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Abstract— Harmonic drive reducers are essential components 
of industrial robot arms, primarily due to their high reduction 
ratios, concentric shafts, compact size, and low backlash, making 
them particularly suitable for small to medium load industrial 
robots. However, their intricate mechanical structure, coupled 
with low vibration characteristics, poses challenges in determining 
performance attributes. One common failure mode in harmonic 
drives is flex spline fatigue fracture, which requires specialized 
testing platforms and removal of harmonic drives for measuring 
torsional stiffness. To address these challenges, this study 
introduces a machine learning-based vibration analysis approach 
for the online prediction of performance attributes in harmonic 
drive reducers. An accelerated testbed is employed to simulate 
loading and operational conditions of harmonic drives in real 
robots. This testbed collects vibration data during operation and 
measures the torsional stiffness and transmission error of the 
harmonic drive. The collected vibration data is then processed 
using discrete wavelet transformation, followed by feature 
extraction from the transformed signals. These extracted features 
are used to train an artificial neural network designed to 
simultaneously predict the torsional stiffness coefficient, average 
transmission error, and the maximum transmission error. The 
mean squared error and mean absolute error of the proposed 
method are significantly lower, demonstrating the superiority of 
the proposed machine learning approach in addressing the 
challenges associated with evaluating and predicting the 
performance of harmonic drive reducers in industrial robots. 

 Index Terms— Artificial neural networks, Discrete wavelet 
transforms, Feature extraction, Harmonic Drive Reducer, 
Vibrations.  

I. INTRODUCTION 

S the global industrial landscape advances towards Industry 
4.0, the fusion of information technology with the 

manufacturing sector becomes indispensable for fostering 
industrial evolution and maintaining a competitive edge. The 
progression of intelligent manufacturing technologies, 

 
 

particularly the implementation of smart capabilities such as 
failure prediction and health monitoring in machinery, is vital 
for contemporary industrial growth. A key component in this 
context is the harmonic drive (HD) reducer, a unique gearbox 
mechanism consisting of three core elements: the circular spline, 
flex spline, and wave generator. HD reduces has several 
advantages such as compact size, high transmission efficiency, 
and minimal noise generation, HD reducers are ideally suited for 
a diverse range of applications, spanning the aerospace industry, 
medical equipment, and industrial robotics. In the realm of robot 
arms, harmonic drives play a pivotal role in articulated robots, 
where the health prognosis and diagnostic capabilities of these 
drives are crucial for ensuring operational efficiency, 
minimizing downtime, and enhancing the overall performance 
and longevity of industrial robotic systems. 

Harmonic drive (HD) reducers offer numerous advantages 
over traditional reducers and gearboxes; however, their compact 
size and intricate design also render them susceptible to various 
failure modes. In the context of industrial robots, where HD 
reducers are subjected to high loading, continuous operation, 
and non-uniform torsional loads, some prevalent failure modes 
[1] include tooth wear, tooth cracking, flex spline cracking, 
fatigue failure, and excessive loading. While proper 
maintenance and load management can prevent some of these 
failure modes, others such as fatigue failure and flex spline 
failure can be spontaneous and challenging to detect. 
Additionally, progressive failures like tooth wear and lubrication 
aging contribute to the gradual degradation of HD reducer 
performance over time. Consequently, numerous studies in the 
field of HD reducers emphasize the detection, monitoring, and 
prognosis of these failure modes to ensure optimal performance 
and longevity of industrial robotic systems. 

 A considerable body of research is dedicated to assessing 
and analyzing the degradation of harmonic drive (HD) reducers 
using sophisticated time series data analysis techniques. One 
notable study [2] presents a performance degradation 
assessment (PDA) methodology, employing low-frequency time 
series data, including input-output speed, torque, gearbox 
temperature, and three-axis vibration, to establish a degradation 
model utilizing genetic programming. As these data-driven 
models typically necessitate comprehensive datasets, 
accelerated life test (ALT) benches, as exemplified in [3], are 
often employed to obtain the required data. ALT test benches 
[4]–[7] are instrumental in simulating the operational conditions 
of HD reducers, as well as measuring transmission error, 
torsional stiffness, and other essential performance indicators. 

