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Abstract— The accurate energy consumption modeling of robot 
arms is crucial for energy conservation and optimization. 
Traditionally, parametric dynamics model is used for estimating 
the robot arm’s torque and power consumptions. However, 
accuracy of parametric dynamics model relies on the dynamic 
parameters such as inertia, center of mass, friction etc. In practice, 
these parameters are hard to estimate and optimization usually 
require extensive identification process. Similarly, a data-driven 
approach requires large amount of observation data, are 
computationally inefficient and suffer from occasional 
inaccuracies. In this study, a hybrid learning approach combining 
both parametric model and data-driven method is proposed for 
energy consumption modelling of industrial robot arm in static 
pose. Parametric model with approximate estimates of the robot 
arm dynamics is used to simulate the energy consumption and an 
artificial neural network is used to learn the error between the 
simulation and the observed results. Halton-sequence sampling is 
used for collecting the training data with joint angles as input and 
energy consumption as output. The effectiveness of proposed 
model is verified using experimental data and the proposed 
approach achieves significantly lower mean squared error and 
higher R-square value than the parametric and the data-driven 
models while only using approximate dynamic parameters for 
base dynamics model. 

 Index Terms— Analytical modeling, Artificial Neural Networks, 
Data-driven modeling, Energy, Hybrid learning, Machine Learning, 
Robots. 

I. INTRODUCTION 

HE sustainable and efficient use of energy resources plays 
an indispensable role in environmental preservation and 

financial prudence. By adopting sustainable energy practices, 
factories and manufacturing sites can significantly reduce their 
ecological footprint and alleviate the financial burden associated 
with excessive energy usage. The popularity of robotic systems, 
such as industrial robotic arms, can be attributed to the desire to 
reduce reliance on human labor. As a consequence, the energy 
consumption associated with these robotic technologies has 
risen rapidly [1] and will continue to rise in future. In order to 
promote energy conservation and efficiency, there is urgent need 
for technologies to reduce the energy consumption by the 
industries and several government sponsored energy efficiency 
directives [2] and policies [3]–[5] are also encouraging business 
and corporations to move towards this goal. 

 
 

In recent years, several studies are focusing on the 
optimization of energy usage by industrial robot arms. In [6] 
various software-based methods for reducing power 
consumption and optimizing manufacturing processes are 
discussed including speed and acceleration optimization, 
dynamic parameter optimization  and energy optimal trajectory 
planning. This study also highlights the importance of energy vs 
cycle time trade-off and also shows that the robot arms dynamic 
parameters plays an important role in modeling of energy 
consumption. Simulation models [7], [8] are popular way for 
predicting the energy consumption for industrial robot arm’s 
energy reduction. Utilizing a robotic arm's dynamic model, as 
demonstrated in [9], allows for accurate estimation of energy 
consumption through on-site parameter identification, thereby 
facilitating the development of energy-efficient path planning 
algorithms for industrial robots. In some studies simplified 
dynamics model is also used to eliminate the complexity of 
parameter identification. In [10] , the energy-optimal trajectory 
planning is primarily focused on velocity and acceleration 
variables, utilizing state-space equations for the analysis. 
Similarly in [11], a simplified energy consumption computation 
was employed to identify energy efficient trajectories, utilizing 
the sum of kinetic and potential energies of the robotic arm links 
as the primary energy objective. While simplified energy model 
are practically valid and usable for optimization tasks, a high-
fidelity dynamics model of industrial robot arm often result in 
better energy estimation and thus also improves the energy 
optimization accuracy. In [12], a high-fidelity dynamics model, 
incorporating various parameters and constant losses, is utilized 
for trajectory optimization in the study. Although the 
optimization results are noteworthy, the modeling and dynamic 
parameter identification process is considerably time-
consuming and susceptible to experimental errors.  

