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Abstract— The accurate energy consumption modeling of robot
arms is crucial for energy conservation and optimization.
Traditionally, parametric dynamics model is used for estimating
the robot arm’s torque and power consumptions. However,
accuracy of parametric dynamics model relies on the dynamic
parameters such as inertia, center of mass, friction etc. In practice,
these parameters are hard to estimate and optimization usually
require extensive identification process. Similarly, a data-driven
approach requires large amount of observation data, are
computationally inefficient and suffer from occasional
inaccuracies. In this study, a hybrid learning approach combining
both parametric model and data-driven method is proposed for
energy consumption modelling of industrial robot arm in static
pose. Parametric model with approximate estimates of the robot
arm dynamics is used to simulate the energy consumption and an
artificial neural network is used to learn the error between the
simulation and the observed results. Halton-sequence sampling is
used for collecting the training data with joint angles as input and
energy consumption as output. The effectiveness of proposed
model is verified using experimental data and the proposed
approach achieves significantly lower mean squared error and
higher R-square value than the parametric and the data-driven
models while only using approximate dynamic parameters for
base dynamics model.

Index Terms— Analytical modeling, Artificial Neural Networks,
Data-driven modeling, Energy, Hybrid learning, Machine Learning,
Robots.

[. INTRODUCTION

HE sustainable and efficient use of energy resources plays

an indispensable role in environmental preservation and
financial prudence. By adopting sustainable energy practices,
factories and manufacturing sites can significantly reduce their
ecological footprint and alleviate the financial burden associated
with excessive energy usage. The popularity of robotic systems,
such as industrial robotic arms, can be attributed to the desire to
reduce reliance on human labor. As a consequence, the energy
consumption associated with these robotic technologies has
risen rapidly [1] and will continue to rise in future. In order to
promote energy conservation and efficiency, there is urgent need
for technologies to reduce the energy consumption by the
industries and several government sponsored energy efficiency
directives [2] and policies [3]-[5] are also encouraging business
and corporations to move towards this goal.
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In recent years, several studies are focusing on the
optimization of energy usage by industrial robot arms. In [6]
various  software-based methods for reducing power
consumption and optimizing manufacturing processes are
discussed including speed and acceleration optimization,
dynamic parameter optimization and energy optimal trajectory
planning. This study also highlights the importance of energy vs
cycle time trade-off and also shows that the robot arms dynamic
parameters plays an important role in modeling of energy
consumption. Simulation models [7], [8] are popular way for
predicting the energy consumption for industrial robot arm’s
energy reduction. Utilizing a robotic arm's dynamic model, as
demonstrated in [9], allows for accurate estimation of energy
consumption through on-site parameter identification, thereby
facilitating the development of energy-efficient path planning
algorithms for industrial robots. In some studies simplified
dynamics model is also used to eliminate the complexity of
parameter identification. In [10] , the energy-optimal trajectory
planning is primarily focused on velocity and acceleration
variables, utilizing state-space equations for the analysis.
Similarly in [11], a simplified energy consumption computation
was employed to identify energy efficient trajectories, utilizing
the sum of kinetic and potential energies of the robotic arm links
as the primary energy objective. While simplified energy model
are practically valid and usable for optimization tasks, a high-
fidelity dynamics model of industrial robot arm often result in
better energy estimation and thus also improves the energy
optimization accuracy. In [12], a high-fidelity dynamics model,
incorporating various parameters and constant losses, is utilized
for trajectory optimization in the study. Although the
optimization results are noteworthy, the modeling and dynamic
parameter identification process is considerably time-
consuming and susceptible to experimental errors.

High accuracy physical modeling of industrial robot arm’s
energy usage requires a combination of equation of motion for
the mechanical properties of robot and dynamical equation for
the gearboxes and motor drives [13]. Generally, torque data is
used for parameter identification of robot dynamics but some
studies also utilize power data [14], [15] as the target variable.
In some cases, temperature effect [16] and gravitational load
effect [17] on the energy consumption of industrial robots are
also analyzed and taken into account when creating a dynamical
model. While most of the studies emphasizes the dynamic
motion analysis for energy consumption that incorporates
velocity and acceleration parameters [18], [19], there is a
scarcity of research focusing specifically on energy
consumption during the static pose of industrial robots.