While a plethora of techniques exists for offline evaluation 
of HD reducer performance, vibration analysis remains the 
predominant method for online assessment tasks. The ease of 
installation for vibration sensors streamlines data collection. 
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Nevertheless, due to the low vibration characteristics inherent to 
HD drives, direct analysis of vibration data is not recommended. 
Consequently, numerous studies that focus on PDA and health 
prediction [8], [9] of gearboxes with low vibration employ 
advanced techniques such as discrete wavelet transformation 
(DWT). A variety of studies [10]–[15] propose that discrete 
wavelet transformation facilitates the extraction of valuable 
features from vibrational data. These decomposed signals can 
subsequently be processed using neural networks [16] and other 
modeling techniques [17], [18], thereby contributing to a more 
comprehensive and accurate prediction of HD reducer 
performance and health. 

Artificial neural networks (ANN) have been extensively 
utilized in the realm of health monitoring, performance 
degradation assessment (PDA), and damage detection for 
gearboxes, owing to their data-driven nature and universal 
approximation capabilities. For instance, in [19], ANN is 
employed to detect damage in the planetary gearbox of a wind 
turbine, while in [20], ANN is used for identifying helicopter 
gearbox faults based on vibration data. ANN has proven to be 
effective for processing vibration data from various gearbox 
types [21], [22]. When combined with advanced preprocessing 
techniques, such as discrete wavelet transformation (DWT), the 
accuracy and reliability of ANN models for fault diagnosis can 
be significantly enhanced, as suggested in [16], [23], [24]. 

Convolutional neural networks (CNN), particularly the 1D 
CNN variant [25] , have also been applied to vibration-based 
prediction and classification tasks involving time-series data. 
The effectiveness of 1D CNN in fault diagnosis stems from its 
ability to efficiently extract features from time-series data and to 
fuse the features of multiple axes vibration data without the need 
for preprocessing [26]. Notably, 1D CNN models have 
demonstrated exceptional accuracy in fault diagnosis, detection 
tasks, and multi-axis vibration fusion, as evidenced in [27]–[32]. 
In terms of selecting between ANN and CNN models, there is 
no definitive set of rules dictating the appropriate model for 
specific applications. However, as gleaned from the literature 
reviewed above, both ANN and CNN models yield 
commendable accuracy when employed for PDA, fault 
diagnosis, and health monitoring tasks. 

Building upon the existing body of knowledge, this study 
aims to develop a performance prediction model for harmonic 
drive (HD) reducers employed in industrial robot arms using 
machine learning techniques. To achieve this objective, an 
accelerated life test (ALT) bench is designed and implemented 
to simulate the operating conditions and facilitate the collection 
of vibration data, as detailed in Section II. Section III outlines 
the measurement techniques and key performance indicators 
used in this study, providing the necessary background 
information to contextualize the research findings. Subsequently, 
discrete wavelet transformation (DWT) and feature extraction 
are applied to the acquired vibration signals, as elaborated in 
Section IV. Two machine learning models, artificial neural 
networks (ANN) and convolutional neural networks (CNN), are 
employed for training and prediction tasks, as presented in 
Section V. The performance and prediction accuracy of both 
models are compared and discussed in Section VI, providing 
insights into their respective strengths and weaknesses in the 
context of HD reducer performance prediction. Finally, the 
study summarizes its findings and contributions in Section VII, 
emphasizing the implications of this research for improving the 

reliability and efficiency of industrial robot arms through the 
effective monitoring and prediction of HD reducer performance. 

II.  ACCELERATED LIFE TESTING PLATFORM 

In this study, an ALT platform is designed to simulate the 
operating conditions of a robot arm equipped with a harmonic 
drive (HD) reducer. A specific HD reducer featuring a 1:80 
reduction ratio is employed, as depicted in Fig. 1. The HD 
reducer comprises four key components: a wave generator, a 
flex spline, a circular spline, and a cross bearing. This particular 
reducer is manufactured by Shinewe Motors and bears the model 
number TCS-20-80-UT. 

 
Fig. 1 The HD reducer used for accelerated life testing. 

The working principle of the HD reducer involves the 
interaction of the aforementioned components. The wave 
generator, typically consisting of an elliptical cam, is mounted 
on the input shaft. As the wave generator rotates, it imparts an 
elastic deformation to the flex spline, which is a flexible, thin-
walled cylindrical component with external teeth. This 
deformation, in turn, causes the flex spline to engage with the 
circular spline, a rigid, internally toothed component. Due to the 
difference in tooth count between the flex spline and the circular 
spline, a relative rotation occurs, resulting in a high reduction 
ratio. The cross bearing serves to support and stabilize the entire 
assembly, ensuring smooth operation and minimal backlash. 

