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 Abstract—In this paper, a Parameter-Dependent Polynomial 
Fuzzy (PDPF) control issue of the nonlinear time-varying system 
is discussed via Sum-Of-Square (SOS) technology. Recently, a new 
type of fuzzy model named PDPF model is proposed by combining 
Takagi-Sugeno (T-S) fuzzy model, polynomial representation and 
Linear Parameter Varying (LPV) description. For the 
stabilization problem of nonlinear time-varying system, the PDPF 
controller is designed based on Parallel Distributed Compensation 
(PDC) method. However, stability problem of PDPF model is often 
more complex and difficult than one of the traditional Takagi-
Sugeno fuzzy model since the nonconvex problem caused by the 
coupling of variables. To avoid the nonconvex term, a parameter-
dependent positive definite matrix in Lyapunov function is 
adopted to derive the stability criterion. Besides, the convex 
combination is employed to eliminate the restriction of time-
varying parameters. Thus, the sufficient conditions are derived 
into the SOS form and solved by the SOSTOOLS. Finally, the 
simulation results of the nonlinear time-varying system are 
provided to verify the PDPF controller design method. 

 Index Terms—Linear Parameter Varying System, Nonlinear 
Time-Varying System, Polynomial Fuzzy Model, Sum Of Squares.  

I. INTRODUCTION 

he fuzzy control is a popular issue for stabilizing the 
nonlinear system [1-8]. Referring to [1], the stability 

sufficient condition was transferred into the linear matrix 
inequality. It is thus the controller designed problem can be 
solved by the numerical method. In recent years, the 
semidefinite programming algorithm has grown rapidly and 
witnessed the wide application. One of the brunches of the 
semidefinite programming is Sum Of Squares (SOS) [4]. The 
SOS technology is based on SOS decomposition, which is 
consisted of multivariate polynomials. Therefore, the typical 
Takagi-Sugeno (T-S) fuzzy model can be extended to the 
polynomial form [5]. The convex combination is containing 
several polynomial fuzzy subsystems and membership function 
to represent the local behavior of nonlinear systems. Thus, the 
overall polynomial fuzzy model is obtained by blending those 
subsystems and the membership function to describe the 
nonlinear dynamics. Based on the polynomial description, the 
polynomial nonlinear terms can be retained in the model so that 
the number of fuzzy rules can be reduced. Therefore, the control 
problem of nonlinear systems is simplified by using polynomial 
fuzzy model since the less number of fuzzy rules. Due to the 
aforementioned merits of polynomial fuzzy model, it has been 
adopted for the nonlinear system to investigated different issues, 
e.g., the sliding mode control for stochastic issue [6], reducing 
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the conservatism by the piecewise linear membership functions 
dependent method [7] and Robust fuzzy observer-based fault-
tolerant control via the homogeneous polynomial Lyapunov 
function approach [8]. 

For the nonlinear control issue, the Linear Parameter 
Varying (LPV) system is aim at describing the time-varying 
behavior in the nonlinear systems [9-15]. The LPV system has 
the similar structure to T-S fuzzy model since it was built by the 
convex combination of the linear time-invarying subsystems and 
the weighting functions. For the controller designed problem of 
LPV system, the gain scheduled method was introduced [9]. 
Because of the similar structure between gain-scheduled 
controller and the LPV system, the stabilization problems of 
LPV system can be thus discussed by the gain-scheduled 
controller design [10]. Thus, LPV system has been utilized to 
modelling the nonlinear system and investigate the control 
issues in different performances. For instance, the observer-
based controller designed for LPV stochastic systems [11], �∞ 
observer based control [12] and pole assignment issue [13]. ‐
Similar to the polynomial fuzzy model, the LPV system was 
extended to polynomial LPV system by parameter-dependent 
polynomial subsystems and weighting functions. Thus, the SOS 
technology is a general method to solve the parameter-
dependent polynomial conditions. For the applications of 
polynomial LPV system, several literatures have been proposed 
to investigate different types of control issue. One has been 
applied to the missile longitudinal dynamics controller design 
problem [14] and the investigation on time-varying behavior of 
turbo engine [15].   

