t represents the thD entry of the thj  individual 

chromosome; ( )0, /iN f fβ Σ  denotes a Gaussian random 

variable with zero mean and standard deviation of /if fβ Σ ; 
fΣ is the summation of all computed fitness values; and β  is 

the scaling parameter for /if fΣ .  

Step 6: Repeat Step 1 until the following cost ( )f E in (36) is 
minimized, and then evaluate it to see if ( )f E  is no longer 
evaluated. 

( )
1

1

min , ,    

                   

N
th

VL ij v v
i t

N
th

a
i t

f k k k the i vehicle speed

the i vehicle tuning angle

α

α

= ∆

= ∆

 = × 
 

 + × 
 

∑∑

∑∑
     (36) 

VI. SIMULATIONS AND DISCUSSIONS 
This section will conduct four simulations to examine the 

effectiveness, performance and merit of the proposed 
MPF-based formation control system for a group of four 
cooperative helicopters with a virtual leader, in order to 
achieve contour flight in formation, as Fig. 6 shows. Fig.6 
depicts the contour flight that keeps 25 to 80 foots high above 
the flight terrain. The environment is a complicated, rough 
terrain with a space area of 1km x 1km as a three-dimensional 
flight terrain. To verify the feasibility of the proposed control 
method, we adopt the well-done nonlinear helicopter model in 
[27] and the FBFN-based controller and its key control 
parameters in [26]. For the simulations, the parameter settings 
of the PSO-RGA algorithm are given by mr =0.35, 
β =0.001,σ =1, aα =1, vα =1, Pc=0.5, and Pm=0.5. During 
the simulations, the maximum speed and turning angle of each 
SSUH is less than 10 m/sec, and less than 30 degrees/sec, 
respectively. In these simulations, the leader’s trajectory is 
generated by the presented RGA algorithm and elastic-band 
techniques in [30], and the resultant trajectory is smoothened 
via the spline curve fitting scheme and then used as the final 
flight trajectory. Fig. 2(a) illustrates the used communication 
topology which has the least information exchange, and, thus, 
we have the graph Laplacian L  and reduced graph 
Laplacian /VL mutk k= +T L B where B =diag{1,0,0,0} and 

0.4974VLk = and 0.1254mut ijk k= =  as shown in Table 1. 

TABLE I. THE BEST SEARCHED PARAMETERS AND THE PARAMETERS IN [9]. 
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Fig. 7. The cost during the simulation over the 40 generations. 

1 0 0 0 1
3.9665 0 0 0

1 1 0 0 0
1 1 0 0

 ,   0 1 1 0 0
0 1 1 0

0 0 1 1 0
0 0 1 1

0 0 0 0 0

− 
  −    −  = =−
 − 

−    −   

L T  

Both symmetric and positive-definite matrices R and S, 
satisfying T+ =RT T R S , are found as follows;   

3.9665   0   0   0 31.4662     -0.7987      0      0
0   0.7987   0   0 -0.7987   1.5973   -0.4440   0

 ,   
0   0   0.4440   0 0   -0.4440   0.8881   -0.3075
0   0   0   0.3075 0       0      

 
 
 = =
 
 
 

R S

-0.3075      0.6150

 
 
 
 
 
 

 

which ensure the asymptotical stability of the generated 
formation pattern, thus achieving consensus tracking.  

The first simulation is to search for the best three 
parameters of the MPF-based trajectory generator using the 
PSO-RGA algorithm with 40 generations, each of which has 
20 particles. The first simulation uses the horizontal line 
formation pattern where  1d =(0,15,0), 2d =(0,35,0), 3d  
=(0,-15,0) and 4d =(0,-35,0) (unit:m). After the off-line 
simulation, the best three parameters are found as 

VLk = 0.4973, ijk =0.1254 and vk =0.7. Fig. 7 depicts the cost 
with the 40 generations, reaching its minimum after the fourth 
generation. Table 1 lists the best searched values of the key 
parameters, in comparison with the same parameters given in 
[9]. Fig. 8 illustrates the simulated trajectories and speeds of 
the four follower SSUHs over the terrain; Fig. 8(a) shows that  
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Fig. 8. (a) Simulated speeds of all the four SSUHs; (b) all the four forces of 
the follower helicopters . 

the speeds of the four following helicopter converge to the 
given speed of the leader, and Fig. 8(b) demonstrates the time 
evolutions of all four forces, indicating that the 
collision-avoidance and obstacle-avoidance forces hold in 
order to circumvent any possible collisions. Fig. 9 displays the 
simulated trajectories, speeds and all the four forces of the 
four following helicopters using the parameters in [9], in 
which all the speeds are not conformed to the leader’s one. 
Via the performance comparison of the results in Figs. 8 and 9, 
the proposed MPF method is shown more effective and 
superior in terms of formation control over the terrain. 

The second simulation is to examine whether the proposed 
distributed consensus MPF formation control system with the 
developed FBFN trajectory tracking controller together is 
capable of tracking the generated formation pattern and 
trajectories generated by the MPF method over the 
complicated and rough terrain as shown in Fig. 10. Given 
initial position of the four following helicopters respectively 
as (101.7 762.7 31.16), (50.85 491.5 51.39), (186.4 101.7 
34.64), and (813.6 84.75 45.11) (unit:m), Fig. 10 depicts the 
simulated trajectories of the proposed formation control 
system.  Figs. 10(b)-(e) depict the tracking position errors of 
the four SSUHs by using the Euclidean distance measure,  
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Fig. 9. Simulated speeds of all the four SSUHs using the PF parameters in [9]. 
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(d)                             (e) 

Fig. 10. The simulated formation trajectories of all the four SSUHs and the 
leader using the FBFN-based trajectory tracking controllers. 

which means the position errors between the actual and 
demand (desired) flight trajectories. As can be seen in Fig. 10, 
there are significantly large position errors in the start-up 
phase due to the different initial flight positions, the second 
peaks of position errors occur in the beginning of formation 
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flights owing to trajectories following, and, finally,  these 
errors are then reduced within 5 m after they fly together in 
formation. The results indicate that the proposed distributed 
consensus MPF formation control system is effective in 
controlling the follower SSUHs to achieve real formation. 
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Fig. 11. The simulated formation change results of all the four SSUHs and the 
virtual leader using the proposed formation and control method during the 
formation change period; (a) the three-dimensional trajectories for the 
formation changes; (b) the four forces; (c) time evolutions of velocities of the 
four SSUHs. 

The third simulation is conducted to investigate the 
formation change ability of the proposed formation control 
system. This simulation considers the scenario that the four 
SSUHs start with four different initial locations and meet each 
other at some fixed point via hovering control from the 
beginning to the 25th second, fly together in parallel from the 
25th second to the 70th second, change to a vertical line 
formation after the 70th second, have a triangle formation after 
the 100th second, and finally alter to a square formation after 
the 165th second. Given initial positions of the four following 
helicopters as (59, 32, 1), (30, 15, 1), (35, 70, 1), and (40, 38, 
1) (unit:m), respectively. Fig. 11 depicts the simulated results 
using the proposed formation and control approach. The result 
in Fig. 11(b) shows that the leading and mutual forces are 
generated and the collision-avoidance forces are irregularly 
created at the moments of formation changes in order to 
achieve new formations and avoid any collisions among the 
SSUHs, and no avoidance-avoidance forces hold owing to flat 
terrain. We observe in Fig. 11(c) that the four SSUHs use the 
maximum speeds to reach the desired hovering location and 
stop there by the 25th second, and obvious speed changes 
occur shortly after the beginning of other formation changes 
and all the SSUH speeds keeps constant at 8 m/sec after the 
steady-state formation flights. The results in Fig.11 reveal that 
the proposed formation control method is powerful in flying 
all the SSUHs to carry out all the formation patterns. 
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(b) 

Fig. 12. The simulated results of the dynamic obstacle case; (a) the 3D 
trajectories of the four SSUHs; (b) the three-dimensional trajectories of all the 
four SSUHs and the virtual leader in which the detailed trajectories are shown 
when the dynamic obstacle approaches the four SSUHs; 
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Fig. 13. The simulated results of the dynamic obstacle case; (a) the four 
forces of all the four SSUHs; (b) time responses of the velocities of the four 
SSUHs. 

The fourth simulation is carried out to explore the ability 
of dynamic obstacle avoidance of the proposed formation 
control system. The initial positions of the four following 
helicopters are the same to those in the third simulation 
scenario. Fig. 12 and Fig. 13 displays the simulation results 
for the dynamic obstacle case, where the detailed trajectories 
are shown when the dynamic obstacle approaches the four 
SSUHs. As illustrated in Fig. 12(b), all the follower SSUHs 
give rise to the evident obstacle avoidance forces for the 
dynamic flying object, thereby preventing them from any 
possible collisions. As Fig. 13(b) shows, the four flying 
SSUHs yield remarkable speed variations in order to quickly 
avoid the dynamic flight object, and again maintain at 8 m/sec 
after the crossover. The results in Fig. 12 and Fig. 13 reveal 
that the proposed formation control method is capable of 
flying all the SSUHs to avoid dynamic obstacles. 