 
Fig. 2 The accelerated life testing platform. 

Fig. 2 presents the image of the accelerated life test (ALT) 
platform utilized in this study. The platform comprises a 750W 
servo motor (Yaskawa SGM7J-08A7A6C), which supplies 
input torque to the harmonic drive (HD) reducer, securely 
positioned within the bracket. A high-precision absolute encoder 
(Heidenhain RCN 2510) featuring a system accuracy of ±2.5 
arcseconds (arcsec) is employed to measure transmission 
accuracy. Centrally situated within the transmission chain is a 
torque transducer (HBM T22 100Nm) with a ±0.3% linear error 
and a maximum torque range of ±100 Nm. This component 
serves to measure the output torque of the HD reducer. At the 
end of the transmission line, a servo motor identical to the 
driving motor is paired with a planetary reducer with a 1:70 
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reduction ratio. This motor-reducer combination simulates the 
load on the HD reducer, replicating its operational conditions. 

Three piezoelectric accelerometers are mounted on the three 
axes of the harmonic drive, as depicted in Fig. 3, while an 
additional sensor is installed on the z-axis of the motor, which 
represents the most dominant axis for motor vibration. The study 
employs a high-speed data acquisition module, the NI-9234 with 
NI-cDAQ-9181, from National Instruments to collect and 
process the data obtained from the sensors. 

 
Fig. 3 Installation locations of piezoelectric vibration sensors. 

III. PERFORMANCE INDICATORS OF HD REDUCER 

The performance of HD reducers can be effectively 
evaluated using two key parameters: transmission accuracy [4] 
and torsional stiffness (𝐾) [33]. Transmission accuracy serves as 
an essential metric for assessing the wear and tear experienced 
by the flex spline and circular spline teeth, as well as providing 
valuable information on the backlash occurring within the HD 
reducer. On the other hand, torsional stiffness represents the flex 
spline's ability to resist deformation when subjected to an 
external force while in a locked position. This parameter is 
particularly relevant for evaluating the structural integrity and 
durability of the HD reducer under various operational 
conditions. Moreover, torsional stiffness provides insights into 
the potential performance degradation of the HD reducer over 
time, which can inform maintenance decisions and ensure the 
longevity of the robotic system. 

In this study, two types of transmission errors are calculated 
to assess the performance of the harmonic drive reducer: average 
transmission error ( 𝑒௔௩௚ ) and maximum transmission error 
(𝑒௠௔௫). The harmonic drive is subjected to 360 rotations of one 
degree each on the ALT platform. The input position is 
measured using the input servo motor's encoder, while the output 
position is determined from the absolute encoder installed at the 
output shaft of the HD reducer. 

The average transmission error (𝑒௔௩௚) is computed as the 
mean difference in position readings (shown in Equation 1) 
throughout the rotations, as illustrated in Equation 2. This metric 
provides insight into the general performance and accuracy of 

the HD reducer under normal operating conditions. On the other 
hand, the maximum transmission error (𝑒௠௔௫) is calculated as 
the difference between the maximum positive direction error and 
the maximum negative direction error, as presented in Equation 
2. This parameter is essential for determining the worst-case 
scenario in terms of transmission error and evaluating the 
reliability of the HD reducer under extreme conditions. A visual 
representation of the transmission error data gathered using the 
ALT platform is shown in Fig. 4. To enhance clarity, the 
transmission error unit has been converted to arcminutes 
(arcmin), where one arcmin is equal to 1/60th of a degree. 

 ∆𝜃 = (𝜃௜௡ − 𝜃௢௨௧) (1) 

 𝑒௔௩௚ =
1

𝑛
෍ ∆𝜃௜

௡

௜ୀ଴
 (2) 

 𝑒௠௔௫ = max(∆𝜃௜) − min(∆𝜃௜)  𝑓𝑜𝑟 𝑖 ∈ [0, 𝑛] (3) 

Where, 𝜃௜௡ is the input shaft position in degrees, 𝜃௢௨௧ is the 
output shaft position in degrees and n is total number of 
measurements in one cycle, i.e. 360 incremental rotations of 1 
degree. 

 
Fig. 4 Transmission error plot of the HD reducer gathered from ALT platform. 