Most of the literatures discussed in this section so far,
focuses on analytical modeling of dynamic parameters and their
identification for energy usage estimation. In most of the cases,
some of the parameters like friction effect, temperature effect
and inertia parameters are hard to identify and their accuracy is
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subjected to experimental setup and boundary conditions.
Although using Lagrange method [20] to model the robot
dynamics can reduce number of parameter that needs to be
identified, the experimental errors and boundary definitions still
affect the overall accuracy. There exist the data-driven approach
to model the energy [21], however, it requires large amount of
data for modeling. Similarly, machine learning methods to
model the energy consumption like artificial neural networks
(ANN) also follow the big data trend and require large training
dataset to achieve reasonable accuracy. Some recent studies,
however, have explored the application of a hybrid method
known as physics-informed neural network [22], that
incorporates the physical model of the system into the machine
learning framework thus significantly reducing the data size
required for training. Hybrid models, which combine an
approximate physical model with an ANN for learning the
model errors using a small amount of training data, can achieve
higher accuracy than purely physical models, while
simultaneously reducing the labor and time required for
optimization or fine-tuning of the model [23]. Several studies
has shown promising results by using hybrid learning models
[24], [25] for various application in different domains.

Drawing from the literature review, this study presents a
hybrid energy consumption model for industrial robots,
employing hybrid learning that combines an approximate
dynamics model with an ANN. The primary focus is on
modeling energy consumption in static state of robot arms (in
state of no motion), considering joint angles as input variables.
A low discrepancy sampling technique is used to collect the
robot arm’s energy consumption at different poses within a
defined workspace. The performance of the physical model's
energy estimation is compared to the proposed hybrid method to
showcase the proposed models applicability in this domain. The
paper is structured as follows: Section II discusses robot arm
dynamics; Section III discusses the dynamics properties of robot
arm used in this study. Section IV presents the proposed
methodology; Section V showcases results and comparisons
between methods; and Section VI concludes the study and its
findings.

II. DYNAMICS OF INDUSTRIAL ROBOT ARM

The dynamics of an industrial robot arm can be characterized
by assigning mass, center of mass and moment of inertia of links
together with the friction properties of the actuator drives at each
joint. Equations of motion is most common method of
determining the joint torques of the robot arm as a function of
robot arm dynamics properties and joint angles. For a robot arm
with n joints and joint angles ¢ € R", the applied torque by
joints T € R™ can be calculation using equation of rigid body
equation of motion [26] as shown in Equation (1):

T=M(q)j +C(q,9)q + G(q) + 7£(q) o

Where, M(q) € R™™ denotes a positive definite mass
matrix, C(q,q) € R™" represents the matrix for Coriolis and
centrifugal effects, G(q) € R™ represents the torque exerted due
to gravity effect and 7:(q) is the function representing the
frictional torques.

When the robot arm is in static condition (no motion), only
gravity term G(q) € R™ is considered for calculating the
torques applied on robot arm joints. The gravity term of each
joint can be calculated as a function of mass of the link, center

of mass of the link and joint angle. The equation for computing
the gravity term can written as Equation 2:

G(q:) = Z:j_o mj-g: (Opj 661i) 2)

Where m; is the mass of the link j, g is the gravitational
force acting on the link j (-9.81 m/s2), p; is the position of
center of mass of link j, and g; is the joint angle of joint j. The
summation term used in Equation 2 is applied over all links to
obtain the gravity term, G(q) = [G(qo),G(q1), ..., G(q)]".