VI. CONCLUSIONS 

This paper has presented a distributed and decentralized 
formation control system with a novel formation trajectory 
generation method designed via consensus algorithm, 
potential field (PF) and particle swarm optimization (PSO) 
and real-coded genetic algorithm (RGA) for a team of 
small-scale unmanned helicopters (SSUHs) whose low-level 
trajectory tracking controllers have been synthesized using 
fuzzy basis function networks. The formation trajectory 
generator using a virtual leader-follower structure has been 

proposed using the improved potential function including 
consensus concept, and its key parameters have been 
optimally found by using the offline PSO-RGA algorithm. 
Through the four simulation results, the proposed control 
system have been shown effective and useful in not only 
accomplishing that all the follower SSUHs satisfactorily track 
their positions and headings given by the virtual leader, but 
also attaining that all the followers have good abilities to 
achieve collision and obstacle avoidance among the 
helicopters and obstacles. An interesting topic for future 
research would be to conduct real-time experiments of the 
proposed method for such multi-SSUH systems. 
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 Abstract- This paper presents an evolutionary parameter 
tuning method of optimal motion control for Mecanum mobile 
robots using bacterial foraging optimization (BFO). A 
metaheuristic BFO is employed to address the parameter tuning 
problemof motion control for four-wheeled Mecanum mobile 
robots. The redundant kinematics problem is resolved by means 
of the pseudoinverse control method. By considering the derived 
vehicle kinematics and Lyapunov stability theory, an optimal 
motion control law is synthesized using the natured-inspired BFO 
paradigm. This intelligent motion control scheme surpasses the 
traditional control approaches because the control parameters are 
optimized. Simulation results illustrate the merit and effectiveness 
of the proposed BFO-based optimal controller for Mecanum 
mobile vehicles. 

Index Terms—BFO, metaheuristic, mobile robot, optimization, 
intelligent control. 

I. INTRODUCTION 

N robotics research, parameter tuning of motion control is an 
important topic in designing optimal controllers. The control 

parameters in the motion controllers are properly determined to 
obtain better performance. This tuning problem has attracted 
much attention in both academic and industry. It is regarded as 
an optimization problem and has been investigated by several 
studies using various approaches. Overall, these works are 
computationally intensive and may fall into local optimum for 
designing optimal controllers [1-5].  

Swarm intelligence is a new branch used for dealing with 
optimization problems. This computing paradigm is a category 
of computational intelligences. There are some popular 
algorithms widely applied to resolve multi-objective 
optimization problems in various application domains [6-7], 
such as GA (Genetic Algorithm), PSO (Particle Swarm 
Optimization), ACO (Ant Colony Optimization) and BA (Bat 
Algorithm) [6-10]. They have become powerful tools to 
address many real-world engineering problems by exploiting 
their strong optimization ability.  

BFO introduced by Passino is relatively new algorithm to the 
family of swarm intelligence [11-12]. This population-based 
algorithm is inspired by the group foraging behavior of 
Escherichia coli (E. coli) bacteria. BFO has already drawn the 
attention of researchers because of its efficiency in solving 
complex optimization problems based on the chemotaxis, 
swarming, reproduction and elimination-dispersal steps. It has 
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been proven superior to the traditional swarm intelligences by 
taking the advantages of simplicity and ease of implementation 
[13-14]. However, there has no attempt to develop BFO-based 
evolutionary controller for Mecanum mobile robots. 

Four-wheeled mobile robots with Mecanum omnidirectional 
wheels have received growing attention in the mobile robotics 
research [15-16]. Although such robots outperform the 
conventional two-wheeled differential robots and 
three-wheeled holonomic mobile robots, there exists a 
redundant control problem in the robot system. Several studies 
have been proposed to investigate the modeling and control of 
the redundant mobile robots [17-20]. Overall, these works did 
not cope with the BFO-based parameter tuning of optimal 
motion control.  

Evolutionary control is a challenging methodology for 
designing optimal controllers. This approach combines the soft 
computing and hard computing to develop optimal controllers. 
Taking the advantages of the metaheurictics and robot 
modeling, this control scheme has become popular in robotics 
research. To date, some evolutionary control methods for 
mobile robots have been presented [21-24]. As the authors’ best 
understanding, the BFO parameter tuning of optimal motion 
control for four-wheeled Mecanum autonomous robots remains 
open.  

The objective of this research is to develop a metaheuristic 
BFO-based parameter tuning method, and apply this pragmatic 
computing to optimal motion control of four-wheeled 
Mecanum vehicles. The remaining of this paper is organized as 
follows. In Section II, the BFO parameter tuning and vehicle 
modeling are introduced. Section III elaborates the application 
to optimal motion control of four-wheeled Mecanum vehicles 
to achieve trajectory tracking. Section IV conducts simulation 
results to show the effectiveness of the proposed methods. 
Section V concludes this paper. 
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Fig. 1. Swim and tumble of a bacterium. 
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II. BFO PARAMETER TUNING AND VEHICLE MODELING 

A. Classical BFO 
1) Foraging behavior of the real bacteria 

The locomotion of the real bacteria during foraging is 
achieved by a set of tensile flagella. These flagella help an E. 
coli bacterium to tumble or swim in the environment. When 
they rotate the flagella in the clockwise direction, the bacterium 
tumbles. On the other hand, moving the flagella in the 
counterclockwise direction helps the bacterium to swim. The 
bacteria move towards a nutrient gradient and avoid noxious 
environment based on these two operations. Fig. 1 presents the 
swim and tumble of a bacterium. In BFO, the foraging strategy 
consists of four principal mechanisms, including chemotaxis, 
swarming, reproduction, and elimination-dispersal. 

2) Chemotaxis 
The movement of E. Coli bacteria towards the nutrient-rich 

area is simulated by a biological activity called chemotaxis. 
This operation simulates the movement of an E. coli through 
swimming and tumbling. Suppose θi(j,k,l) represents the 
position of ith bacterium at jth chemotaxis, kth reproductive and 
lth elimination-dispersal step. C(i) is the step size by the tumble 
operation. The computational chemotaxis of the bacterium is 
expressed by 
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where Δ(i) is a random vector. Note that NC is the number of 
chemotactic step and NS is the swimming length. 

3) Swarming 
In BFO, the swarming operation makes the bacteria come 

together into groups with high bacterial density to search the 
food. This operation is expressed by  
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where { }( , , ) ( , , ) 1, 2,...,iP j k l j k l i Sθ= = represent the 

position of each member in the population of the S bacteria at 
the jth chemotactic step, kth reproduction step, and lth 
elimination-dispersal event. ( , ( , , ))ccJ P j k lθ  is the cost 
function value to be added to the objective function 

( ),  pJ Rθ θ ∈  of the optimization problem. S is the total 
number of the bacteria and p is the number of variables to be 
optimized. θ=[θ1 θ2…θp]T is a point on the search space. dattractant 
is the depth of the attractant released by the cell and wattractant is 
a measure of the width of the attractant signal. hrepellant is the 

height of the repellant effect magnitude and wrepellant is a 
measure of the width of the repellant. The cell-to-cell signaling 
in E. coli swarming behavior is expressed by 

( , 1, , ) ( , , , ) ( , ( 1, , ), ( 1, , ))i
ccJ i j k l J i j k l J j k l P j k lθ+ = + + +   (3) 

4) Reproduction 
In BFO algorithm, the reproduction operation keeps the 

swarm constant. The half least healthy bacteria eventually die 
and the better half reproduces to generate the next generation. 
Nre is defined as the reproduction step in evolutionary BFO 
computing. 

5) Elimination and dispersal 
In the evolution process, gradual or sudden changes in the 

environment may occur due to various reasons, including rise 
of temperature and consumption of nutrients. This phenomenon 
may kill a group of bacteria in a region. BFO algorithm applies 
elimination and dispersal process to simulate the behavior, 
thereby preventing BFO be trapped at local optimum. In BFO 
algorithm, 

edP is the elimination-dispersal probability and 
edN is 

the number of elimination-dispersal events. The following 
summarizes the BFO using the evolutionary processes. 

Step 1 Initialize parameters  p, S, Nc, Ns, Nre, Ned, Ped，C(i) 
(i=1,2,…,S), and iθ . A BFO individual is defined as the 
sequence of parameter tuning problem. 

Step 2 Elimination-dispersal loop：l=l+1 

Step 3 Reproduction loop：k=k+1 

Step 4 Chemotaxis loop：j=j+1 
1) For i=1,2,⋯,S, take a chemotactic step for bacterium i. 

2) Compute fitness function ( , , , )J i j k l  

3) Tumble process: Generate a random vector ( ) pi R∆ ∈ . 

4) Move using (1.2), this results in a step of size C(i) in 
the direction of the tumble for bacterium i . 

5) Compute ( , 1, , )J i j k l+ . 

6) Swim 
7) Go to next bacterium i+1 

Step 5 If j<Nc, go to Step 4. In this case, continue chemotaxis 
since the life of the bacteria is not over. 

Step 6 Reproduction: 
1) Sort bacteria and chemotactic parameters C(i) in order 

of ascending cost Jhealth. 
2) The Sr bacteria with the highest Jhealth values die and 

the remaining Sr=S/2 bacteria with the best values 
split. 

Step 7 If k<Nre, go to Step 3 

Step 8 Elimination-dispersal. For i=1,2,…S, with probability 
Ped, eliminate and disperse each bacterium. If l<Ned, go 
to Step 2, otherwise end this algorithm. 
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Fig. 2. The kinematic model of four-wheeled Mecanum omnidirectional mobile 

robots. 

B. Vehicle modeling  
This subsection is devoted to introducing the kinematic 

model of four-wheeled Mecanum omnidirectional mobile 
robots with four independent driving wheels as shown in Fig. 2. 
ωz is the moving angle of the robot. L and l are the distance 
between the centers of each Mecanum wheels to the robot 
platform of the geometric center, ( 1, 2,3, 4)iwv i R= ∈  is the 
Mecanum wheels velocity vector corresponding to each 
Mecanum wheels. ( 1, 2,3, 4)irv i R= ∈  is the tangential 
velocity vector for each free roller contact to the ground.  