The torsional stiffness (𝐾) of a HD reducer is determined 
using the hysteresis curve. To obtain the curve, the input shaft of 
the HD reducer is locked by applying brakes to the input motor. 
Subsequently, the loading motor applies torque, and the position 
of the output shaft is measured using the absolute encoder 
mounted on the output shaft. The resulting difference in the 
output shaft position relative to its initial position reflects the 
stiffness of the flex spline when subjected to an external load. 
Fig. 5 illustrates a hysteresis curve obtained from the ALT 
platform employed in this study. 

Typically, torsional stiffness (𝐾) is assessed through a three-
step process, which involves dividing the hysteresis curve into 
distinct segments. Three torque (𝑇 ) values specified by the 
manufacturer are utilized to design the hysteresis curve test. In 
the present study, the three values comprise  𝑇ଵ  at 7 Nm, 𝑇ଶ  at 
25 Nm, and  𝑇ଷ  at 34 Nm. The K values corresponding to these 
three torque levels can be calculated using a piecewise linear 
approximation applied to the hysteresis curve, as demonstrated 
in Equation 4. 
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⎩
⎪⎪
⎨

⎪⎪
⎧ 𝐾ଵ =

𝑇ଵ

𝜃ଵ

 𝑖𝑓 𝑇 ≤ 𝑇ଵ

𝐾ଶ =
𝑇ଶ − 𝑇ଵ

𝜃ଶ − 𝜃ଵ

 𝑖𝑓 𝑇ଵ < 𝑇 ≤ 𝑇ଶ

𝐾ଷ =
𝑇ଷ − 𝑇ଶ

𝜃ଷ − 𝜃ଶ

 𝑖𝑓 𝑇ଶ < 𝑇 ≤ 𝑇ଷ

 (4) 

Where, where the torsional distortions of the flex spline at 
torques 𝑇ଵ, 𝑇ଶ and 𝑇ଷ is specified as 𝜃ଵ, 𝜃ଶ and  𝜃ଷ. 

 
 Fig. 5 The hysteresis curve of the HD reducer gathered from ALT platform. 

The ALT test was conducted as follows: Initially, a 40 Nm 
load was applied using the loading torque and gear reducer, 
while the driving motor rotated the HD reducer at an input speed 
of 2400 RPM. The HD reducer is turned one full clockwise and 
then counterclockwise rotation, and the process is repeated, 
totally lasting for 30 minutes. Subsequently, a measurement 
cycle was executed by rotating the HD reducer 360° in a 
clockwise direction to collect vibration data from the three axes 
of the HD reducer and the driving motor's Z-axis. At the same 
time the torque output of the HD reducer was also measured and 
recorded using the torque transducer connected to the output 
shaft. Following this, the transmission errors and K values were 
measured as previously described in this section. In total, 3500 
test cycles were performed, amounting to 1750 hours of 
accelerated life testing. 

IV. FEATURE EXTRACTION 

In this study, a DWT-based preprocessing approach is 
employed for the analysis of vibration data obtained from the 
ALT platform. The DWT decomposes the original signal into 
distinct frequency components by selecting an appropriate 
wavelet function and applying the transformation function to 
break the signal into a high-frequency component (detail 
coefficient) and a low-frequency component (approximation 
coefficient). This decomposition process can be executed 
iteratively to divide the signal into multiple levels, as illustrated 
in Fig. 6. 

 
Fig. 6 The signal decomposition process of discrete wavelet transform. 

Drawing from existing literature, the Symlet wavelet 
function [11], [14], [34] is chosen for the DWT task in this study, 
and a 7-level decomposition is performed on the vibration data, 
as depicted in Fig. 7. This choice of wavelet function and 
decomposition level is informed by previous research, which has 
demonstrated the effectiveness of this approach for analyzing 
vibration data in similar applications. In Fig. 7, the left column 
displays the low-frequency components of the original signal at 
the top, while the right column presents the high-frequency 
components corresponding to different levels of decomposition. 
This visual representation helps to illustrate the effectiveness of 
the DWT in decomposing the signal into its constituent 
frequency bands, enabling more detailed analysis of the 
vibration data. 

 
Fig. 7. The discrete wavelet transform of one sample of vibration data from X 
axis of the HD reducer. 

Following the decomposition process, the low-frequency 
components of all 7 levels were selected, and feature extraction 
was performed using a Python programming language software 
library called TSFRESH [35]. A total of 20 features were 
extracted from the decomposed signal. Initially, statistical 
features such as mean, median, standard deviation, variance, 
percentile values, root mean square, mean of derivatives, zero-
crossing rate, mean zero-crossing rate, and Shannon entropy 
value were calculated. Subsequently, time-series features, 
including autoregressive coefficients, absolute energy, auto-
correlation, non-linearity statistics, time-series complexity, first 
location of maximum, largest fixed point of dynamics, mean 
change, and time reversal asymmetry statistics, were computed. 