High accuracy physical modeling of industrial robot arm’s 
energy usage requires a combination of equation of motion for 
the mechanical properties of robot and dynamical equation for 
the gearboxes and motor drives [13]. Generally, torque data is 
used for parameter identification of robot dynamics but some 
studies also utilize power data [14], [15] as the target variable. 
In some cases, temperature effect [16] and gravitational load 
effect [17] on the energy consumption of industrial robots are 
also analyzed and taken into account when creating a dynamical 
model. While most of the studies emphasizes the dynamic 
motion analysis for energy consumption that incorporates 
velocity and acceleration parameters [18], [19], there is a 
scarcity of research focusing specifically on energy 
consumption during the static pose of industrial robots. 

Most of the literatures discussed in this section so far, 
focuses on analytical modeling of dynamic parameters and their 
identification for energy usage estimation. In most of the cases, 
some of the parameters like friction effect, temperature effect 
and inertia parameters are hard to identify and their accuracy is 

Kumar Shivam*, Jen-Chung Hsiao 

A Hybrid Energy Consumption Model for Industrial Robot 
Arms using Robot Dynamics and Data-Driven Approach 

T

This work was supported by the Ministry of Economic Affairs, R.O.C 
under Grant No. 111-EC-17-A-25-1654. 

Kumar Shivam is currently employed as Project Manager at Automation 
and Robotics Division of Precision Machinery Research and Development 
Center, No. 27, Gongyequ 37th Rd, Xitun District, Taichung City, 407 
Taiwan (R.O.C.) (Phone:05-2919925#6105, e-mail: 
e10725@mail.pmc.org.tw). 

Jen-Chung Hsiao holds the position of Chief Technology Director in 
general manager office at Precision Machinery Research and Development 
Center, No. 27, Gongyequ 37th Rd, Xitun District, Taichung City, 407 
Taiwan (R.O.C.) (Phone:04-23599009#768, e-mail: 
e8222@mail.pmc.org.tw). 

 



Shivam et. al.  
A Hybrid Energy Consumption Model for Industrial Robot Arms using Robot Dynamics and Data-Driven Approach 

10 

subjected to experimental setup and boundary conditions. 
Although using Lagrange method [20] to model the robot 
dynamics can reduce number of parameter that needs to be 
identified, the experimental errors and boundary definitions still 
affect the overall accuracy. There exist the data-driven approach 
to model the energy [21], however, it requires large amount of 
data for modeling. Similarly, machine learning methods to 
model the energy consumption like artificial neural networks 
(ANN) also follow the big data trend and require large training 
dataset to achieve reasonable accuracy. Some recent studies, 
however, have explored the application of a hybrid method 
known as physics-informed neural network [22], that 
incorporates the physical model of the system into the machine 
learning framework thus significantly reducing the data size 
required for training. Hybrid models, which combine an 
approximate physical model with an ANN for learning the 
model errors using a small amount of training data, can achieve 
higher accuracy than purely physical models, while 
simultaneously reducing the labor and time required for 
optimization or fine-tuning of the model [23]. Several studies 
has shown promising results by using hybrid learning models 
[24], [25] for various application in different domains. 

Drawing from the literature review, this study presents a 
hybrid energy consumption model for industrial robots, 
employing hybrid learning that combines an approximate 
dynamics model with an ANN. The primary focus is on 
modeling energy consumption in static state of robot arms (in 
state of no motion), considering joint angles as input variables. 
A low discrepancy sampling technique is used to collect the 
robot arm’s energy consumption at different poses within a 
defined workspace. The performance of the physical model's 
energy estimation is compared to the proposed hybrid method to 
showcase the proposed models applicability in this domain. The 
paper is structured as follows: Section II discusses robot arm 
dynamics; Section III discusses the dynamics properties of robot 
arm used in this study. Section IV presents the proposed 
methodology; Section V showcases results and comparisons 
between methods; and Section VI concludes the study and its 
findings. 