Since the four-wheeled Mecanum omnidirectional mobile 
robot is structure symmetry, the geometric center and the center 
of mass of the robot are overlapped. The kinematic model for 
the four-wheeled Mecanum omnidirectional mobile robot is 
derived as follows: 

1 1 2 2
1 1 1 2 2 2

3 3 4 2
3 3 3 4 4 4

, ,
2 2 2 2

, ,
2 2 2 2

r r r r
x w y x w y

r r r r
x w y x w y

v v v vv v v v v v

v v v vv v v v v v

= =

= =

= + = +

= + = +
     (4) 
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v v l v v L
v v l v v L

ω ω
ω ω
ω ω
ω ω

= − = +
= − = +
= − = +
= − = +

               (5) 

, ,  and ix iy zv v Rω ∈ represent the velocity and angular velocity 
of the vehicle x and y for wheel i. Combining (1) and (2), one 
obtains the following kinematic model of the Mecanum mobile 
robots  

1

2

3

4

w
x

w
y

w
z

w

v
v x

v
J v J y

v
v

ω θ

 
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        

 




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                       (6) 

where [ ]  Tx y θ is the position and orientation of the mobile 
robot and 

( )
( )
( )
( )

1 1
1 1
1 1
1 1

l L
l L

J
l L
l L

 − − + 
 + =  − +
 

− +  

                                      (7) 

Notice that J is a singular matrix, its pseudo-inverse matrix J-1 
can be found by  

1

1 1 1 1

1 1 1 1 1
4

1 1 1 1

J

L l L l L l L l

−

 
 
 
 = − − 
 
 − −
 + + + + 

            (8) 

where 1
3J J I− = . 

III. BFO-BASED OPTIMAL MOTION CONTROL OF MECANUM 
MOBILE ROBOTS 

A. Design of motion control  
Based on the kinematic model in (3), the goal of the control 

law is to design the velocity vector [ ]1 2 3 4
T

w w w wv v v v to 
steer the four-wheeled Mecanum omnidirectional mobile robot 
from any starting pose [ ]0 0 0

Tx y θ  to any desired pose 

[ ]( ) ( ) ( ) T
d d dx t y t tθ . The current pose is [ ]Tx y θ . In 

order to design the tracking controller, one define the error 
vector by 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

e d

e d

e d

x t x t x t
y t y t y t

t t tθ θ θ
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                          (9) 
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                 (10) 

In order to find the speed control [ ]1 2 3 4
T

w w w wv v v v  that 
make the closed-loop system can asymptotically stable, one 
propose the following control law: 
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 (11) 

The control is a PID-like control law with three terms. PK , IK  
and DK  are gain matrices. They are symmetric and positive 
definite. The closed-loop error system can be found as follows: 



Huang et. al.      
Parameter Tuning of Optimal Motion Control for Mecanum Mobile Robots Using Bacterial Foraging Optimization 

 

34 

( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( )

( )

( )
( )
( )

t

eo
e e e

t

e P e I e D eo
te e e

eo

d

d

d

x d
x t x t x t
y t K y t K y d K y t

t t t
d

x t
y t

t

τ τ

τ τ
θ θ θ

θ τ τ

θ

  
              = − − −                        
 
 =  
  

∫
∫
∫

 

 

 







   (12) 

To prove the closed-loop error system as asymptotic stable, 
we select the radially unbounded Lyapunov function candidate 
as follows: 
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and 
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Since V  is negative definite, Lyapunov theory proves that 

[ ]( ) ( ) ( ) 0 T
e e ex t y t tθ → as t → ∞ . The closed-loop error 

system is asymptotical stable. 

B. BFO-based optimal motion control 
In this study, the BFO parameters are tuned via the classical 

genetic algorithm. The chromosome is defined as the parameter 
sequence. With the genetic operations, the optimal parameters 
are determined. This modified BFO algorithm is then employed 
to design an optimal motion controller using the vehicle model 
of Mecanum mobile robot. 

    The next goal of this subsection is to apply the proposed 
modified BFO to synthesize an evolutionary controller. More 
precisely, the control parameters PK , IK and DK in (11) are 
properly determined by means of the proposed BFO computing. 
This control approach outperforms the trial-and error method in 
traditional motion controllers. The objection function of the 
proposed BFO is defined based on the weighted integral square 
error (ISE), expressed by  

( ) ( ) ( )( )2 2 2

0

t

bfo e e eF w x y dτ τ θ τ τ= + +∫              (15) 
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Fig. 3. Simulation result of the circular trajectory tracking. 
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Fig. 4. Tracking errors of the circular trajectory tracking. 
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Fig. 5. Controller’s output to the four omnidirectional wheels. 

where bfow is a weighting factor, ex and ey are the position 

errors. eθ  is the error of vehicle’s orientation of the 
four-wheeled Mecanum autonomous vehicles. 

IV. SIMULATION RESULTS AND DISCUSSIONS 
The first simulation is conducted to examine the 

effectiveness of the proposed BFO-based evolutionary 
controller. The desired trajectory is a circular trajectory: 
[xd(t), yd(t), θd(t)]T = [200cos(ωit) cm, 200sin(ωit) cm, π/4rad]T,
ωi=0.15 rad/sec The initial pose is set at the origin. Fig. 3 
presents the simulation result of circular trajectory tracking and 
Fig. 4 depicts the tracking errors for the four-wheeled 
Mecanum vehicle with BFO parameter tuning. All the errors 
converge to zero in 5 seconds. The controller’s output to the 
four omnidirectional wheels is presented in Fig. 5. As shown in 
Figs. 3-5, the proposed BFO optimal redundant controller (8) 
successfully steers the vehicle to track this circle trajectory with 
satisfactory performance.  
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Fig. 6. Simulation result of the Lemniscate curve trajectory tracking. 

Time(0.1sec.)

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

Tr
ac

ki
ng

 e
rro

r

-200

-150

-100

-50

0

50

x
e  (cm)

y
e  (cm)

theta
e  (rad)

 
Fig. 7. Tracking errors of the Lemniscate curve trajectory tracking. 
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Fig. 8. Simulation result of the Lemniscate curve trajectory tracking. 
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Fig. 9. Fitness value of the BFO-based controller to achieve the Lemniscate 

curve tracking. 

This second simulation is used to investigate the tracking 
performance of Lemniscate curve trajectory using the proposed 
BFO parameter tuning method. The desired trajectory is: 
[xd(t), yd(t), θd(t)]T = [200cos(ωit) cm, 200sin(2ωit) cm, 0rad]T,
ωi=0.2 rad/sec. The initial pose is set at the origin.  Fig. 6 
presents the simulation result of the optimal BFO controller to 

track this special trajectory. The tracking errors of position and 
orientation are depicted in Fig. 7.  

Moreover, Fig. 8 depicts the controller’s output of the 
proposed BFO control scheme. The convergent behavior of the 
intelligent BFO controller is depicted in Fig. 9. These 
simulation results clearly indicate that the proposed BFO-based 
controller with parameter tuning steers the four-wheeled 
Mecanum vehicle to track this trajectory. 

V. CONCLUSIONS 
This paper has presented an evolutionary parameter tuning 

method of optimal motion control for Mecanum mobile robots 
using BFO computing paradigm. By considering the derived 
vehicle kinematics and Lyapunov stability theory, an optimal 
motion control law is synthesized using the natured-inspired 
BFO paradigm. The control parameters are well-tuned to obtain 
optimal performance by means of the BFO computing approach. 
Simulation results illustrate the merit and effectiveness of the 
proposed BFO-based optimal controller for Mecanum mobile 
vehicles. 
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 Abstract- This paper proposed the design of an underactuated 
robot controller based on polynomial fuzzy systems. First, we 
obtain the nonlinear state equations by the properties of the 
underactuated robot systems. Second, the polynomial fuzzy model 
can be constructed by the nonlinear state equations. We apply the 
strategy of parallel distributed compensation to design the 
nonlinear controller. To guarantee the stability of the 
underactuated robot system, the constraint conditions are derived 
using the polynomial Lyapunov function. Furthermore, the 
stability conditions are represented in terms of sum of squares of 
the polynomial fuzzy model. In order to improve the performance 
of control system, we use the SOSTOOL to design the polynomial 
fuzzy controller. 

Index Terms—Underactuated robot, polynomial fuzzy systems, 
sum-of-squares. 

I. INTRODUCTION 

HE Takagi-Sugeno (T-S) fuzzy control approach includes 
T-S fuzzy model, parallel distributed compensation (PDC) 

controller, and quadratic Lyapunov function-based stability 
analysis [1]. The T-S fuzzy model can exactly describe a 
nonlinear system with IF-THEN rules by the sector nonlinearity 
concept, and the PDC controller is constructed based on the 
same membership with T-S fuzzy model. Finally, the stability 
analysis ensures the controlled system is stable. The T-S fuzzy 
control has been widely applied in many engineering problems 
[2]-[7]. 

In 2009, the polynomial fuzzy control with sum-of-squares 
(SOS) approach was proposed [8]. The polynomial fuzzy model 
and controller are more general and effective presentation than 
T-S fuzzy model and PDC controller. The stability conditions of 
the polynomial fuzzy control are presented in tern of SOS. 
Solving the stability conditions via SOSTOOL [9], the 
controller is carried out. Recently, the polynomial fuzzy control 
has received great attentions [10]-[16]. 