 
Fig. 8. Feature extraction and filtering process of vibration and torque signals. 
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As illustrated in Fig. 8, a smaller data set consisting of 500 
signals was first utilized to extract the specified features. 
Thereafter, a cross-correlation analysis was conducted to 
identify features exhibiting high correlation with other features. 
A visual representation of the cross-correlation between features 
of different decomposed signals is presented in Fig. 9. 
Subsequently, a filtering function was applied to remove 
features displaying more than 75% correlation in either positive 
or negative directions. In this process, the study confirmed that 
the output torque features were highly correlated with the 
vibration features, and thus, they were discarded entirely. After 
the filtering process, a total of 204 relevant features were 
retained for further modeling tasks. 

 
Fig. 9. Cross-correlation of various features extracted from harmonic drive 
three axes vibration, motor z axis vibration and output torque signal. 

V. MACHINE LEARNING MODELS 

In this study, the filtered features extracted in Section IV are 
employed to construct a machine learning training and 
prediction pipeline. Two machine learning approaches, namely, 
ANN and 1D CNN, were selected for comparison purposes. For 
a comprehensive understanding of the mathematical equations 
and further details on these machine learning methods, readers 
may refer to [36]. As depicted in Fig. 9, both approaches were 
designed as multi-input multi-output models. The raw signals 
underwent preprocessing using DWT, and the low-frequency 
components from the 7-level decompositions were utilized to 
calculate the relevant features. Subsequently, these features 
were employed to train ANN and 1D CNN models separately on 
2,500 sets of vibration data. The remaining 1,000 sets were used 
for testing the performance of the two models. Both models were 
trained to predict maximum transmission error (𝑒௠௔௫), average 
transmission error (𝑒௔௩௚), and torsional stiffness values of K2 
and K3 simultaneously. 

 
Fig. 10. Machine learning models training and prediction method and output 
variables. 

ANN model used in this study was designed to have 4 hidden 
layers with 500, 500, 200 and 100 neurons respectively. Sigmoid 
activation function was applied to hidden layer’s neurons. At last 
a linear activation layer was used as output layer with 4 neurons 
representing the 4 output variables of this study. The 1D CNN 
model employed in this study is comprised of several layers, 
each with distinct configurations and activation functions. The 
input layer, Layer 1, has a shape of (204, 1) and does not include 
an activation function. Layer 2, the first 1D CNN layer, consists 
of 128 filters, a kernel size of 6, a stride of 1, and utilizes the 
rectified linear unit (ReLU) activation function. Layer 3 is 
another 1D CNN layer with 64 filters, a kernel size of 3, a stride 
of 1, and the ReLU activation function. Layer 4 is a max-pooling 
layer with a pool size of 3 and a stride of 2. Layer 5, a 1D CNN 
layer, has 64 filters, a kernel size of 3, a stride of 1, and employs 
the ReLU activation function. Layer 6 is another max-pooling 
layer with a pool size of 3 and a stride of 2. Layer 7, a 1D CNN 
layer, is configured with 128 filters, a kernel size of 3, a stride 
of 1, and the ReLU activation function. Layer 8 is a global 
average pooling layer, while Layer 9 is a dense (hidden) layer 
containing 128 neurons and the ReLU activation function. 
Finally, Layer 10, the output layer, consists of 4 neurons with a 
linear activation function. Both models utilized mean absolute 
percentage error as the loss function and were trained for 1000 
epochs using the ADAM optimizer to ensure consistency in the 
training process.  

VI. RESULTS 

In order to compare the performance of ANN vs 1D CNN 
model, this study uses two metrics, normalized mean square 
error (NMSE) and mean absolute percentage error (MAPE) as 
shown in Equation 5 and Equation 6. Finally the overall 
accuracy of a model can be calculated as function of MAPE as 
shown in equation 7. In the equations below, 𝑦ො represents the 
predicted value, 𝑦 is the actual/measured value and n is the total 
number of vibration dataset used for testing (1000 in this case). 
By examining these metrics, the study aims to provide a 
comprehensive analysis of the effectiveness and robustness of 
each method in estimating performance attributes of the HD 
reducer. 
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𝑁𝑀𝑆𝐸 =  

∑ (𝑦௜ − 𝑦ො௜)
ଶ௡

௜ୀ଴

∑ (𝑦௜)ଶ௡
௜ୀ଴

 (5) 

 
𝑀𝐴𝑃𝐸 =  

∑ |𝑦௜ − 𝑦ො௜|௡
௜ୀ଴

𝑛
× 100 (6) 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  100 − 𝑀𝐴𝑃𝐸 (7) 

 
TABLE I COMPARISON OF ANN AND CNN MODELS FOR 
PREDICTING THE PERFORMANCE INDICATORS OF HD REDUCER. 