Since the structure between T-S fuzzy model and LPV 
system is quite similar, the combination of two models was 
proposed for more general representation to nonlinear time-
varying system [16-17]. One of the models is the Parameter-
Dependent Polynomial Fuzzy (PDPF) model [17]. In order to 
achieve stability, the parameter-dependent polynomial 
Lyapunov function is chosen. Referring to [17], if the upper and 
lower bounds of the time-varying parameters are the opposite 
sign, the Lyapunov function cannot be guaranteed to be positive. 
The restriction in the case of time-varying parameters causes the 
stability analysis method in [17] is not applicable for some 
nonlinear time-varying systems. Otherwise, the nonconvex term 
will exist in the derivative of polynomial Lyapunov function. 
Some method should be adopted to promote the stability 
analysis. It is thus an interesting issue to overcome the 
aforementioned limitations. 
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Based on the above motivations, the PDPF control issue for 
the nonlinear time-varying system is discussed in this paper. 
According to the polynomial fuzzy representation, the 
polynomial nonlinear term is remained in the consequent parts 
of the PDPF model. Therefore, the PDPF model can represent 
the nonlinear time-varying system by several PDPF subsystems 
and the membership functions. By the LPV modelling approach, 
some time-varying terms are considered as the time-varying 
parameters. Different from the method in [17], the time-varying 
behavior is represented as the form of convex combination. To 
achieve the stability, the PDPF fuzzy controller is established by 
PDC method and the parameter-dependent polynomial 
Lyapunov function is employed. To deal with the nonconvex 
problem in the derivative of Lyapunov function, the positive 
definite matrix is chosen to be independent of polynomial. The 
sufficient conditions are derived into SOS decomposition which 
can be solved by the third-party toolbox: SOSTOOLS. Due to 
the convex combination, the limitation of the case of time-
varying parameters is erased and the positive definition of 
Lyapunov function can be also guaranteed. By solving the 
sufficient conditions, the feasible solution can be obtained to 
design the PDPF controller. Finally, the simulation of nonlinear 
time-varying system is utilized to verify the applicability of the 
proposed controller designed method. 

The structure of the paper is shown as follows. The PDPF 
description and the related definition and lemma is stated in 
Section Ⅱ. Section Ⅲ presents the proposed controller designed 

method. Section Ⅳ exhibits the simulation of the nonlinear time-
varying system. Finally, some conclusions are provided in 
Section Ⅴ. 

II.  SYSTEM DESCRIPTION AND PROBLEM STATEMENTS 

In this section, the PDPF model will be introduced and the 
PDC method will also be considered to design the PDPF 
controller. Firstly, the nonlinear time-varying system is given 
as follows.  

 �̇ = ϒ��(�), �(�), �(�)� 

where �(�)  represents the state vector �(�) =

[��(�) ��(�) ⋯ ��(�)],  t  represents the time-varying 

parameter and  u t  represents the control input. 

For brevity, the notation with respect to time t  is omitted, e.g., 

�, u ,  and ��  are respectively denoted as �(�),  u t ,  t  

and ��(�). As (1) showing, the nonlinear system has the time-
varying behavior. Therefore, the following PDPF model is 
introduced to represent (1) and can be completely described by 
the following PDPF model.  

Plant Rule i :  

IF  1 t  is 1Ti  and … and  t  is Ti  THEN 

 �̇ = ��(�,�)��(�) + ��(�,�)� 

where 1 2i , , ,r   and r denotes the number of fuzzy rules, the 

fuzzy set is denoted by Ti ,  t  is the premise variable, � =

1,2,⋯ ,�  is the number of premise variables. ��(�,�)  are 
system matrices, ��(�,�) are input matrices, the term ��(�) is 
consisted of the monomials in � and one can be represented as 

��(�) = [���(�) ���(�) ⋯ ���(�)] , N is the number of 
monomial terms in degree   which is nonnegative integer, 
N n  when 1   and ��(�) = 0 if and only if � = 0 is held. 

 
Then, the well-known PDC method [1] is applied to the PDPF 
controller design. Via the PDC method, the controller can be 
designed for each PDPF subsystem model (2) as follows. 

Controller Rule i :  

IF  1 t  is 1Ti  and … and  t  is Ti  THEN 

 � = ��(��,�)��(�) 

Therefore, the following overall PDPF model is obtained by 
blending all the rules of (2) and (3). 