III. THE DYNAMIC PARAMETER ESTIMATION

In this study, a medium payload industrial robot arm, the
Yaskawa Motoman MH12, is examined, as depicted in Fig. 1.
The robotic arm features a six-axis configuration, comprising 6
links and 6 joints with maximum payload limit of 12 Kg. A
three-dimensional (3D) model of the robot arm is employed to
estimate dynamic parameters using SolidWorks, a computer-
aided design (CAD) software. Each link is assigned a material
of gray cast iron, with a density of 7.34 g/cm?. It is crucial to
acknowledge that the CAD model provided by the manufacturer
is an approximation of the actual robot and does not consider
hollow sections, wiring, and tubing regions. Consequently, the
calculated center of mass (CoM) and mass properties may not
accurately represent the real robot. To address this issue, tubing,
wiring, and hollow regions were added to the model based on
actual robot measurements, without requiring complete
disassembly. After modifying the 3D model of the robot we
calculated the CoM and mass properties of the robot using the
CAD software as listed in Table 1. Despite potential
discrepancies, these estimations provide a suitable foundation
for constructing a dynamic model that assesses static state
energy consumption for the robot arm.

Link 2

Link 1

<«—— Link 0

Fig. 1. Robot arm link positions of Yaskawa Motoman MH12.

From Table I, it can be observed that the mass of Link 1 is
significantly larger compared to the other links. However, since
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Link 1 is perpendicular to the base in its static state, its
gravitational forces are primarily transferred vertically to the
base, resulting in minimal energy consumption. In contrast,
during the robot arm's static operation, the mass properties and
CoM locations of Links 2 and 3 play critical roles in determining
overall energy consumption. The actuators and motors
controlling Links 2 and 3 must generate forces to overcome the
gravitational forces acting on them due to their mass and CoM
locations. Similarly, Links 4 and 5, although having smaller
masses, also contribute to the overall energy consumption of the
robot on a smaller scale. This is due to the combined effect of
their mass properties and CoM locations, which influence the
force requirements for maintaining the robot arm's static
equilibrium.
TABLEI
MASS AND CENTER OF MASS PROPERTIES OF MH12

Link Mass Center of Mass,  Center of Mass,  Center of Mass,
(kg) X (m) y (m) z(m)

0 22.806 —0.050 0.003 0.057

1 44.652 0.035 0.005 —0.188

2 30.939 —0.018 —0.092 0.258

3 10.538 0.089 —0.034 0.120

4 4.9476 —0.224 0.000 0.017

5 2.0965 0.026 —0.015 0.000

IV. METHODOLOGY

In a static pose, the robot arm is motionless, and therefore,
the angular velocity is zero. Traditional methods of calculating
power or energy, which are typically predicated on motion
dynamics, are not directly applicable under these conditions.
However, to counteract the effects of gravity and maintain a
position, the robot arm must exert opposing torques. This means
that even though the arm is not in motion, the servo motors in
the joints remain active, leading to power consumption.

The relationship between the motor's torque (7,,) and the
current (/) is described by the Equation 3 [27],

T =K, X1 3)

Where K; is the torque constant of the motor. The electrical
power (P) consumed by the motor can be calculated as the
product of the current (/) and the voltage (V). Substituting /
from the Equation 3,

P v “
= X —
Tm X,
This Equation 4 describes the power used by the motor in
relation to the generated torque, the applied voltage, and the
motor's torque constant.

Over time, this power consumption equates to the energy
required for the robot arm to maintain a specific pose. This
linear estimate provides a bridge between joint torque
estimation and energy consumption of different poses.
Therefore, the estimated torque value of the robot arm can be
used as an effective indicator of its energy consumption in
various static poses.

This study uses the absolute sum of applied torques T as
shown in Equation 5 for each joint of the robot arm to represent
the energy consumption at any given pose, highlighting the
practical considerations that exist even when the robot arm is
motionless.

n
t=>" 6@ )
i=0
In this research, an industrial robot arm controller,
Yaskawa Motoman DX200, is employed, which supports high-
speed Ethernet communication using the User Datagram
Protocol (UDP) with an average response rate of 50 Hz. This
communication protocol enables efficient and real-time data
transfer between the robot controller and an external system. To
gather the torque data for each joint from the controller, a
personal computer is utilized, on which a custom
communication software, developed using Python programming
language, is implemented. This software facilitates the
communication between the robot arm controller and the
personal computer, ensuring seamless data transfer and
processing.