In this paper, the controller of a Pendubot system is designed 
by polynomial fuzzy control. First the fuzzy model of the 

 
 
Gwo-Ruey Yu is with Department of Electrical Engineering, National 

Chung Cheng University, Chia-Yi, Taiwan   (e-mail: ieewoyu@ccu.edu.tw). 
Yu-Shan Chiu is with Graduate Institute of Opto-Mechatronics, National 

Chung Cheng University, Chia-Yi, Taiwan. 
Yu-Chia Huang  is with Department of Electrical Engineering, National 

Taiwan Ocean University, Keelung, Taiwan. 
Hsu-Chih Huang and Shao-Kang Lin are with the Department of Electrical 

Engineering, National Ilan University, Yilan, Taiwan. 
(Corresponding author Hsu-Chih Huang, email: hchuang@niu.edu.tw) 

Pendubot is built by linearization and fuzzy membership 
functions. By the SOS-based stability conditions, the feedback 
gains are obtained. There are some experiments about 
regulation, tracking, disturbance rejection, and uncertainty, 
respectively. In order to achieve the performance requirement, 
the pole placement method is used to seek the control gains, and 
then the stability of the fuzzy system can be ensured by Theorem 
1 proposed in this paper. 

This paper is organized as follows. Section II includes the 
introduction of the polynomial fuzzy model and controller, a 
proposition, a lemma, and a theorem. Section III describes the 
Pendubot system and its fuzzy model. Section IV presents the 
results. Section V gives conclusions. 

II. Polynomial Fuzzy Control  

A. Polynomial Fuzzy Model 
Using polynomial fuzzy modeling, a nonlinear equation can 

be represented by several subsystems. The  thi  subsystem is 
defined as: 

Rule i : 
ippi MtzMtz  is )( ANDAND  is )( IF 11  ,                             

.21 ,)())(())((ˆ))(()( THEN ,r,,itutxtxxtxtx ii 

 =+= BA (1) 

Therefore, the total output of the polynomial fuzzy system 
can be described as: 

{ })())(())((ˆ))(())(()( tutxtxxtxtzhtx ii

r

i
i BA += ∑ .      (2) 

where 1))((
1

=∑
=

r

i
i tzh , ]10[))(( ∈tzhi  for all i , 

∑ ∏

∏

= =

=









=

r

k

p

j
jM

p

j
jM

i

tz

tz
tzh

kj

ij

1 1

1

))((

))((
))((

µ

µ
                      (3) 

where r  is the number of the rules; p is the number of the 
premise variables; )(,),(1 tztz p  are the premise variables and 

)](,),([)( 1 tztztz p= ; nRtx ∈)( is the state vector, and 
NRtxx ∈))((ˆ is a vector whose entries are defined as 

nv
n

vv xxx 

21
21 , where 1v , 2v , …, nv  are nonnegative integers; 
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mRtu ∈)( is the input vector; Nn
i Rtx ×∈))((A , 

mn
i Rtx ×∈))((B are polynomial matrices; ipM  is the fuzzy set; 

and ))(( tz jMij
µ  is the grade of membership of )(tz j  in ijM . 

A. Polynomial Fuzzy Controller 
The polynomial fuzzy controller shares the same membership 

with polynomial fuzzy model. Every rule is presented as 
follows. 

Rule i : 
, is )( ANDAND  is )( IF 11 ippi MtzMtz                               

.21 ,))((ˆ))(()( THEN ,r,,itxxtxtu i =−= F                     (4) 

The overall of the controller is expressed as 

))((ˆ))(())(()(
1

txxtxtzhtu i

r

i
i F∑

=

−=                    (5) 

where Nm
i Rtx ×∈))((F  is polynomial matrices. 

Combing the polynomial fuzzy model and controller, the total of 
the closed-loop control system can be described as 

{ } ))((ˆ))(())(())((                   

))(())(()(
1 1

txxtxtxtx

tzhtzhtx

jii

r

i

r

j
ji

FBA −×

= ∑∑
= =



       (6) 

B. Sum of Squares 
A sum of squares polynomial ))(( txf  can be decomposed 

as ))(())(())(())(( 22
2

2
1 txftxftxftxf m+++=   

where ))((1 txf , ))((2 txf , …, ))(( txfm  are polynomial. 
Proposition 1 is utilized in Lemma 1 and Theorem 1. 

Proposition 1 [16]: Let NNRtx ×∈))((G  be a symmetric 
polynomial matrix of degree d2 , ))((ˆ txx  is a column vector, 
and P is a positive semidefinite matrix. In addition, the entries 
of ))((ˆ txx  are all monomial with degree no greater than d  
in nRtx ∈)( , and consider the following conditions. 

1) The     polynomial      )())(()( ttxtT φφ G     equal     to 
)))((ˆ)(()))((ˆ)(( txxttxxt T ⊗⊗ φφ P  where ⊗ denotes the 

Kronecker product. 
2) The polynomial )())(()( ttxtT φφ G is an SOS, where 

NRt ∈)(φ . 
3) 0))(( ≥txG for all nRtx ∈)( . 

Then, )2()1( ⇔  and )3()2( ⇒ . 

C. Stability Conditions 
In this section, x is instead of x(t). Ai

k denotes the kth row of Ai. 
km is the row indices of Bi(x)whose corresponding row is equal 
to zero, and define ),,,(~

21 kmkk xxxx = and { }mkkk ,,, 21 =K . 

Lemma 1 [8]: If there exist a symmetric polynomial matrix 
NNRx ×∈)~(X and a polynomial matrix Nm

i Rx ×∈)(M satisfy (7) 

and (8), the stability of (6) can be guaranteed.  

( ) SOS is )()~( 1 φεφ IX xxT −                                          (7) 

(

)(ˆ)()~(        

)()()()()()~(        

)()()()~()()(        
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) jixxxxx
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X

ij
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k k

≤+
∂
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− ∑
∈

 SOS, is )()(ˆ)()~( 2 φε IA
K

   (8) 

where 0)(1 >xε is a nonnegative polynomial for 0≠x . 
0)(2 ≥xijε  is a nonnegative polynomial for all x . NR∈φ is a 

vector that is independent of x . nNRx ×∈)(Q is a polynomial 
matrix whose th),( ji  entry is given by ))(ˆ()( xxxxQ ji

ij ∂∂= . 
The stabilizing feedback gain )(xiF  is defined 
as )~()()( 1 xxx ii

−= XMF . 

Assume the )(xiF is known, lemma 1 can be rewritten as 
follows. 

Theorem 1: Assume )(xiA , )(xiB , and )(xjF  are known, the 
stability of (6) is guaranteed if there exist a positive semidefinite 
polynomial matrix )~(xP  such that (9) and (10) hold. 

( ) SOS is )()~( 1 φεφ IP xxT −                                           (9) 

( )(
( )

( )
( )

)(ˆ)()~(         
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) jixxxxx
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∂
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+ ∑
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 SOS, is )()(ˆ)()~( 2 φε IAP
K

 (10) 

where 0)(1 >xε is a nonnegative polynomial for 0≠x . 
0)(2 ≥xijε  is a nonnegative polynomial for all x . NR∈φ is a 

vector that is independent of x . nNRx ×∈)(Q is a polynomial 
matrix whose th),( ji  entry is given by ))(ˆ()( xxxxQ ji

ij ∂∂= . 

III. Polynomial Fuzzy Control of Pendubot System 

A. Pendubot System 
Fig. 1 shows the structure of the Pendubot system. Fig. 2 

shows the scheme of the Pendubot model. 
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Fig. 1. The Pendubot system. 

 
Fig. 2. The Pendubot scheme. 

The motion equation of the Pendubot can be presented as 

τFGCD =+++ )()(),()( θθθθθθθ            (11) 

where [ ]T21 θθθ = , [ ]T01τ=τ  is the input vector, 


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DD
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
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C
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θθ C , 







=

2

1)(
G
G

θG , 

Tkk ][)( 2211 θθθ µµ
 =F  

{ } 21221
2
2

2
12

2
1111 )cos(2 zzzzccc IIllllmlmD +++++= θ  

{ } 2221
2
2212 )cos( zzcc IlllmD ++= θ  

2
2
2222 zzc IlmD +=               )sin(2 2221211 θθcllmC −=  

)sin( 2221212 θθcllmC −=     )sin( 2121221 θθcllmC =  
{ }) sin()sin()sin( 2121121111 θθθθ ++−−= cc llgmglmG  

) sin( 21222 θθ +−= cglmG  

TABLE I THE PARAMETER OF TWO-LINK ROBOT ARM. 
Symbol Value Statement 

1m  Kg8293.0  The mass of link 1 

2m  Kg3402.0  The mass of link 2 

1l  m2032.0  The lengths of link1 

2l  m3841.0  The lengths of link 2 

1cl  m1551.0  The distances to the center of mass of link 1 

2cl  m1635.0  The distances to the center of mass of  link 2 

1zzI  2005.0 mKg ⋅  The moment of inertia of link 1 

2zzI  20043.0 mKg ⋅  The moment of inertia of link 2 

1µk  sKg /00545.0  The friction constant of 1θ  

1µk  sKg /00047.0  The friction constant of 2θ  
g  28.9 −ms  The gravity 
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Fig. 3. The membership function of fuzzy model. 

B. Linearization and Fuzzy Modeling 
The motion equation of the Pendubot can be described as 

)),(),(((t) ttutxfx = , where Ttx ][)( 2211 θθθθ = and 

1)( τ=tu . 

Choose the premise variable )()( 3 txtz =  with the following 
five-rule fuzzy model, and using Taylor series to linearize the 
system with the equilibrium point, we can obtain the matrices 

iA and iB from different equilibrium point, where 

ii ux
i x

ttutxf

,

)),(),((:
∂

∂
=A ,

ii ux
i u

ttutxf

,

)),(),((:
∂

∂
=B ,   (12) 

ix and iu is the equilibrium point of rule i , and every 
equilibrium point must satisfy 9021 =+θθ . 