II. DYNAMICS OF INDUSTRIAL ROBOT ARM 

The dynamics of an industrial robot arm can be characterized 
by assigning mass, center of mass and moment of inertia of links 
together with the friction properties of the actuator drives at each 
joint. Equations of motion is most common method of 
determining the joint torques of the robot arm as a function of 
robot arm dynamics properties and joint angles. For a robot arm 
with n joints and joint angles � ∈ ℝ� , the applied torque by 
joints � ∈ ℝ�  can be calculation using equation of rigid body 
equation of motion [26] as shown in Equation (1): 

 � = �(�)�̈ + �(�, �̇)�̇ + �(�) + ��(�̇) (1) 

Where, �(�) ∈ ℝ�×�  denotes a positive definite mass 
matrix, �(�, �̇) ∈ ℝ�×�  represents the matrix for Coriolis and 
centrifugal effects, �(�) ∈ ℝ� represents the torque exerted due 
to gravity effect and ��(�̇)  is the function representing the 
frictional torques.  

When the robot arm is in static condition (no motion), only 
gravity term �(�) ∈ ℝ�  is considered for calculating the 
torques applied on robot arm joints. The gravity term of each 
joint can be calculated as a function of mass of the link, center 

of mass of the link and joint angle. The equation for computing 
the gravity term can written as Equation 2: 

 
�(��) = � �� ∙ � ∙ �

���

���
� �

�

�,���
 (2) 

Where ��  is the mass of the link �, �  is the gravitational 
force acting on the link �  (-9.81 m/s2), ��  is the position of 
center of mass of link �, and �� is the joint angle of joint �. The 
summation term used in Equation 2 is applied over all links to 
obtain the gravity term, �(�) = 	 [�(��), �(��), … , �(��)]�. 

III. THE DYNAMIC PARAMETER ESTIMATION 

In this study, a medium payload industrial robot arm, the 
Yaskawa Motoman MH12, is examined, as depicted in Fig. 1. 
The robotic arm features a six-axis configuration, comprising 6 
links and 6 joints with maximum payload limit of 12 Kg. A 
three-dimensional (3D) model of the robot arm is employed to 
estimate dynamic parameters using SolidWorks, a computer-
aided design (CAD) software. Each link is assigned a material 
of gray cast iron, with a density of 7.34 g/cm³. It is crucial to 
acknowledge that the CAD model provided by the manufacturer 
is an approximation of the actual robot and does not consider 
hollow sections, wiring, and tubing regions. Consequently, the 
calculated center of mass (CoM) and mass properties may not 
accurately represent the real robot. To address this issue, tubing, 
wiring, and hollow regions were added to the model based on 
actual robot measurements, without requiring complete 
disassembly. After modifying the 3D model of the robot we 
calculated the CoM and mass properties of the robot using the 
CAD software as listed in Table I. Despite potential 
discrepancies, these estimations provide a suitable foundation 
for constructing a dynamic model that assesses static state 
energy consumption for the robot arm. 

 
Fig. 1.  Robot arm link positions of Yaskawa Motoman MH12. 

From Table I, it can be observed that the mass of Link 1 is 
significantly larger compared to the other links. However, since 
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Link 1 is perpendicular to the base in its static state, its 
gravitational forces are primarily transferred vertically to the 
base, resulting in minimal energy consumption. In contrast, 
during the robot arm's static operation, the mass properties and 
CoM locations of Links 2 and 3 play critical roles in determining 
overall energy consumption. The actuators and motors 
controlling Links 2 and 3 must generate forces to overcome the 
gravitational forces acting on them due to their mass and CoM 
locations. Similarly, Links 4 and 5, although having smaller 
masses, also contribute to the overall energy consumption of the 
robot on a smaller scale. This is due to the combined effect of 
their mass properties and CoM locations, which influence the 
force requirements for maintaining the robot arm's static 
equilibrium. 