The torque data collection process for this study spans over
a duration of 2 seconds, resulting in 100 samples per joint. Once
the data is collected, it is processed to compute the average
torque value for each joint at a given pose. Utilizing the average
value of the torque samples provides a more reliable
representation of the joint torque, as it accounts for any
fluctuations or inconsistencies in the data due to external factors
or system noise. The communication method for data collection
is shown in Fig. 2 and the experimental setup in Fig. 3.

. Control ubpP

e [ Robot
wptrrrreeee|_Controller

Robot Arm

Personal Computer

Fig. 2 Schematic diagram of experimental setup for data collection from robot
arm.

In order to efficiently sample the workspace of the robot arm,
this study employs a low discrepancy sampling method known
as the Halton sequence [28]-[30] for the design of experiments.
The literatures suggest that low discrepancy sampling methods
provide superior space-filling properties in comparison to
random sampling, as well as improved convergence results for
modeling and optimization tasks. Given that this study utilizes
robot arm joint angles as input variables, the upper and lower
limits for each joint are defined, as demonstrated in Table II.

Utilizing the Halton sequence, a total of 532 distinct joint
angle configurations are generated, taking into account the
specified joint limits. It is important to note that some of these
limits deviate from the mechanical limits of the robot arm, as
they have been adjusted to ensure safety and to prevent
collisions between the robot arm and its base, as well as the
platform. The resulting X, y, and z-axis positions of the end
effector for these joint configurations within the 3D workspace
are depicted in Fig. 4.
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Fig. 3 Experimental setup for data collection from robot arm.

TABLEII
MECHANICAL LIMITS AND LIMITS USED IN DATA COLLECTION EXPERIMENT
Joint Lower Upper Lower Upper
mechanical mechanical experiment experiment
limits limits limits limits
(radians) (radians) (radians) (radians)
0 —2.9670 2.9670 —1.5708 1.5708
1 —1.5708 2.7052 —0.3491 0.3491
2 —1.4835 2.6179 —1.1355 0
3 —3.4906 3.4096 —2.0944 2.0944
4 —2.6179 2.6179 —1.5708 1.5708
5 —3.1415 3.1415 —3.1415 3.1415

Table II provides information on the mechanical limits of the
robot arm's joints and the limits used in the data collection
experiment. These limits are essential in determining the range
of motion of the robot arm during the data collection process.
The lower and upper mechanical limits of each joint are
specified in radians, while the lower and upper experiment limits
represent the minimum and maximum joint angles explored
during the data collection phase.

For instance, joint 0 has lower and upper mechanical limits
of -2.9670 and 2.9670 radians, respectively. However, during
the experiment, its motion was limited to a range of -1.5708 and
1.5708 radians to ensure safe and controlled operation. Similarly,
joint 1 has lower and upper mechanical limits of -1.5708 and
2.7052 radians, respectively. It was constrained within a smaller
range of -0.3491 and 0.3491 radians during the experiment
because smaller changes in the second joint can cause significant
deviations in the end-effector positions. This limitation was put
in place to prevent self-collision or collision with other objects
in the experimental setup space.

The remaining joints also have specified lower and upper
mechanical limits, which vary depending on the joint. For
example, joint 2 has a lower mechanical limit of -1.4835 radians
and an upper mechanical limit of 2.6179 radians. However, its
motion was limited to a range of -1.1355 and 0 radians during
the experiment due to safety concerns and to ensure the robot
arm's operation remained within the desired workspace.
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Fig. 4 End-Effector position of robot arm in three dimensional workspace for
the joint configurations used in design of experiment.

In order to model the energy consumption of the robot arm
for a given joint configuration, this study employs a hybrid
machine learning approach. Initially, the applied torque on each
joint of the robot arm is calculated using the gravity term, as
illustrated in Equation 2. Subsequently, the analytical solution is
computed as the absolute sum of torques using Equation 3.
These torque values will be utilized for comparative purposes
later in the study.

In this study, a hybrid approach is proposed, utilizing ANN,
to model the energy consumption of a robotic arm based on joint
angles and applied torques, which are due to gravitational effects
on each joint. As shown in Figure 5, the proposed approach
makes use of a single hidden layer ANN model with 475 neurons.
The determination of the number of neurons was accomplished
through hyperparameter optimization using the Tree of Parzen
Estimators method [31]. This optimization process was
conducted using the Hyperopt/Python library [32], which
provides an efficient and automated means of searching for the
most suitable hyperparameters for the model..