�̇ = ∑ ∑ ��(�)��(�) ���(�, �) +
�
���

�
���

																													��(�, �)��(�, �)���(�) 

where ��(�) is the membership functions. 
 

Referring to [11], the time-varying parameter can be 
expressed as the convex combination of weighting functions as 
follows. 

�̇ = ∑ ∑ ∑ ��(�)��(�)�� ����(�) +
�
���

�
���

�
���

																							���(�)��(�, �)� ��(�) 

where h  is the weighting functions. 

An important definition is applied in this paper. The proposed 
stability conditions should be converted into SOS 
decomposition which can be computed through semidefinite 
programming. Thus, the definition of SOS is shown below. 

 
Definition 1: [18] 

Assume ���(�) is polynomial of even number degree and 
  is the positive integer number. �(�) is the vector composed 
of monomial in � with degree   satisfied 0    . ���(�) 

is an SOS if and only if a positive semidefinite matrix Z  exists 
such that the following equality holds. 

 ���(�) = ��(�)��(�) 

Referring to [18], it should be noted that if ���(�) is SOS then 
���(�) ≥ 0 but the converse may not be held.  

Based on the above definition, the proposed controller 
designed method and the sufficient conditions is derived in next 
section. 

II. THE PROPOSED CONTROLLER DESIGNED METHOD 

By the parameter-dependent polynomial Lyapunov function, 
the stability criterion is developed to find the feasible solutions. 
Based on the solutions, one can establish the PDC-based fuzzy 
controller (3) such that the nonlinear time-varying system (1) is 
asymptotically stable. 
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Theorem 1 

Given the scalars   and 1 0  , polynomials ��(�) > 0 

and matrix �(�), the closed-loop system (5) is asymptotically 
stable if there exist polynomial matrices ���(�) and symmetric 

matrices mP  and mQ  such that 

  T
1m P I   is SOS 

  T
m mP Q  is SOS 

 −�������� − ∑ �(�� − ��)
�
��� + ��(�)���	is SOS 

where ����� = ��� ��(�) ����(�)�� + ���(�)���(�)�� , 

 sym η  denotes the shorthand notation for Tη η  and   is a 

vector independent of x . 

Proof: 

Firstly, the candidate of parameter-dependent polynomial 
Lyapunov function is considered as follows. 

 �(�, �) = ���(�)���(�)��(�) 

It should be noted that the matrix ���(�)  is chosen to be 
independent of ��(�)  so that the derivative of ���(�)  with 
respect to �  does not require to considered. Next, the time 
derivative of �(�, �) is inferred as follows. 

 �̇(�, �) = ���(�)���(�)��̇(�) + ��̇�(�)���(�)��(�) 
            +���(�)�̇��(�)��(�) 

where �(�) is a polynomial matrix which is the relation between 
��̇(�) and �̇. One can be represented by ��̇(�) = �(�)�̇ and the 

  t, hp q  elements in �(�) can be calculated by ���(�) =
���(�)

��
. 

Thus, one has the following equality from (10).                                                                                                                                                                                                           

 �̇(�, �) = ���(�)���(�)�(�)�̇ + �(�)������(�)��(�) 

        +���(�)�̇��(�)��(�) 1

Substituting (5) into (11), one can obtained the following 
equality. 

�̇(�, �) = ∑ ∑ ∑ ��(�)��(�)����
�(�) ����� +

�
���

�
���

�
���

�̇��(�)���(�)                  

where ���� = �������(�)�(�)����(�) + ���(�)��(�,�)��.  

Obviously, if the ���� + �̇��(�) < 0  can be achieved, then 

�̇(�, �) < 0 is also satisfied which also means the stability is 

achieved. Multiplying  P  on both sides of ���� + �̇��(�), 

one can obtained the following equality by Lemma 1. 

 �(�)����� + �̇��(�)��(�) = ���� − �̇(�) 

where 

���� = �����(�)����(�)�(�) + ���(�)��(�,�)�(�)��.  

Due to the convex combination, the Lyapunov function can be 
constructed by the following equalities. 