Rule 1: If )(tz  is about 70− , 
Then )()()( 11 tutxtx BA +=                                       

Rule 2: If )(tz  is about 35− , 
Then )()()( 22 tutxtx BA +=                                      

Rule 3: If )(tz  is about 0 , 
Then )()()( 33 tutxtx BA +=                                      

Rule 4: If )(tz  is about 35 , 
Then )()()( 44 tutxtx BA +=                                      

Rule 5: If )(tz  is about 70 , 
Then )()()( 55 tutxtx BA +=                                      

The final output of the fuzzy model and controller are 
described by 

{ })()())(()(
5

1
tutxtzhtx ii

i
i BA += ∑

=

              (13) 

and 

)())(())(()(
5

1
txtxtzhtu i

i
i F∑

=

−=                 (14) 

where 

Link2 

Table Link1 

Encoder1 Motor 

Encoder2 

x 

2cl  

21 θθ +  

1m  

2m  

1l  

1θ  
1zzI  

2θ  

1cl  

y 
2zzI  

2l  
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3B , 

24 AA = , 24 BB = , 15 AA = , 15 BB =  

IV. RESULTS 

A. Regulation Control 
The following gains are obtained by LMI-based T-S fuzzy 

control. 
[ ]1.2373.15072.3039.15871 −−−−=G  
[ ]8.1630.10425.2096.10962 −−−−=G  
[ ]5.654.4178.839.4373 −−−−=G  

24 GG = , 15 GG =  
where the eigenvalues of P are 50691.340, 0.044, 0.969, 0.667, 
respectively. 

By lemma 1, the feedback gains can be obtained as follows. 
211
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114131211111 )( xxFxFxFxFxFxFFx gfedcba ++++++=F  
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Fig. 4. The system responses of regulation control. 
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Fig. 5. Comparison of the system performance. 

where the eigenvalues of P are 24297.160, 0.004, 0.090, 0.067, 
respectively. The feedback gains ioibia FFF ,,,   can be 
obtained by using the SOSTOOL. System responses are shown 
in Fig. 4 with Tx ]46.117046.1120[)0( = . The system 
performance is measured by 

( ) dttetetE T
Perf ∫= )()()(. ,                 (15) 

where ][)( 31 xxEPte −= . ]090[ =EP  is a equilibrium 
point. Fig. 5 shows the variation of system performance. 

B. Step Tracking 
Let the closed-loop system track a reference signal, the 

system responses are shown in Fig. 6. 
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Fig. 6. The state variations of step tracking control. 
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Fig. 7. The state responses with disturbance. 

C. Disturbance Rejection 
Fig. 7 shows the system response with disturbance where the 

disturbance is given as follows 








<≤
<≤

−=
other  ,

1211  ,
1110  ,

0
10
10

)( t
t

tv                          (16) 

D. Feasible Area with Uncertainty 
Let the fuzzy system includes model uncertainty, it can be 

rewritten as  

( ){ })()())(()( tutxtzhtx iii

r

i
i BBA ∆+−= ∑          (17) 

where T
iii ])1,4(0)1,2(0[ 21 BBB ×∆×∆=∆ , 1∆ and 2∆  are 

the uncertainty percentage. )1,2(iB  deotes the (2,1)th entry of 

iB . )1,4(iB  denotes the (4,1)th entry of iB . 

Fig. 8 shows the feasible area of 0≥P  between SOS-based 
polynomial fuzzy control and LMI-based T-S fuzzy control. 
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Fig. 8. Feasible area by different fuzzy control approach. 
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Fig. 9. Feasible area of system performance. 

E. Feasible Area of System Performance 
From section IV-A, the stability of the Pendubot system can 

be guaranteed by lemma 1, but there is no visible difference in 
system responses between SOS-based polynomial fuzzy control 
and LMI-based T-S fuzzy control. In this section, consider the 
feedback gains are determined by the pole placement method 
first such that the system performance requirement can be 
achieved. Then, the stability of the Pendubot system can be 
ensured by Theorem 1. Fig. 9 shows the feasible area of 0≥P  
between Theorem1 and T-S fuzzy control. 

V. CONCLUSION 
The controller design of the Pendubot by using polynomial 

fuzzy model and sum-of-squares approach was proposed. The 
stability of the Pendubot can be guaranteed by SOS-based 
polynomial fuzzy control. According to Fig. 7, the control gains 
obtained from polynomial fuzzy control is more effective in 
disturbance rejection. Fig.8 illustrates that the SOS-based 
polynomial fuzzy control is a better approach to deal with the 
fuzzy uncertain model. Last, the performance requirement can 
be achieved by the pole placement method, and Fig. 9. shows 
the polynomial fuzzy control with Theorem 1 is more useful to 
determine the feasible area for the stability of the Pendubot 
system than T-S fuzzy control. 



Yu et. al.      
Sum of Squares-based Control of an Underactuated Robot Using Polynomial Fuzzy Model 

42 

REFERENCES 
[1] K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and 

Analysis: A Linear Matrix Inequality Approach. New York: 
Wiley, 2008. 

[2] H. K. Lam and S. C. Tan, “Stability analysis of 
fuzzy-model-based control systems: application on regulation of 
switching DC–DC converter,” IET Journal of Control Theory & 
Applications, vol. 3, no. 8, pp. 1093-1106, 2009. 

[3] M. Biglarbegian, W. W. Melek and J. M. Mendel, “On the 
stability of interval type-2 TSK fuzzy logic control systems,” 
IEEE Trans. Syst., Man, Cybern., vol. 40, no. 5, pp. 798 - 818, 
June 2010. 

[4] M. Narimani, H. K. Lam, R. Dilmaghani, and C. Wolfe, 
“LMI-based stability analysis of fuzzy-model-based control 
systems using approximated polynomial membership functions,” 
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 41, no. 3, pp. 
713–724, Jun. 2011. 

[5] Y. J. Chen, H. Ohtake, K. Tanaka, W.-J. Wang and H. O. Wang, 
“Relaxed stabilization criterion for T-S fuzzy systems by 
minimum-type piecewise Lyapunov-function-based switching 
fuzzy controller,” IEEE Trans. Fuzzy Syst., vol. 20, no. 6, pp. 
1166-1173, Dec. 2012. 

[6] Qiu, G. Feng, and H. Gao, “Static-output-feedback H∞ control of 
continuous time T-S fuzzy affine systems via piecewise 
Lyapunov functions,” IEEE Trans. Fuzzy Syst., vol. 21, no. 2, pp. 
245–261, Apr. 2013. 

[7] J.-Y. Chang and C.-T. Lin, “A TSK-type-based self-evolving 
compensatory interval type-2 fuzzy neural network (TSCIT2FNN) 
and its applications,” IEEE Trans. Industrial Electronics, vol. 61, 
pp. 447 - 459, Jan. 2014. 

[8] K. Tanaka, H. Yoshida, H. Ohtake, and H. O. Wang, “A 
Sum-of-Squares Approach to Modeling and Control of Nonlinear 
Dynamical Systems with Polynomial Fuzzy System,” IEEE Trans. 
Fuzzy Systems, vol. 17, No. 4, Aug. 2009. 

[9] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, 
SOSTOOLS: Sum of Squares Optimization Toolbox for MATLAB, 
Version 2.00, California Inst. Technol., Pasadena, 2004. 

[10] H. K. Lam, “Stabilization of nonlinear systems using 
sampled-data output-feedback fuzzy controller based on 
polynomial-fuzzy-model-based control approach,” IEEE Trans. 
Syst., Man, Cybern., vol. 42, no. 1 pp. 258 - 267, Feb. 2012. 

[11] K. Tanaka, H. Ohtake, T. Seo, M. Tanaka, and H. O. Wang, 
“Polynomial fuzzy observer designs a sum-of-squares approach,” 
IEEE Trans. Syst., Man, Cybern., vol. 42, no. 5, pp. 1330 - 1342, 
Oct. 2012. 

[12] H. K. Lam, C. Liu, L. Wu and X. Zhao, “Polynomial 
fuzzy-model-based control systems: stability analysis via 
approximated membership functions considering sector 
nonlinearity of control input,” IEEE Trans. Fuzzy Systems, vol. 
23, no. 6, pp. 2202-2214, 2015. 

[13] K. Tanaka, M. Tanaka, Y. J. Chen, and H. O. Wang, “A new 
Sum-of-Squares design framework for robust control of 
polynomial fuzzy systems with uncertainties,” IEEE Trans. Fuzzy 
Syst., vol. 1, no. 11, pp. 1, April. 2015. 

[14] G. R. Yu, Y. C. Huang and C. Y. Cheng, “ Robust H∞ 
controller design for polynomial fuzzy control systems by 
sum-of-squares approach,” IET Control Theory Appl., vol. 10, 
no.11, pp. 1684 - 1695, Sep. 2016. 

[15] X. Li, H. K. Lam, F. Liu and X. Zhao, “Stability and stabilization 
analysis of positive polynomial fuzzy systems with time delay 
considering piecewise membership functions,” IEEE Trans. 
Fuzzy Systems, vol. 25, no. 4, pp. 958-971, 2017. 

[16] S.Prajna, A. Papachristodoulou, and F. Wu, “Nonlinear Control 
Synthesis by Sum of Squares Optimization: A Lyapunov-Based 

Approach,” in Proc. Asian Control Conf., pp. 157-165, Feb. 
2004. 

 
 

Gwo-Ruey Yu received the Ph.D. degree in 
Electrical Engineering from the University of 
Southern California, Los Angeles, in 1997. He is 
currently a Professor of Electrical Engineering 
Department and the Director of Elegant Power 
Application Research Center, National Chung Cheng 
University, Taiwan. Dr. Yu is respectively the 
recipients of the Best Paper Award of IEEE 2017 
International Automatic Control Conference, the 
Advisor Award of Robotic Society of Taiwan in 2018, 
the Best Paper Award in Application of IEEE 2016 

International Conference on Fuzzy Theory and It's Applications, the 
Outstanding Paper Award of IEEE 2016 International Automatic Control 
Conference, the Best Paper Award of 2018 International Conference on 
Advanced Robotics and Intelligent Systems. His research interests include 
intelligent robots, automatic control based on artificial intelligence, and 
renewable energy systems. 
 