The input variables for the ANN model are comprised of
joint angles and gravity-induced torques, resulting in a total of
12 variables (6 for joint angles and 6 for applied torques). The
output variable is the absolute sum of torques, as measured from
the robot controller for each joint configuration. It should be
noted that the model is fed with input joint angles and the
estimated joint torques derived from robot dynamics. Therefore,
this model is primarily tasked with estimating the error between
the measured torque and the estimated torque from the robot
dynamics.
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For comparison purposes, an ANN model was constructed
with one hidden layer, and number of neurons were optimized
using the Hyperopt library within a range of 8 to 1000 neurons.
The best model configuration was determined to be with a total
of 216 neurons in the hidden layer. However, this model was
trained to directly predict the total torque. Joint angles were used
as the input variables and total joint torques as the output
variable in this model. Consequently, this ANN model attempts
to establish a data-driven prediction model to directly estimate

the total torque values, as is typical in data-driven methodologies.
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Fig. 5 Schematic representation of the hybrid learning approach for modeling
energy consumption in an industrial robot arm by combining robot dynamics
and ANN.

The dataset used for this study is divided into two parts: 80%
is utilized for training, and the remaining 20% is designated for
testing purposes.

During the training process, both the ANN and the hybrid
model’s ANN are optimized using the ADAM stochastic
optimization algorithm [33], a well-regarded algorithm
frequently employed in machine learning for the optimization of
deep learning models. The sigmoid activation function, a
commonly used activation function for hidden layers in ANNSs,
is utilized for the ANN neurons. The TensorFlow library, an
extensively used open-source software library for machine
learning, is employed to develop the ANN model. Furthermore,
the model is implemented and optimized using the Python
programming language, a popular choice for data analysis and
machine learning due to its simplicity and comprehensive
libraries.

V.RESULTS

To compare the performance of torque estimation between
the robot dynamics approach, ANN model and the hybrid
learning method, this study employs three evaluation metrics:
Root Mean Squared Error (RMSE) as presented in Equation 4,
Coefficient of Determination (R?) as depicted in Equation 5, and
Mean Absolute Percentage Error (MAPE) as illustrated in
Equation 6. The accuracy of the two approaches is assessed
using the MAPE metric, as outlined in Equation 7. In the
equations below, ¥ represents the predicted value, y is the
actual/measured value and n is the total number of samples used

for testing (132 in this case). By examining these metrics, the
study aims to provide a comprehensive analysis of the
effectiveness and robustness of each method in estimating
torque values for the robot arm.

n . — 9.)2
RMSE = Yicoi — 90 (4)
n
R2 = 1 _ 2z~ 9)° 5)
Yico(Vi — ¥)?
n . — A.
MAPE = M X 100 (6)
Accuracy = 100 — MAPE @)
The comparative results, summarized in Table III,

convincingly illustrate that the hybrid approach, which merges
robot dynamics and an ANN model, surpasses the standalone
robot dynamics model in the task of estimating total torque. This
superiority is evidenced by a significant reduction in the RMSE
by a factor of 2.22, which brings down the error from 29.31 Nm
(for the robot dynamics model) to 13.19 Nm. Furthermore, when
employing the hybrid approach, there is a reduction in the
MAPE by over 10% as compared to the robot dynamics model.

Conversely, the ANN model, trained on identical data and
with the optimized hyperparameters, was unable to accurately
correlate the robot torque output with the input robot joint angles.
As a result, it underperformed compared to both the dynamic
and hybrid models. This weaker performance of the ANN model
can be primarily attributed to the limited size of the training
dataset.