  
1

l

m
m

m 


P P  

  
1

l

mm
m

 


 P P  

 ��(�, �)�(�) = ∑ �����(�)
�
���  

Substituting (14), (15) and (16) into (13), one can obtain 

 ���� − �̇(�) = ∑ �����ℎ�
�
��� − ∑ �̇���

�
���  

Since 
1

0m
m

l




  , 
1

0
m

l

m m


 Q  can be obtained by arbitrary 

symmetric matrices mQ . Therefore, one has the following 

equality. 

  
1 1

m m

l l

m
m

m m
m

 
 

  P P Q   

By setting  min m   , one can obtain the following 

inequality with condition (8). 

    
1 1

m m m m m
m m

l l

 
 

    P Q P Q  

Therefore, the following inequality can be inferred from (12), 
(13), (17) and (19). 

 ���� + �̇��(�) ≤ ����� − ∑ �(�� − ��)
�
���  

Thus, if (9) holds, one can obtain ����� − ∑ �(�� − ��) <
�
���

0  which implies �̇(�, �) < 0  from (20). Thus, if SOS 
conditions (7-9) holds, the closed-loop system (5) can be 
guaranteed to achieve asymptotically stable. The proof of this 
theorem is complete. 

In next section, the simulation result is presented to verify the 
applicability of PDPF model 

III. SIMULATION 

In this section, the PDPF controller will be designed and 
applied to the nonlinear time-varying system to verify the 
applicability of the proposed method. Firstly, a numerical 
nonlinear time-varying system is considered as follows. 

   3 2 2 2
1 1 1 2 1 2 1 10.1sin 1x x x x x x x t x       (21a)

  2 1 2sinx x x    (21b)

 2
3 1 3 3x x x x   (21c)

 4 1 2 4x x x x   (21d)

Based on the PDPF modelling method, one can build the 
following PDPF model.  

 �̇ = ∑ ∑ ∑ ��(��)��(��)�� ����(�) +
�
���

�
���

�
���

																												���(�)��(�, �)���(�) (22) 
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where ���(�) = �

�(�) + 0.1 1 0 0
−1 −1 0 0
��
� 0 −1 0
0 �� 0 −1

�, 

1

0

0

0

 
 
 
 
 
 

B , 

���(�) = �

�(�) − 0.1 1 0 0
−1 −1 0 0
��
� 0 −1 0
0 �� 0 −1

�,  

���(�) = �

�(�) + 0.1 1 0 0
0.2172 −1 0 0
��
� 0 −1 0
0 �� 0 −1

�, 

���(�) = �

�(�) − 0.1 1 0 0
0.2172 −1 0 0
��
� 0 −1 0
0 �� 0 −1

�  , 
 

1

1 sin

2

t



 ,

2 11   ,  
 1 1

1 1

1

sin 0.2172

1.2172

x x
xw

x


 ,    2 1 1 11w x w x 

and �(�) = ��
� − ��

� + ���� + �� − 1 . Also, the membership 
function can be referred to Fig. 1.  

 

Fig. 1.  Membership function of 1x  

As the system matrices showing, the upper and lower bound 
of the time-varying parameter is 1 1   . By applying 

proposed controller designed method, the parameters are given 

as 0.51    with  min 0.5p   ,�(�) = � , 11
1 10  and 

��(�) = (��
� + ��

� + ��
� + ��

� + 1) × 10��� . Moreover, the 
maximum degree of ���(�) is set to be two and the degree of 

mP  is set to be zero. Using SOSTOOL to Theorem 1 with the 

given scalars, one can find the feasible solutions by solving the 
sufficient conditions in Theorem 1 and the feasible solutions are 
stated in Appendix. Therefore, the following PDPF controller is 
designed. 

 ��(�, �) = ∑ �����(�)�
��(�)�

���  (23)

Thus, the PDPF controller (3) can be designed by those solutions. 
After obtaining the PDPF controller, the responses of (21) are 
shown in Fig. 2 and the initial conditions in four states are set to 

be  
T

2 2 3 1   .  