 

Yu-Shan Chiu received the B.S. degree from Chung 
Yuan Christian University, Taoyuan City, Taiwan, in 
2017. She is currently a student at Graduate Institute 
of Opto-Mechatronics, National Chung Cheng 
University, Chia-Yi, Taiwan. She received the Second 
Place Prize of the Best Paper Award of 2018 
International Conference on Advanced Robotics and 
Intelligent Systems, in 2018. Her research interests 
include intelligent robots, fuzzy systems, and 
intelligent control. 
 

 
 
 

Yu-Chia Huang received the B.S. degree in electrical 
engineering from I-Shou University, Taiwan, in 2007, 
the M.S. degree in electrical engineering from 
National Ilan University, Taiwan, in 2009, and the 
Ph.D degree in electrical engineering from National 
Taiwan Ocean University, Taiwan, in 2017. He 
received the Outstanding Paper Award of IEEE 2016 
International Automatic Control Conference, in 2016. 
His research interests include intelligent systems and 
control, and nonlinear system control.  
 

 
 



iRobotics 
Vol. 2, No. 1, March, 2019 

 

43 

 Abstract- In this study, learning methodologies for end-to-end 
autonomous driving are considered. Previous work has 
demonstrated the possibility of modern deep neural networks 
(DNNs) to mimic human driving. This study is aimed at exploring 
the use of a monocular camera for driving in complex and 
unstructured paths such as messy hallways or off-road trails. 
Existing driving DNN architecture is employed with different data 
manipulation strategies that consists of dataset balancing, data 
preprocessing and data augmentation. To the best of evaluation, a 
series of experiments are conducted on the Udacity driving 
simulator for quantifying the course following accuracy. Usually, 
there are more straight line then taking tacking the turn. This 
creates unbalance issues in the driving dataset obtained. In our 
study, meaningful data augmentation is considered to create more 
driving data by simulating left and right driving image. With 
appropriately assigned steering commands, as shown in our 
experiments, augmented data help improvement of the learning 
model to be more robust in autonomous driving. In the study, a 
new objective function is also considered in learning so as to 
increase sharp turn stability in driving. With this new objective 
function, the model used can learn under-represented sharp-turn 
scenario. This makes the system able to drive on racing tracks and 
even narrow mountain roads. Finally, by using the 
VisualBackProp technique, the road features learned from 
training data are able to be determined and to evaluate end-to-end 
learning systems. 

Index Terms—End-to-end learning, Autonomous driving, Data 
augmentation, Robotics platform. 

I. INTRODUCTION 

OWDAYS, the majority of autonomous vehicles have 
been developed to be able to successfully navigate through 

an urban environment. However, most of the autonomous 
systems consist of overly complex and expensive technical 
components such as object perception, localization, trajectory 
planner, and control system. These systems require costly 
sensors, high definition map, and powerful processors to be 
able to operate. Until nearly a decade, there have been 
breakthroughs on hardware technologies. Since then, neural 
network-driven learning has made a major breakthrough in 
visual recognition [1-3]. Neural network has regained 
everyone’s attention. Deep Convolutional Neural Networks can 
solve many pattern recognition and computer vision problems 
and set all sorts of new records in various competitions. Deep 
learning is able to learn the best representations from raw input 
data without any handcrafted features [4,5]. Among them, 
Convolutional Neural Networks (CNNs) are the most powerful 
deep learning model, achieving several state-of-the-art results 
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in ImageNet challenge using AlexNet [1]. This success was 
employed in autonomous driving in lane mark and vehicle 
detection in [2].  

End-to-end deep learning for autonomous vehicles is to learn 
driving actions directly from image data obtained with the use 
of deep learning schemes. Such an approach removes all those 
stages in traditional autonomous vehicles and replaces them 
with just a single neural network. Without hand-engineering, 
deep learning schemes self-optimize the system based on data. 
However, this data-driven network requires a huge amount of 
data that cover all driving scenarios to learn driving policies 
from a human driver. Unlike other classification problems that 
require human labeling, fortunately, collecting driving data and 
corresponding control commands for end-to-end autonomous 
driving is not a heavy task. Human driving data can be directly 
recorded on the road. This property makes end-to-end driving 
feasible and valuable for both academic and industrial research. 

In this paper, the study on training strategies of end-to-end 
autonomous driving systems is reported. The proposed training 
strategies consist of meaningful data augmentation and new 
objective function for unbalanced data. A new loss function is 
proposed in this study to resolve sharp turn failure. From our 
experiments, it is evident that the proposed loss function indeed 
can result in successfully driving in various situations. A series 
of experiments are conducted to optimize hyper-parameters of 
the proposed training strategy with the use of the Udacity 
Driving Simulator [6]. Furthermore, to effectively evaluate the 
learning performance, the proposed training strategies uses 
VisualBackProp[22] techniques to visualize what the neural 
network has learned from training data. This paper presents our 
study on the end-to-end learning approach for directly 
generating proper steering angles from images obtained from a 
front-face camera. The driving model is trained and evaluated 
by a self-recording dataset in the simulator. The following 
contributions of this work are concluded: 

•A training methodology for an end-to-end autonomous 
driving system is considered and verified. The methodology 
of how to train an end-to-end driving system is described in 
details including data preparation strategy, network 
architecture and hyper-parameter. 

•Meaningful data augmentation techniques for robust 
driving that emulates different positions of the car on the 
lane. Unlike recording three different orientation from cameras 
as NVIDIA paper proposed, our system uses only one-center 
front-face camera. The perspective transformation is 
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considered on center driving images to create left and right 
driving images. In our study, the unbalanced data problem is 
also tackled. 

•New objective function that increases robustness as car 
driving through sharp turns. In practice, more data in straight 
than that of taking sharp turns on the road. Due to this fact, the 
driving data collected are unbalanced. Common objective 
functions (mean square error (MSE) and mean absolute error 
(MAE)) are to match the majority of dataset, namely the 
straight driving data. As a result, the network learned has more 
errors on a sharp turn scenario. A new objective function is 
proposed to punish more on sharp turns. The new objective 
function indeed can resolve the above problem.  

The structure of the remainder of this paper is as follows: 
Section 2 introduces related work of traditional approaches and 
deep learning approaches for autonomous vehicles. Section 3 
describes the details of the proposed training strategies and the 
way of implementation, including data augmentation and the 
objective function proposed. Section 4 discusses the 
experimental results and in Section 5, the conclusions of this 
work are given. 

II. RELATED WORK 
Nowadays, the development of autonomous driving can be 

divided into two distinct methods, the traditional robotics 
approach and the deep learning approach. Over the years, 
various types of perception systems and their optimization 
techniques have been proposed for autonomous navigation. The 
robotics approach decomposes the driving into individual tasks, 
such as lane detection [1], localization and motion planning. 
Recent work on autonomous driving is about using deep neural 
networks for image-based localization [9, 10] and trajectory 
planning [11]. Those techniques are briefly introduced in the 
following. 

In order to achieve autonomous driving, researchers in the 
field of robotics will first derive a series of motion models for 
vehicles to achieve robust vehicle control. 

Among the common control methods, MPC has achieved 
success in semi-autonomous driving and autonomous driving 
[12-14]. The MPC scheme proposed uses a dynamic vehicle 
model [15] combined with linear [14] and tire models [12]. To 
have autonomous driving, the surrounding environment of the 
self-driving car needs to be properly identified. The moving 
objects are recognized by using multiple radars, LIDAR and 
visual sensors mounted on the vehicle. Based on the distance 
between the moving object and the shape of the object sensed, 
the vehicle is able to identify other vehicles, pedestrians and its 
surrounding scene. In [16], the CNN network is employed to 
identify signs on the road. Support vector machine (SVM) is 
considered to identify pedestrian movements in [17]. In 
DeepLanes [18], a camera is used to estimate the lane position 
on both sides of the car. It can be seen that those are to achieve 
certain tasks in autonomous driving. 

On the contrast, a deep learning approach is to replace all 
these processes by a single deep neural network. The system 

 
Figure 1. Driving image from Campus hallway (left) and Udacity driving 

simulator (right). 

 
Figure 2. Udacity Driving Simulator. 

learns how to drive by mimicking human behavior. End-to-end 
learning for self-driving can date back to 1989. Pomerleau [8] 
built a control system for a vehicle with a Neural Network 
system called ALVINN. It applied an end-to-end 
fully-connected neural network that successful drive a car on 
public roads. LeCun proposed DAVE [19] in 2005. DAVE used 
a convolution neural network for end-to-end obstacle 
avoidance. In 2016, Bojarski et al. [7] demonstrated a DAVE-2 
system can successful drive a full sized vehicle. It used modern 
deep learning techniques and a trained convolution neural 
network to infer appropriate steering angles given as input only 
front-face camera images. The above work has proven the 
prospect of a deep end-to-end architecture that is directly 
perceived in autonomous driving. Most notably, in [7], by 
recording driving video and vehicle steering angles, standard 
convolution neural networks are used only to successfully drive 
full-sized vehicles on typical roads, even in bad weather 
conditions. These end-to-end systems have demonstrated the 
feasibility of highly autonomous end-to-end imitation learning. 