TABLE I 
MASS AND CENTER OF MASS PROPERTIES OF MH12 

Link Mass 
(kg) 

Center of Mass, 
 x (m) 

Center of Mass, 
y (m) 

Center of Mass, 
 z (m) 

0 22.806 ─ 0.050 0.003 0.057 
1 44.652 0.035 0.005 ─ 0.188 

2 30.939 ─ 0.018 ─ 0.092 0.258 

3 10.538 0.089 ─ 0.034 0.120 
4 4.9476 ─ 0.224 0.000 0.017 

5 2.0965 0.026 ─ 0.015 0.000 

IV. METHODOLOGY 

In a static pose, the robot arm is motionless, and therefore, 
the angular velocity is zero. Traditional methods of calculating 
power or energy, which are typically predicated on motion 
dynamics, are not directly applicable under these conditions. 
However, to counteract the effects of gravity and maintain a 
position, the robot arm must exert opposing torques. This means 
that even though the arm is not in motion, the servo motors in 
the joints remain active, leading to power consumption. 

The relationship between the motor's torque (��) and the 
current (I) is described by the Equation 3 [27], 

 �� = �� × � (3) 

 Where �� is the torque constant of the motor. The electrical 
power (P) consumed by the motor can be calculated as the 
product of the current (I) and the voltage (V). Substituting I 
from the Equation 3,  

 
� = �� × 	

�

��

 (4) 

This Equation 4 describes the power used by the motor in 
relation to the generated torque, the applied voltage, and the 
motor's torque constant. 

Over time, this power consumption equates to the energy 
required for the robot arm to maintain a specific pose. This 
linear estimate provides a bridge between joint torque 
estimation and energy consumption of different poses. 
Therefore, the estimated torque value of the robot arm can be 
used as an effective indicator of its energy consumption in 
various static poses. 

This study uses the absolute sum of applied torques � as 
shown in Equation 5 for each joint of the robot arm to represent 
the energy consumption at any given pose, highlighting the 
practical considerations that exist even when the robot arm is 
motionless. 

 
� = � |�(��)|

�

���
 (5) 

 In this research, an industrial robot arm controller, 
Yaskawa Motoman DX200, is employed, which supports high-
speed Ethernet communication using the User Datagram 
Protocol (UDP) with an average response rate of 50 Hz. This 
communication protocol enables efficient and real-time data 
transfer between the robot controller and an external system. To 
gather the torque data for each joint from the controller, a 
personal computer is utilized, on which a custom 
communication software, developed using Python programming 
language, is implemented. This software facilitates the 
communication between the robot arm controller and the 
personal computer, ensuring seamless data transfer and 
processing.  

The torque data collection process for this study spans over 
a duration of 2 seconds, resulting in 100 samples per joint. Once 
the data is collected, it is processed to compute the average 
torque value for each joint at a given pose. Utilizing the average 
value of the torque samples provides a more reliable 
representation of the joint torque, as it accounts for any 
fluctuations or inconsistencies in the data due to external factors 
or system noise. The communication method for data collection 
is shown in Fig. 2 and the experimental setup in Fig. 3. 

 

Fig. 2 Schematic diagram of experimental setup for data collection from robot 
arm. 

In order to efficiently sample the workspace of the robot arm, 
this study employs a low discrepancy sampling method known 
as the Halton sequence [28]–[30] for the design of experiments. 
The literatures suggest that low discrepancy sampling methods 
provide superior space-filling properties in comparison to 
random sampling, as well as improved convergence results for 
modeling and optimization tasks. Given that this study utilizes 
robot arm joint angles as input variables, the upper and lower 
limits for each joint are defined, as demonstrated in Table II.  

Utilizing the Halton sequence, a total of 532 distinct joint 
angle configurations are generated, taking into account the 
specified joint limits. It is important to note that some of these 
limits deviate from the mechanical limits of the robot arm, as 
they have been adjusted to ensure safety and to prevent 
collisions between the robot arm and its base, as well as the 
platform. The resulting x, y, and z-axis positions of the end 
effector for these joint configurations within the 3D workspace 
are depicted in Fig. 4. 
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Fig. 3 Experimental setup for data collection from robot arm. 