 

Fig. 2.  System responses of states 

 

 

Fig. 3.  Responses of controller 

Referring to Fig. 2, all states are converged to zero even though 
the system (21) exists time-varying parameter. Therefore, the 
applicability and effectiveness of the proposed design method 
can be furtherly demonstrated by achieving the asymptotical 
stability of nonlinear time-varying systems 
 

IV.  CONCLUSIONS 

In this paper, the PDPF controller design method was 
proposed for describing the nonlinear time-varying system and 
guaranteeing the asymptotical stability. According to the 
concept of T-S fuzzy model and LPV system, the PDPF model 
was built by combining the polynomial fuzzy model and convex 
combination of the time-varying parameter. Through 
introducing the parameter-dependent Lyapunov function, the 
SOS conditions were derived to achieve the stability. Based on 
the LPV description, the restriction on time-varying parameters 
can be avoided so that the proposed method can be applied to 
more general nonlinear time-varying systems. Furthermore, the 
positive definite matrix is chosen to be only dependent on time-
varying parameter to avoid the nonconvex problem. Therefore, 
the designed PDPF controller can achieve best performance. 
Finally, the simulation results were provided to demonstration 
the applicability and effectiveness of the proposed controller 
designed method.  
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APPENDIX 

 
6 6

1

0 4788 2 594 10 0 324 3 146 10

0 8406 0 03296 0 2922

1 016 0 0235

1 219

. . . .

. . .

. .

.

      
 

 
  
 

    

P , 

6 6

2

0 4788 2 963 10 0 318 3 174 10

0 8405 0 03104 0 2921

1 015 0 0268

1 219

. . . .

. . .

. .

.

      
 

 
  
 

    

P  and 

���(�) = ����
� ���

� ���
� ���

� � 
 
where   denotes the transposed elements of matrices for 
symmetric position, ���

� = −0.9437��
� − 0.4481���� −

0.4352�� 
2 9 8
2 2 3 2 4 20.01827 4.181 10 3.77 10 0.007716x x x x x x      

8 8 2 9
1 3 1 4 4 41.596 10 9.166 10 0.4849 7.016 10x x x x x x        

2 8 9
3 3 4 30.4852 7.558 10 4.946 10 0.4728x x x x       , 

2 6 2 6 14
11 1 1 2 1 32.045 10 2.311 10 5.676 10k x x x x x       

6 2 14 8
2 2 3 2 42.537 10 1.528 10 2.942 10x x x x x       

8 2 14 8
3 3 4 37.231 10 5.85 10 3.035 10x x x x       

13 17 2 8
1 4 4 43.502 10 1.058 10 1.687 10x x x x       

1 20.01529 0.006254 0.3964x x   , 
3 2 9
11 1 1 2 1 3 10.324 0.324 3.379 10 0.2991k x x x x x x      

2 9 14
2 2 3 2 4 20.324 6.05 10 6.543 10 0.001397x x x x x x        

8 16 2 8
1 4 4 48.957 10 1.021 10 3.093 10 0.5118x x x x          

2 8 8
3 3 4 30.4614 1.7 10 1.723 10x x x x      , 

4 6 2 6 15
11 1 1 2 1 32.985 10 2.966 10 5.093 10k x x x x x         

6 2 14 13
2 2 3 2 43.072 10 2.008 10 1.603 10x x x x x         

8 2 14 8
3 3 4 34.864 10 7.091 10 3.606 10x x x x         

14 17 2 8
1 4 4 49.484 10 1.11 10 2.708 10x x x x         

1 20.00111 0.002038 0.2594x x   , 
1 2 8
12 1 1 2 1 3 10.9348 0.4393 1.053 10 0.4262k x x x x x x       

2 9 8
2 2 3 2 4 20.02797 1.754 10 3.275 10 0.007509x x x x x x        

9 2 9
1 4 4 47.401 10 0.4849 1.498 10 0.3923x x x x        

2 8 8
3 3 4 30.4852 4.241 10 7.215 10x x x x      , 

2 6 2 6 13
12 1 1 2 1 32.38 10 2.649 10 2.361 10k x x x x x         

6 2 14 13
2 2 3 2 42.893 10 8.578 10 1.127 10x x x x x         

8 2 13 8
3 3 4 37.777 10 1.431 10 5.119 10x x x x         

13 17 2 8
1 4 4 42.918 10 4.825 10 1.535 10x x x x         

1 20.01581 0.006445 0.4079x x   , 
3 2 8
12 1 1 2 1 3 10.318 0.318 4.853 10 0.2937k x x x x x x      