Our work is partly inspired by, and is most closely related to, 
DARPA Autonomous Vehicle research [19] in which a 
subscale radio control (RC) car drove through a narrow alley. 
Recent work [20] proposed 1/5 scale AutoRally truck platform 
that carry a full desktop computer and perform autonomous 
racing on real world track. Today’s hardware are much 
powerful to explore deeper neural networks on embedded 
devices. [3] demonstrated such hardware systems are able to 
run end-to-end network and drive their 1/5 scale truck in the 
real world. Above successful research motivated us to build a 
small-scale vehicle to explore end-to-end learning in pursuit of 
autonomous driving. 

III. MEANINGFUL DATA AUGMENTATION FOR SELF-DRIVING 
CAR 

This section describes the proposed data augmentation 
method for image captured on driving by a center car camera so 
as to resolve unbalance dataset problems. The method of 
estimating new steering angles on augmented driving images is 
also described. Furthermore, a novel objective function for 
robustly driving is also proposed in this section. 

A. System Overview 
Our study demonstrates the end-to-end learning on driving in 

a computer simulator and real-world driving. Both experiments 



iRobotics 
Vol. 2, No. 1, March, 2019 

 

45 

 
Figure 3. Flowchart of training pipeline. 

are in unstructured environments, as shown in Figure 1. An 
end-to-end deep neural network is employed for predicting 
steer control commands from camera images. In data collection, 
a third person environment view (center camera) with a 
resolution of 800x600 pixels is presented to the human driver. 
The driver uses the keyboard to control the simulated vehicle 
throttle and moves the mouse slightly adjust steering wheel, as 
shown in Figure 2. 

In the learning phase, the car learns to end-to-end control by 
CNN based on driving image and steering angle pairs in the 
training dataset. Our training and testing system as shown in 
Figure 3. In the figure, the purple part is the main program 
about training the neural network. The yellow and green parts 
are the training and the testing data generators. Those three 
programs are executed at the same time for real-time generation 
of augmented training data. 

 
Figure 4. Typical Data augmentation. 

B. Data Augmentation 
As mentioned, in the training of our study, data argument is 

implemented to enrich the data distribution. The data 
augmentation pipeline used in our study consists of typical 
augmentation methods and some proposed data transformation. 
Those schemes used are random horizontal flips with 
appropriate steer command changes (20%), random Gaussian 
blurriness (20%), random brightness (20%), random shadow 
(20%) and proposed random image viewpoint transformations 
with appropriate steer command changes (20%). An example of 
the former 4 schemes are shown in Figure 4. 

If training dataset only contains the central camera images, 
the car may soon leave the track and be crashed. This is because 
dataset only record ideal driving scenario and the neural 
network does not know what to do when vehicle is slightly 
drifting. One way to resolve this problem is to record recover  

 
Figure 5. Source and destination points of left/right perspective projection. 
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Figure 6. Overlap perspective transformed image with left/right camera image. 

 
Figure 7. Perspective transformation mapping. 

driving while driving from the roadside to the middle of the 
road. Another way is to use three cameras to simultaneously 
record center and both sides of the road image. Inspired by the 
work in [7] where three front-facing cameras are mounted on 
the car and training data collected from the three different 
perspectives on a road. By assigning appropriate steering 
commands to the left and right driving images, the situations of 
the vehicle drifting on the road can be emulated and the car 
driving commands assigned are to steer the car back to the 
center of the lane. 

The simplest way to create augmented left and right images 
is horizontally shifted entire image for 30 pixels. However; this 
method will introduce distortion on road features. As a result, 
perspective transform is applied for the center driving images to 
emulate the car on different positions on the road and the 
corresponding steering commands are assigned to those 
transformed images. Figure 5 illustrates transformation 
mapping from center to left/right images, in which the red 
quadrangle stands for source points. The source points are 
project to destination points (green/blue points) for left/right 
driving images. The proposed method is compared with 
directly shift in Figure 6. By overlapping images real left/right 
camera image and simulated left/right images, the proposed 
method has the same road feature without distortion. An image 
generator is implemented that takes the original driving images 
as input and generates multiple perspective driving images. By 
using the simulated left and right driving images, the dataset 
size became at least 3 times larger. In our implementation, 
randomly transformed driving images is also considered for 
generate more driving images. The random transformation is 
from 0 to 5 (degree) offset of original images as shown in 
Figure 7. 

 

TABLE I. METHODS OF FILLING IN BACKGROUND AREA. 

Methods Sample Images 

3 cameras training 
(left/center/right) 

 

Original black color 
center camera with aug 

 

Random color 
center camera with aug 

 

Random pixel color 
center camera with aug 

 

Replicate border color 
center camera with aug 

 
 

TABLE II. METHODS OF FILLING IN BACKGROUND AREA. 

Metrics 
Autonomy  
(3/3 laps) 

RMSE CTE 

Track Lake Jungle Lake Jungle Lake Jungle 
3 cameras training 
(left/center/right) 3/3 3/3 0.17964 0.57641 11509.30 36137.97 

Original black color 
center camera with aug 2.047/3 3/3 0.12009 0.54753 8880.43 36561.22 

Random color 
center camera with aug 3/3 3/3 0.12606 0.55192 9067.61 34718.61 

Random pixel color 
center camera with aug 3/3 3/3 0.12251 0.54640 9109.62 36094.34 

Replicate border color 
center camera with aug 3/3 3/3 0.13486 0.56370 8575.66 36235.76 

 
TABLE III. RECOVER STEERING ANGLE EXPERIMENTS. 

Metrics 
Autonomy  
(3/3 laps) 

RMSE CTE 

Track Lake Jungle Lake Jungle Lake Jungle 
Shift 1.25 deg. 0.165/3 0.365/3 0.1224 0.5318 - - 
Shift 2.5 deg. 3/3 0.285/3 0.1222 0.5352 10634.6787 - 
Shift 5 deg. 3/3 3/3 0.1266 0.5423 10264.1566 37577.7391 
Shift 10 deg. 3/3 1.65/3 0.1269 0.5451 10491.9161 - 
Shift 15 deg. 3/3 0.66/3 0.1224 0.5467 11186.1015 - 

 
After perspective transformation, in the new images there 

will be some black background areas on the corners. Black area 
stands for zero pixel value in RGB color model. Keeping the 
values as zeros will introduce some bias to the network learning. 
In order to check whether the neural network remembers the 
black areas of the augmented images, a series of experiments is 
conducted to confirm effectiveness on those black background 
areas. The following methods for filling the background area 
are compared. The first one is to fill random color on the 
background area. The second approach is to fill random pixel 
color on the background area. Finally, to replicate border color 
values on the background area. The results are shown in Table 1. 
Our baseline method is filling black color on background area. 
The results of the proposed approach is also compared with 
three cameras setup and are tabulated In Table 2. The result 
shows that the proposed data augmentation can indeed improve 
driving neural network performance. 
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Figure 8. Kinematic Bicycle Model. 

 
Figure 9. Visualize shift steer angle on augmented images. 

C. Estimate Steering Angle 
In our preliminary experiment, the recover steering angle 

was treated as a hyperparameter. As shown in Table 3, several 
experiments have been conducted to determine the best recover 
steering angle. 

However, to assign a fixed recover steering angle for all the 
augmented driving images is not reasonable. The steering angle 
should depend on the current vehicle speed. As a result, the 
bicycle kinematic model is adopted to formulate recover 
steering angles. First, the vehicle model can simplify to a 
simple bicycle model as Figure 8. An example is shown in 
Figure. 9. When the camera view point was shifted leftwards 
(namely, the car was on the left side of the track), the steering 
command is corrected to steer back to the center. 

During training, appropriate steering commands are 
calculated for augmented left and right camera images by 
kinematic bicycle model [21, 15]. As shown in Figure 10, by 
simplifying vehicle kinematic model to a bicycle kinematic 
model, each pair of wheels is represented as a vehicle kinematic 
system. Those three cameras are on the center and left and right, 
respectively, on the car model. The blue and the green vehicles 
represents the car drifting on the road for left and right views. 
The front wheel of the blue and the green vehicles is adjusted 
for turning back to the center line. 

The equations of motion that describe the kinematic bicycle 
model are: 

 
Figure 10. Kinematic model of 3 cameras setup. 
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where (x, y) is the coordinate of the center of the mess in the 
global coordinate (X, Y), v is the speed of the vehicle, ψ is the 
orientation of the vehicle in the global coordinate, β is the 
steering angle in the vehicle coordinate, and δf is the exact 
steering angle of the front wheel. lf and lr are the distance from 
the center of the mess to the rear/front wheel, respectively. 
Since the augmented camera are shifted leftward/ rightward 
from the center, the distance D between the center camera and 
the augmented camera position can be inferred. Given the 
current vehicle speed v and defining the elapsed time of 
recovery tr, the steer angle δf can be determined by solving the 
following equation 
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These recover commands will steer the vehicle toward the 
middle of the lane by emulating the vehicle driving from 
different positions on the road. The DNN model is trained to 
associate the visual inputs with the correct steering commands. 

D. Objective Function 
After training the driving network, the trained network can 

complete three cycles of autonomous driving on the lake track. 
However, in the jungle track, because the jungle track consists 
with downhill, sharp turns nearly 160 degrees and narrow road, 
the trained driving network can no longer complete three 
autonomous driving at a high speed. The reason is mainly that 
the training dataset has been balanced, but the result of the MSE 
training will make the minority of sharp turn scenarios to have a 
relatively large error compared with the majority of straight 
driving. When the simulated vehicle driving in a sharp turn, it is 
easy to hit the guardrail due to insufficient steering. 
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TABLE IV. LOSS FUNCTION EXPERIMENTS. 