TABLE II 
MECHANICAL LIMITS AND LIMITS USED IN DATA COLLECTION EXPERIMENT 

Joint Lower 
mechanical 

limits 
(radians) 

Upper 
mechanical 

limits 
(radians) 

Lower 
experiment 

limits 
(radians) 

Upper 
experiment 

limits 
(radians) 

0 ─ 2.9670 2.9670 ─ 1.5708 1.5708 
1 ─ 1.5708 2.7052 ─ 0.3491 0.3491 

2 ─ 1.4835 2.6179 ─ 1.1355 0 

3 ─ 3.4906 3.4096 ─ 2.0944 2.0944 
4 ─ 2.6179 2.6179 ─1.5708 1.5708 

5 ─ 3.1415 3.1415 ─ 3.1415 3.1415 

Table II provides information on the mechanical limits of the 
robot arm's joints and the limits used in the data collection 
experiment. These limits are essential in determining the range 
of motion of the robot arm during the data collection process. 
The lower and upper mechanical limits of each joint are 
specified in radians, while the lower and upper experiment limits 
represent the minimum and maximum joint angles explored 
during the data collection phase. 

For instance, joint 0 has lower and upper mechanical limits 
of -2.9670 and 2.9670 radians, respectively. However, during 
the experiment, its motion was limited to a range of -1.5708 and 
1.5708 radians to ensure safe and controlled operation. Similarly, 
joint 1 has lower and upper mechanical limits of -1.5708 and 
2.7052 radians, respectively. It was constrained within a smaller 
range of -0.3491 and 0.3491 radians during the experiment 
because smaller changes in the second joint can cause significant 
deviations in the end-effector positions. This limitation was put 
in place to prevent self-collision or collision with other objects 
in the experimental setup space. 

The remaining joints also have specified lower and upper 
mechanical limits, which vary depending on the joint. For 
example, joint 2 has a lower mechanical limit of -1.4835 radians 
and an upper mechanical limit of 2.6179 radians. However, its 
motion was limited to a range of -1.1355 and 0 radians during 
the experiment due to safety concerns and to ensure the robot 
arm's operation remained within the desired workspace. 

 

Fig. 4 End-Effector position of robot arm in three dimensional workspace for 
the joint configurations used in design of experiment. 

In order to model the energy consumption of the robot arm 
for a given joint configuration, this study employs a hybrid 
machine learning approach. Initially, the applied torque on each 
joint of the robot arm is calculated using the gravity term, as 
illustrated in Equation 2. Subsequently, the analytical solution is 
computed as the absolute sum of torques using Equation 3. 
These torque values will be utilized for comparative purposes 
later in the study. 

In this study, a hybrid approach is proposed, utilizing ANN, 
to model the energy consumption of a robotic arm based on joint 
angles and applied torques, which are due to gravitational effects 
on each joint. As shown in Figure 5, the proposed approach 
makes use of a single hidden layer ANN model with 475 neurons. 
The determination of the number of neurons was accomplished 
through hyperparameter optimization using the Tree of Parzen 
Estimators method [31]. This optimization process was 
conducted using the Hyperopt/Python library [32], which 
provides an efficient and automated means of searching for the 
most suitable hyperparameters for the model.. 

The input variables for the ANN model are comprised of 
joint angles and gravity-induced torques, resulting in a total of 
12 variables (6 for joint angles and 6 for applied torques). The 
output variable is the absolute sum of torques, as measured from 
the robot controller for each joint configuration. It should be 
noted that the model is fed with input joint angles and the 
estimated joint torques derived from robot dynamics. Therefore, 
this model is primarily tasked with estimating the error between 
the measured torque and the estimated torque from the robot 
dynamics.  
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For comparison purposes, an ANN model was constructed 
with one hidden layer, and number of neurons were optimized 
using the Hyperopt library within a range of 8 to 1000 neurons. 
The best model configuration was determined to be with a total 
of 216 neurons in the hidden layer. However, this model was 
trained to directly predict the total torque. Joint angles were used 
as the input variables and total joint torques as the output 
variable in this model. Consequently, this ANN model attempts 
to establish a data-driven prediction model to directly estimate 
the total torque values, as is typical in data-driven methodologies. 