2 8 13
2 2 3 2 4 20.318 2.523 10 1.593 10 0.001389x x x x x x        

15 16 2 8
1 4 4 49.423 10 1.493 10 1.886 10 0.5572x x x x          

2 8 8
3 3 4 30.4522 3.561 10 5.715 10x x x x      , 

4 6 2 6 15
12 1 1 2 1 33.016 10 2.996 10 2.728 10k x x x x x         

6 2 13 13
2 2 3 2 43.1 10 1.124 10 5.796 10x x x x x         
8 2 13 8

3 3 4 35.886 10 1.567 10 4.058 10x x x x         
13 18 2 9

1 4 4 41.226 10 8.251 10 2.674 10x x x x         

1 20.00111 0.002117 0.2594x x   , 
1 2 8
21 1 1 2 1 3 10.9433 0.4479 5.202 10 0.4374k x x x x x x       

2 8 9
2 2 3 2 4 20.01823 4.064 10 5.798 10 0.005119x x x x x x        

8 17 2 9
1 4 4 45.939 10 9.128 10 1.65 10 0.741x x x x          

8 2 14 8
3 3 4 37.228 10 8.217 10 3.78 10x x x x        , 

2 6 2 6 14
21 1 1 2 1 32.707 10 2.574 10 3.859 10k x x x x x         

6 2 15 14
2 2 3 2 42.524 10 3.217 10 3.403 10x x x x x         

14 17 2 8
1 4 4 49.329 10 5.059 10 4.633 10x x x x         

8 2 14 8
3 3 4 37.228 10 8.217 10 3.78 10x x x x         

1 20.01183 0.005119 0.4973x x   , 
3 2 10
21 1 1 2 1 3 10.324 0.324 7.365 10 0.2993k x x x x x x      

2 9 9
2 2 3 2 4 20.324 2.529 10 6.35 10 0.001372x x x x x x        

13 17 2 8
1 4 4 41.828 10 5.059 10 4.633 10 0.4973x x x x          

2 8 9
3 3 4 30.4614 2.28 10 3.062 10x x x x       

4 6 2 6 14
21 1 1 2 1 32.967 10 2.963 10 4.714 10k x x x x x         

6 2 15 14
2 2 3 2 43.072 10 9.006 10 6.25 10x x x x x         

8 2 14 8
3 3 4 34.854 10 9.641 10 2.323 10x x x x         

13 17 2 8
1 4 4 41.128 10 2.818 10 2.226 10x x x x         

1 20.001167 0.004508 0.2689x x    
1 2 8
22 1 1 2 1 3 10.9344 0.4392 4.642 10 0.4286k x x x x x x       

2 9 8
2 2 3 2 4 20.02794 1.859 10 4.98 10 0.006435x x x x x x        

8 2 9
1 4 4 41.126 10 0.4849 2.486 10 0.4058x x x x        

2 8 8
3 3 4 30.4852 2.342 10 2.261 10x x x x      , 

2 6 2 6 14
22 1 1 2 1 33.047 10 2.913 10 5.896 10k x x x x x         

6 2 15 15
2 2 3 2 42.88 10 9.637 10 1.238 10x x x x x         

14 17 2 9
1 4 4 44.544 10 2.736 10 3.399 10x x x x         

8 2 14 9
3 3 4 37.778 10 3.37 10 2.035 10x x x x         

1 20.01226 0.005492 0.7384x x    
3 2 8
22 1 1 2 1 3 10.318 0.318 1.16 10 0.294k x x x x x x      

2 9 14
2 2 3 2 4 20.318 3.912 10 2.253 10 0.001332x x x x x x        

14 17 2 8
1 4 4 46.334 10 2.579 10 2.47 10 0.5434x x x x          

2 9 8
3 3 4 30.4522 7.353 10 1.047 10x x x x       and 

4 6 2 6 14
22 1 1 2 1 32.997 10 2.993 10 5.752 10k x x x x x         

6 2 14 14
2 2 3 2 43.1 10 2.603 10 1.223 10x x x x x         
14 18 2 9

1 4 4 42.095 10 2.122 10 5.371 10x x x x         
8 2 14 3

3 3 4 35.89 10 3.548 10 2.19 10x x x x         

1 20.0001974 0.000478 0.2689x x   . 
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