Metrics 
Autonomy  
(3/3 laps) 

RMSE CTE 

Track Lake Jungle Lake Jungle Lake Jungle 
MSE 3/3 1.5/3 0.15157 0.52813 10292.2105 - 
MAE 3/3 1/3 0.15365 0.53233 10250.3850 - 

MAPE 0/3 0/3 - - - - 
MLSE 0/3 0/3 - - - - 

Proposed loss 3/3 3/3 0.16458 0.59250 9611.4355 34161.2166 

 
In order to solve this problem, several commonly used loss 

functions as the following are considered in our study: 
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Both Mean Absolute Error (MAE) and Root Mean Square 
Error (RMSE) can sufficiently define the average prediction 
error. In this study, a new loss function as: 
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is proposed. As shown in Table 4, the proposed loss function 
can have the most robust results. Note that the Root Mean 
Square Error (RMSE) value on the dataset is not necessarily 
related to the ability of the closed-loop system to navigate 
autonomously. Only the proposed loss function with one 
camera setting can autonomously drive through the entire path 
three times, even though it does not reach the highest RMSE in 
the offline data set. 

The proposed loss function is based on MSE and the 
correction term for the sharp turn scenario (higher steering 
command error). The correction term is defined as the 
multiplication of the original ground truth steering command 
and the error for punishing higher steering command errors. It 
is important to let network learn not only the most-represented 
straight driving situations but also those cases of less 
appearance as sharp turns. The experiment shows that it is a 
critical factor for stable driving in a high speed. The new loss 
function proposed achieve stable autonomously driving in the 
jungle case for 3 laps. 

E. Objective Function 
The performance of our driving model during training is 

reviewed and visualized in Figure 11. This provides useful 
information about the training of the model. 

• Whether the model is overfitting on the training data: it can 
be observed for the case that the validation loss gains over time 
while training loss decreases. 

 
Figure 11. Model loss history. 

TABLE V. GPU SERVER HARDWARE SPECIFICATIONS FOR TRAINING THE DNN 
Items Content 

Development system Ubuntu 16.04  
Development language Simulator: Python, Driving Platform: Pyhton, C++  

Library Keras, Tensorflow, OpenCV, Robot Operating System  
CPU Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz  
GPU NVIDIA 1080 TI 11GB x 2  

Memory 32 GB DDR4  
 

• The speed of convergence over epochs: In our cases, the 
model seems to converge over the first 100 epochs. As a result, 
a lot of training time could be saved, since there is no need for 
training more than 100 epochs. 

As shown in the Figure 11, even though 1 camera setup has 
the lowest validation error, the driving network always fails on 
the turn in the driving simulator. This is a clear sign that the 
model with 1 camera did not learn how to recover from drifting. 
On the other hand, the model with 1 camera plus the proposed 
strategy is able to drive smoothly on the curve and robustly 
while operating in a high speed. 

IV. EXPERIMENTS 
In this section, to collect data, to train the neural network, 

and to test the driving performance for the end-to-end 
autonomous driving system are conducted in the Udacity open 
source driving simulator [6]. VisualBackProp [22] is also used 
to validate effectiveness of the learning methodology by 
visualizing learned features. The programming environment is 
in Python 3.5 that includes Keras library that uses TensorFlow 
as backend and the NVIDIA CUDA 9.0 library that supports for 
GPU acceleration. The training environment described in this 
study is based on Ubuntu 16.04 and the configuration of GPU 
server is shown in Table 5. 

In the process, testing dataset is collected through the 
operation of a human expert. The pre-trained model will infer 
the steering command from the testing dataset and the root 
mean square error (RMSE) to the human expert’s steering 
commands is computed. The evaluation is to drive through 
various tracks automatically. The pre-trained model is also 
deployed on the driving simulator. Our model will real-time 
infer steer commands on the simulator. By receiving the image 
when driving the simulated vehicle, the model will predict steer 
commands and send them back to the simulator. In order to 
maintain the constant speed, a simple PD controller is also 
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(a) Lake 

 
(b) Jungle 

Figure 12: Training tracks of Udacity driving simulator. (a) the lake track is 
relatively easy, spacious and flat road, but the road contains a variety of 
different material edges. Such as racing curbs, dirt edge and bridges, (b)Jungle 
track is very difficult, including narrow lanes, sharp corners, and up and down 
steep slopes. 

implemented for controlling the throttle command of the 
vehicle. The driving simulator will record trajectories and 
cross-track-error on each track for three laps Autonomy (how 
many percentage finishes in 3 laps) and Overall CTE 
(cross-track-error) are considered for evaluating the 
performance of the model. 

Figure 12 illustrates the training course of the vehicle in the 
Udacity driving simulator. The car is asked to run along the 
course by the pre-trained model. The driving model computes 
the steering angle by employing the image generated with the 
same preprocessing method 

Figures 13 and 14 shows the trajectories of the vehicle about 
running on those courses shown on Figure 12. The vehicle with 
the proposed strategy drives stably in the Lake track even at a 
full speed. The proposed data augmentation helps CNN learn 
driving in different positions on the road. In Figure 14, the 
model trained with a single camera failed to pass a sharp turn. 
In Figure 13, three cameras setup will oscillate around the lane 
while driving at a high speed due to lack of recovery driving 
data. On the contrary, the proposed methods make model 
successfully run along all the tracks even in unseen tracks and 
even driving at a high speed. 

 
Figure 13. Autonomous driving trajectory – Lake. 

 
Figure 14. Autonomous driving trajectory – Jungle. 

TABLE VI. THE OVERALL EVALUATION FOR THREE DIFFERENT APPROACHES. 

Metrics 
Autonomy  
(3/3 laps) 

RMSE CTE 

Track Lake Jungle Lake Jungle Lake Jungle 
1 camera 
(center) 0.35/3 0.18/3 0.1233 0.5332 - - 

3 cameras 
(Left/Center/Right) 3/3 3/3 0.1371 0.5444 11213.104 37740.8999 

1 camera with our strategy 
(Center + augmentation) 3/3 3/3 0.1266 0.5422 10264.5166 37577.7391 

 
The trajectory and CTE (cross-track-error) were collected by 

the Udacity self- driving car simulator for the course shown in 
Figure 12. The cross-track-error of three different setups were 
compared and the accumulated errors are shown in Table 6. 
Three approaches are the one camera setup, 3 camera setup and 
the proposed strategy. The model is evaluated by the order 
Autonomy, CTE, and RMSE. The proposed methods and three 
camera setup have the same Autonomy score. As comparison 
of the CTE, our strategy has the lowest CTE among three 
different setups. The same for RMSE. Although one camera 
setup achieve the lowest RMSE, the driving model is 
overfitting the driving dataset. The driving model is not able to 
take a sharp turn on some simulator tracks. Three cameras setup 
and one camera setup with the proposed data augmentation 
method are able to finish 3 laps autonomously. Among them, 
our method can achieve the lowest CTE. 
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(a) Lake                                              (b) Jungle 

Figure 15. Visualizing the feature maps for (a) the lake track and (b) the Jungle 
track. 

 
Figure 16. Visualizing the feature maps for Unseen mountain track. 

In order to visualize what the driving model has learned, 
VisualBackProp [22] is considered to visualize what CNN see 
in driving videos. VisualBackProp [22] shows how the gradient 
flows back to image highlighting the most salient areas, as 
shown in Figure 15. In other words, this method can show 
which sets of pixels of driving image contribute most to the 
steering prediction. In Figure 5.8, the brighter pixel in the 
driving image represents the feature that the network notices, 
and the greater the contribution to the steering prediction. The 
red pixel in the driving image represents the feature that the 
network notices, and the greater the contribution to the steering 
prediction. During training process, our model is able to find 
the lane markers and guardrail important. In Figure 15(a), the 
driving model learned to notice the road features, such as curbs 
and lane line in Lake track. The same is in Figure 15 (b). In the 
Jungle track, the model is able to notice lane, guardrail and 
even opposite lane. More importantly, it is able to adapt to new, 
previously unseen environment. In Figure 16, the driving model 
can indeed learn the road features (road edge, lane line and 
red/white curbs) from lake and jungle track and then drives 
successfully on unseen mountain track by previously learned 
road features from training track. 

V. CONCLUSIONS 
An end-to-end learning system is introduced to learn driving 

policies by mimicking an expert’s behavior. The deep neural 
network maps raw onboard observations (driving image) to 
steering commands. By the proposed meaningful data 
augmentation and a novel objective function, the system is able 
to perform fast off-road navigation autonomously. In the 
driving simulator experiments, the system is able to perform 
autonomous navigation even on an unseen mountain road at a 
top speed of 60 km/h. 

In our experiments, typical data augmentation and 
perspective transformation from the center camera images to 
the simulated left and right images has shown promising ways 
of increasing the robustness for autonomous driving. While 
traditional data augmentations are very effective in image 
classification, these methods do not change the dataset 
distribution. On the other hand, the proposed method will 
randomly transform driving images and appropriately adjust 
the distribution of steer commands. To augment the dataset to a 
normal distribution, a kinematic bicycle model is considered to 
model recover controls of the augmented images. Unbalance 
data will cause the vehicle unstable on sharp turns since most 
data collected are driving straight. 

The preliminary experiments in this work used the Mean 
Square Error (MSE) as the loss function to train the network. 
However, the loss function is not suitable to model less 
appearance situations such as the sharp turning. In our work, 
the proposed loss function represents better at those situations. 
In the driving simulator experiments, the proposed loss 
function can increase robustness on sharp turns. The proposed 
loss function is based on MSE and a weighted term of the errors 
on sharp turn scenarios. During the training process, the 
network training error on sharp turns scenarios will be greater 
than the error on straight driving. In this way, the driving 
network can learn not only the importance of driving straight 
but also the importance of driving on sharp turns. The results 
shown in our experiments are promising. 
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