
Z-1 Z-1 Z-1

()

2

2

1

1exp
2

 3.1415926......

 1 exp 2
i

i

i
ij j

i
j

n
n i ijk i ijk

jk
i ijkijk

I m

I m I m
r

vv

σ

π

=

  −
 Φ = −      
=

    − − = − −           
∏

iRobotics

PUBLISHED BY THE ROBOTICS SOCIETY OF TAIWAN

VOLUME
NUMBER

JUNE

2
2

2019

ISSN 2616-8170

Robotics Society of Taiwan

iRobotics
EDITORIAL BOARD

Editor-in-Chief
Ching-Chih Tsai,

Dept. of Electrical Engineering,
Nat’l Chung Hsing Univ.,Taiwan

Email: cctsai@nchu.edu.tw

Tzuu-Hseng S. Li,
Dept. of Electrical Engineering,
Nat’l Cheng Kung Univ., Taiwan
Email: thsli@mail.ncku.edu.tw

Editors
C. L. Philip Chen,

Univ. of Macau., Macau
Rodney Roberts,

Florida State Univ., USA
MengChu Zhou,

New Jersey Institute of Technology,
USA

Ljiljana Trajkovic,
Simon Fraser Univ., Canada
Andreas Nürnberger,

Otto von Guericke Univ. Magdeburg,
Germany

Dimitar P. Filev,
Ford Motor Company, USA

Vladik Kreinovich,
Univ. of Texas at El Paso, USA

Sam Kwong,
City Univ. of Hong Kong, Hong Kong

Vladimir Marik,
Czech Tech. Univ., Czech Republic

Adrian Stoica,
Jet Propulsion Laboratory, California
Institute of Technology, NASA, USA

Ferat Sahin,
Rochester Institute of Technology,

USA
Edward Tunstel,

United Technologies Research Center,
USA

Li-Chen Fu,
Nat’l Taiwan Univ., Taiwan

Han-Pang Huang,
Nat‘l Taiwan Univ., Taiwan

Ren C. Luo,
Nat’l Taiwan Univ., Taiwan

Tsu-Tian Lee,
Tamkang Univ., Taiwan

Shun-Feng Su,
Nat’l Taiwan Univ. of Sci. and Tech.,

Taiwan
Satoshi Tadokoro,
Tohoku Univ., Japan

Tsu-Chin Tsao,
Univ. of California, Los Angeles,

USA
Wen-June Wang,

Nat’l Central Univ., Taiwan
Mariagrazia Dotoli,
Politecnico di Bari, Italy

David Kaber,
Univ. of Florida, USA
Dmitry B. Goldgof,

Univ. of South Florida, USA
Robert Kozma,

Univ. of Memphis, USA
Jun Wang,

City Univ. of Hong Kong, Hong Kong
Keith W. Hipel,

University of Waterloo, Canada
Hideyuki Takagi,

Kyushu University, Japan
Okyay Kaynak,

Boğaziçi Univ., Turkey

Karen Panetta,
Tufts Univ., USA

Tadahiko Murata,
Kansai Univ., Japan
Plamen Angelov,

Lancaster University, United
Kingdom

Maria P. Fanti,
Polytechnic Univ. of Bari, Italy

Eigner György,
Óbuda Univ., Hungary

Enrique Herrera Viedma,
Univ. of Granada, Spian

Fei-Yue Wang,
Chinese Academy of Sciences, China

Christopher Nemeth,
Lancaster University, United

Kingdom

Chung-Liang Chang,
Nat’l Pingtung Univ. of Sci.
and Tech., Taiwan
Raja Chatila,
University Pierre et Marie
Curie, France
Chin-Sheng Chen,
Nat’l Taipei Univ. of Tech.,
Taiwan
Chih-Yung Cheng,
Nat’l Taiwan Ocean Univ.,
Taiwan
Ming-Yang Cheng,
Nat’l Cheng Kung Univ.,
Taiwan
Chen-Chien James Hsu,
Nat’l Taiwan Normal Univ.,
Taiwan
Jwu-Sheng Hu,
ITRI, Taiwan
Guo-Shing Huang,
Nat’l Chin-Yi Univ. of Tech.,
Taiwan

Hsu-Chih Huang,
Nat’l Ilan Univ., Taiwan
Kao-Shing Hwang,
Nat’l Sun-Yat Sen Univ.,
Taiwan
Chung-Hsien Kuo,
Nat’l Taiwan Univ. of Sci. and
Tech., Taiwan
Chia-Feng Juang,
Nat’l Chung Hsing Univ.,
Taiwan
Feng-Li Lian,
Nat‘l Taiwan Univ., Taiwan
Chih-Jer Lin,
Nat’l Taipei Univ. of Tech.,
Taiwan
Chyi-Yen Lin,
Nat’l Taiwan Univ. of Sci. and
Tech., Taiwan
Hsien-I Lin,
Nat’l Taipei Univ. of Tech.,
Taiwan
Huei-Yung Lin,

Nat’l Chung Cheng Univ.,
Taiwan
Jung-Shan Lin,
Nat’l Chi-Nan Univ., Taiwan
Pei-Chun Lin,
Nat’l Taiwan Univ., Taiwan
Alan Liu,
Nat’l Chung Cheng Univ.,
Taiwan
Yen-Chen Liu,
Nat’l Cheng Kung Univ.,
Taiwan
Yi-Hung Liu,
Nat’l Taipei Univ. of Tech.,
Taiwan
Chi-Huang Lu,
Hsiuping Univ. of Sci. and
Tech., Taiwan
Max Meng,
Chinese Univ. of Hong Kong,
China
Stephen D Prior
Univ. of Southampton,
United Kingdom