 

The Table 1 presents a comparison of the performance of the 
Artificial Neural Network ANN and 1D CNN models in 
predicting four output variables: maximum transmission error, 
average transmission error, torsional stiffness values K2 and K3. 
Across all output variables, the ANN model consistently 
outperformed the 1D CNN model, exhibiting lower NMSE and 
MAPE values, indicating better prediction accuracy. For 
instance, the ANN model achieved an NMSE of 0.0121 and a 
MAPE of 7.57% for 𝑒௠௔௫, while the CNN model had an NMSE 
of 0.021 and a MAPE of 9.97%. The average performance of the 
ANN model also surpassed that of the 1D CNN model, with an 
average NMSE of 0.0035 and MAPE of 2.98% compared to the 
1D CNN model's average NMSE of 0.0061, MAPE of 3.97% 
and accuracy of 96.03%. This comparison highlights the 
superior performance of the ANN model for predicting the 
selected performance indicators in the context of HD reducer 
with 97.02% accuracy. 

In Fig. 11, the ANN model's predictions for the entire dataset 
concerning 𝑒௠௔௫  are depicted as a scatterplot with respect to the 
sample number. The figure shows that the model not only 
closely predicted the training set consisting of the initial 2500 
samples but also accurately predicted the remaining 1000 
samples used for testing. This consistent performance is 
similarly observed in the predictions for the other three output 
variables, as illustrated in Figs. 12, 13, and 14. For Figs. 11 and 
12, the y-axis unit is arcmin, while for Figs. 13 and 14, the y-
axis represents unitless K2 and K3 values. These results 
underscore the robustness and reliability of the ANN model in 
predicting the selected variables for both the training and testing 
datasets, emphasizing its potential for practical applications in 
HD reducer performance prediction. 

 
Fig. 11. Scatter plot comparison of measured vs predicted maximum 
transmission error for the ANN model. 

 
Fig. 12. Scatter plot comparison of measured vs predicted average transmission 
error for the ANN model. 

 
Fig. 13. Scatter plot comparison of measured vs predicted torsional stiffness K2 
for the ANN model. 

Output 
Variable 

ANN 
 NMSE 

ANN 
MAPE 

CNN 
NMSE 

CNN 
MAPE 

𝑒௠௔௫ 0.0121 7.57% 0.021 9.97% 
𝑒௔௩௚ 0.0001 0.63% 0.0002 0.89% 
K2 0.0005 1.60% 0.0006 1.71% 

K3 0.0012 2.12% 0.0024 3.31% 

Model average 0.0035 2.98% 0.0061 3.97% 
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Fig. 14. Scatter plot comparison of measured vs predicted torsional stiffness K3 
for the ANN model. 

VII. CONCLUSION 

In conclusion, this study presents a performance prediction 
method of harmonic drive reducers using machine learning 
techniques. The study employed a DWT-based preprocessing 
approach to analyze vibration data and extract meaningful 
features using cross-correlation analysis, which were then 
utilized to train ANN and 1D CNN models for predicting key 
performance indicators such as maximum and average 
transmission errors and torsional stiffness values. The results 
demonstrated that the ANN model outperformed the 1D CNN 
model in terms of prediction accuracy, emphasizing the potential 
of the ANN model for practical applications in HD reducer 
performance prediction. 

This research contributes to the existing body of knowledge 
by providing valuable insights into the performance prediction 
of HD reducers, as well as a reliable predictive model for 
monitoring and maintenance purposes. Future work could 
explore the integration of other advanced machine learning 
techniques, such as deep learning or ensemble methods, to 
further improve the predictive accuracy and robustness of the 
models. Additionally, incorporating real-time monitoring and 
control strategies based on the developed models could lead to 
more effective and proactive maintenance approaches, 
significantly reducing the downtime and costs associated with 
industrial robot arm failures. 
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