TABLE III
COMPARISON OF ROBOT DYNAMICS AND PROPOSED HYBRID APPROACH FOR
ESTIMATING TOTAL TORQUE
Metrics Robot Dynamics ANN Hybrid Approach
RMSE 29.31 Nm 30.19 Nm 13.19 Nm
R’ 0.687 0.663 0.936
MAPE 15.783 % 16.671% 4.271%
Accuracy 84.217% 83.329 % 95.729%

In addition to improvements in RMSE and MAPE, the
hybrid approach also shows an increase in the R? value. With a
R? value of 0.936 for the hybrid approach, it substantially
outperforms the robot dynamics model which registers an R?
value of 0.687. This highlights that the hybrid approach is able
to account for approximately 93.6% of the variance in the data,
as opposed to the 68.7% explained by the robot dynamics model
alone. It is noteworthy that, while the standalone ANN model
reached a reasonable accuracy of 83.329%, its R? value of 0.663
indicates that it could only explain 66.3% of the variance in the
data, suggesting a less precise mapping of the predicted data to
the measured data. Despite the limited data, the standalone ANN
model approached the accuracy of the robot dynamics model.
However, the hybrid approach, which integrates the robot
dynamics model and ANN model, outperformed both models in
terms of accuracy and R? value.
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Fig. 6 Scatter plot illustrating the comparison between the total torque output
from the robot dynamics (gravity term) and the hybrid learning approach.

In Figure 6, the scatter plot presents a clear visual
comparison among the three estimation approaches — the robot
dynamics model, the ANN, and the hybrid approach — in relation
to the measured or actual total torque data. The data points
representing the hybrid approach are observed to cluster tightly
along the diagonal (45°) line, indicative of a strong correlation
between the predicted and measured total torques. This close
alignment highlights the enhanced accuracy and reliability of the
hybrid approach in estimating total torque values.

Conversely, the data points corresponding to the robot
dynamics model are noticeably scattered and display a weaker
correlation with the measured total torques. This spread reflects
the limitations of solely using the robot dynamics model to
capture the complex behavior of the system, resulting in less
accurate and less reliable torque estimations. The ANN model
displays the highest dispersion of data points, which further
suggests that the model was unable to converge due to the
constraints of a limited dataset.

The enhanced performance of the hybrid approach can be
attributed to the synergistic combination of the robot dynamics
model, which offers a fundamental understanding of the
physical behavior of the system, and the ANN model, which
effectively captures the nonlinear relationships within the data.
Consequently, the hybrid approach emerges as a superior
method for estimating total torque in industrial robot
applications, with the potential to significantly improve the
efficiency, effectiveness, and overall performance of these
robotic systems.

Although it could be argued that the accuracy of the robot
dynamics model can be improved by employing parameter
identification methods, this study demonstrates that the
proposed method can achieve superior results using a relatively
small dataset of only 532 samples. Furthermore, the proposed
method offers several practical advantages, including ease of
implementation, reduced time consumption, and the elimination
of any need for special modifications to the robot arm or its
controller. Notably, the entire estimation process can be
completed in under an hour, emphasizing the efficiency of the
hybrid approach. Thus, the hybrid approach presents a valuable
and efficient solution for total torque estimation in industrial
robot applications.

VI. CONCLUSION

This study effectively showcases the potential of a hybrid
learning approach, integrating a parametric robot dynamics
model with an ANN model, to accurately estimate total torque
in static poses as an indicator of energy consumption, as shown
in Equation 3 and 4, particularly within industrial robot
applications. The hybrid approach outperforms the robot
dynamics model and ANN model alone, achieving significantly
lower RMSE and higher R? values, and thereby offering a more
reliable and precise method for energy consumption modeling.
This method proves to be efficient, easy to implement, and does
not require extensive parameter identification, or any
modifications to the robot arm or controller. The proposed
hybrid approach holds significant potential for improving the
overall efficiency, effectiveness, and performance of industrial
robotic systems.

Moving forward, this study aims to extend the research by
investigating the application of the hybrid approach for
estimating robot energy consumption during motion (dynamic
torque). Additionally, the exploration of payload effects on the
model's efficiency will be considered, providing a
comprehensive understanding of the hybrid approach's potential
in diverse industrial robot applications. This future research
direction seeks to further enhance the practicality and
adaptability of the hybrid method in addressing the complexities
of real-world robotic systems.
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