 

Fig. 5 Schematic representation of the hybrid learning approach for modeling 
energy consumption in an industrial robot arm by combining robot dynamics 
and ANN. 

The dataset used for this study is divided into two parts: 80% 
is utilized for training, and the remaining 20% is designated for 
testing purposes. 

During the training process, both the ANN and the hybrid 
model’s ANN are optimized using the ADAM stochastic 
optimization algorithm [33], a well-regarded algorithm 
frequently employed in machine learning for the optimization of 
deep learning models. The sigmoid activation function, a 
commonly used activation function for hidden layers in ANNs, 
is utilized for the ANN neurons. The TensorFlow library, an 
extensively used open-source software library for machine 
learning, is employed to develop the ANN model. Furthermore, 
the model is implemented and optimized using the Python 
programming language, a popular choice for data analysis and 
machine learning due to its simplicity and comprehensive 
libraries. 

V. RESULTS 

To compare the performance of torque estimation between 
the robot dynamics approach, ANN model and the hybrid 
learning method, this study employs three evaluation metrics: 
Root Mean Squared Error (RMSE) as presented in Equation 4, 
Coefficient of Determination (R²) as depicted in Equation 5, and 
Mean Absolute Percentage Error (MAPE) as illustrated in 
Equation 6. The accuracy of the two approaches is assessed 
using the MAPE metric, as outlined in Equation 7. In the 
equations below, ��  represents the predicted value, �  is the 
actual/measured value and n is the total number of samples used 

for testing (132 in this case). By examining these metrics, the 
study aims to provide a comprehensive analysis of the 
effectiveness and robustness of each method in estimating 
torque values for the robot arm. 

 

���� = 	 �
∑ (�� − ���)

��
���

�
 (4) 

 
�� = 1 −

∑ (�� − ���)
��

���

∑ (�� − ���)
��

���

 (5) 

 
���� = 	

∑ |�� − ���|
�
���

�
× 100 (6) 

 �������� = 	100 − ���� (7) 

The comparative results, summarized in Table III, 
convincingly illustrate that the hybrid approach, which merges 
robot dynamics and an ANN model, surpasses the standalone 
robot dynamics model in the task of estimating total torque. This 
superiority is evidenced by a significant reduction in the RMSE 
by a factor of 2.22, which brings down the error from 29.31 Nm 
(for the robot dynamics model) to 13.19 Nm. Furthermore, when 
employing the hybrid approach, there is a reduction in the 
MAPE by over 10% as compared to the robot dynamics model. 

Conversely, the ANN model, trained on identical data and 
with the optimized hyperparameters, was unable to accurately 
correlate the robot torque output with the input robot joint angles. 
As a result, it underperformed compared to both the dynamic 
and hybrid models. This weaker performance of the ANN model 
can be primarily attributed to the limited size of the training 
dataset. 

TABLE III 
COMPARISON OF ROBOT DYNAMICS AND PROPOSED HYBRID APPROACH FOR 

ESTIMATING TOTAL TORQUE 

 

In addition to improvements in RMSE and MAPE, the 
hybrid approach also shows an increase in the R² value. With a 
R² value of 0.936 for the hybrid approach, it substantially 
outperforms the robot dynamics model which registers an R² 
value of 0.687. This highlights that the hybrid approach is able 
to account for approximately 93.6% of the variance in the data, 
as opposed to the 68.7% explained by the robot dynamics model 
alone. It is noteworthy that, while the standalone ANN model 
reached a reasonable accuracy of 83.329%, its R² value of 0.663 
indicates that it could only explain 66.3% of the variance in the 
data, suggesting a less precise mapping of the predicted data to 
the measured data. Despite the limited data, the standalone ANN 
model approached the accuracy of the robot dynamics model. 
However, the hybrid approach, which integrates the robot 
dynamics model and ANN model, outperformed both models in 
terms of accuracy and R² value. 

Metrics Robot Dynamics ANN Hybrid Approach 

RMSE 29.31 Nm 30.19 Nm 13.19 Nm 

R2 0.687 0.663 0.936 

MAPE 15.783 % 16.671% 4.271% 

Accuracy 84.217% 83.329 % 95.729% 
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Fig. 6 Scatter plot illustrating the comparison between the total torque output 
from the robot dynamics (gravity term) and the hybrid learning approach. 

In Figure 6, the scatter plot presents a clear visual 
comparison among the three estimation approaches – the robot 
dynamics model, the ANN, and the hybrid approach – in relation 
to the measured or actual total torque data. The data points 
representing the hybrid approach are observed to cluster tightly 
along the diagonal (45°) line, indicative of a strong correlation 
between the predicted and measured total torques. This close 
alignment highlights the enhanced accuracy and reliability of the 
hybrid approach in estimating total torque values. 

Conversely, the data points corresponding to the robot 
dynamics model are noticeably scattered and display a weaker 
correlation with the measured total torques. This spread reflects 
the limitations of solely using the robot dynamics model to 
capture the complex behavior of the system, resulting in less 
accurate and less reliable torque estimations. The ANN model 
displays the highest dispersion of data points, which further 
suggests that the model was unable to converge due to the 
constraints of a limited dataset. 

The enhanced performance of the hybrid approach can be 
attributed to the synergistic combination of the robot dynamics 
model, which offers a fundamental understanding of the 
physical behavior of the system, and the ANN model, which 
effectively captures the nonlinear relationships within the data. 
Consequently, the hybrid approach emerges as a superior 
method for estimating total torque in industrial robot 
applications, with the potential to significantly improve the 
efficiency, effectiveness, and overall performance of these 
robotic systems.  

Although it could be argued that the accuracy of the robot 
dynamics model can be improved by employing parameter 
identification methods, this study demonstrates that the 
proposed method can achieve superior results using a relatively 
small dataset of only 532 samples. Furthermore, the proposed 
method offers several practical advantages, including ease of 
implementation, reduced time consumption, and the elimination 
of any need for special modifications to the robot arm or its 
controller. Notably, the entire estimation process can be 
completed in under an hour, emphasizing the efficiency of the 
hybrid approach. Thus, the hybrid approach presents a valuable 
and efficient solution for total torque estimation in industrial 
robot applications. 

VI. CONCLUSION 

This study effectively showcases the potential of a hybrid 
learning approach, integrating a parametric robot dynamics 
model with an ANN model, to accurately estimate total torque 
in static poses as an indicator of energy consumption, as shown 
in Equation 3 and 4, particularly within industrial robot 
applications. The hybrid approach outperforms the robot 
dynamics model and ANN model alone, achieving significantly 
lower RMSE and higher R² values, and thereby offering a more 
reliable and precise method for energy consumption modeling. 
This method proves to be efficient, easy to implement, and does 
not require extensive parameter identification, or any 
modifications to the robot arm or controller. The proposed 
hybrid approach holds significant potential for improving the 
overall efficiency, effectiveness, and performance of industrial 
robotic systems. 

Moving forward, this study aims to extend the research by 
investigating the application of the hybrid approach for 
estimating robot energy consumption during motion (dynamic 
torque). Additionally, the exploration of payload effects on the 
model's efficiency will be considered, providing a 
comprehensive understanding of the hybrid approach's potential 
in diverse industrial robot applications. This future research 
direction seeks to further enhance the practicality and 
adaptability of the hybrid method in addressing the complexities 
of real-world robotic systems. 
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