Ming-Yuan Shieh,
Southern Taiwan Univ. of Sci.
and Tech., Taiwan
Jae-Bok Song,
Korea Univ., Korea
Kai-Tai Song,
Nat’l Chiao Tung Univ.,
Taiwan
Kuo-Lan Su,
Nat’l Yunlin Univ. of Sci. and
Tech., Taiwan
Tong-Boon Tang
Universiti Teknologi
PETRONAS, Malaysia
Kuo-Yang Tu,
Nat’l Kaohsiung First Univ. of
Sci. and Tech., Taiwan
Ming-Shyan Wang,
Sourthern Taiwan Univ. of Sci.
and Tech., Taiwan
Rong-Jyue Wang,
Nat’l Formosa Univ., Taiwan
Wei-Yen Wang,

Nat’l Taiwan Normal Univ.,
Taiwan
Ching-Chang Wong,
Tamkang Univ., Taiwan
Sendren Sheng-Dong Xu,
Nat’l Taiwan Univ. of Sci. and
Tech., Taiwan
Ting-Jen Yeh,
Nat’l Tsing Hua Univ.,
Taiwan
Jia-Yush Yen,
Nat’l Taiwan Univ., Taiwan
Ping-Lang Yen,
Nat’l Taiwan Univ., Taiwan
Kuu-Young Young,
Nat’l Chiao Tung Univ.,
Taiwan
Gwo-Ruey Yu,
Nat’l Chung Cheng Univ.,
Taiwan

PUBLISHER
Robotics Society of TAIWAN (RST)
Society President: Ching-Chih Tsai

Department of Electrical Engineering, National Chung Hsing University
Taichung, Taiwan

Tel: +886-4-2285-1549#601
URL: http://www.rst.org.tw

The iRobotics is published quarterly each year by the Robotics Society of Taiwan (RST). Institutional rate: US$140
annually; individual annual subscription rate: US$50 for nonmembers, US$25 for members (including postage). Note that
another US$100 is needed if the express is required.

iRobotics
Vol. 2, No. 2, June, 2019

1

Abstract—Development of end-to-end advanced driver
assistance system (ADAS) becomes handy with current
paradigm shift in computer vision and deep learning based
image processing. Such advanced system can provide a safety
precaution for drivers during driving. Lane detection is a key
aspect of developing driving safety system. In this paper, two
approaches including random sample consensus (RANSAC) and
deep convolutional image segmentation were discussed. The
RANSAC approach used the video streams collected from
PAPAGO GoSafe 530G camera to detect the lane appearing on
the front scene of the vehicle on highway. In addition, a deep
learning based semantic segmentation architecture called SegNet
was used for land detection based on the benchmark CamVid
dataset. The SegNet model was trained for 11 classes. On
validation, it was found that the mean intersection over union
(mIOU) is around 60.1 and the global average of the model is
90.40.

Index Terms—lane detection, random sample consensus, deep
convolutional neural network, image segmentation.

I. INTRODUCTION
HE current, advance in driver assist system (DAS) has
significantly improved the vehicle safety records [1].

Many scholars have been researching the development of
driver assistance system [2] in quest for new algorithms which
can have the better understanding of the road scene.
According to a survey, 59% of all road accidents were caused
by lane departure [3]. Hence, in an efficient DAS system
detecting the road lanes accurately is one sought requisite.
This research aims at developing lane detection system to
improve the traffic safety and avoid accidents due to human
error. Moreover, a camera is used in vision-based systems [4]
as sensing device due to its comparatively low cost than radar
or laser technology and relatively well developed base
knowledge on computer vision algorithms.

Fast growing prospect of self-deriving cars, regardless of
philosophical question on safety issues surrounding it, has

This work was partially supported by the National Science Council,
Taiwan, R.O.C. under Grants NSC MOST
MOST-106-2221-E-011-004-MY3 and the “Center for Cyber-physical
System Innovation” from The Featured Areas Research Center Program
within the framework of the Higher Education Sprout Project by the Ministry
of Education (MOE) in Taiwan.

A. T. Wagshum, A. Kumar, Y. C. Kuo and C. H. Kuo are with the
Department of Electrical Engineering, National Taiwan University of
Science and Technology, Taipei, 106 Taiwan (corresponding author e-mail:
chkuo@mail.ntust.edu.tw;).

introduced advanced deriving technologies. On the other hand,
the race in development of autonomous vehicle(AV) is
showing remarkable results [5]. Nevertheless, the effort to
make human-controlled driving safe has continued and its
showing promising results. The juncture, sometimes with
overlapping results, of these three line of researches is a
promise for emergency of new technologies in driving
experience.

Usually, highways and freeway roads will have well
marked multiple numbers of lanes. It’s through this line that
drivers sharing common road communicate for safe drive. It is
obvious that the car needs to move either within a lane or
change its track to another lane. Lanes are the curvature and
boundaries of every road segment. Each lane is considered as
the reference line [6] for driver assistant vehicle to maintain
the driving path and safe distance from other vehicles. Hence,
it is essential to detect the lane quickly and more accurately.
Additional lane information under different lightning
environment is required to make the rapid decision and
necessary action.

Computer vision is essentially integrating itself into our
daily life such as object recognition, healthcare automation,
robotics control, autonomous vehicle and driver assist system
[7]. Computer vision system is used to capture the road scene
images from the front view camera and recognize objects in
scene and other important road information such as road signs
and markings [8]. Under the structured road condition, it is
assumed that the road is flat and lanes are in parallel with each
other. Furthermore, same interval is maintained by the lanes.
The major problem in lane detection is the lanes are
intermittent and insufficient for detection. As a result, no lanes
are detected which is a very serious challenge in driver
assistant system. Therefore, region of interest (ROI)
estimation, and a deep learning based lane detection
mechanism are proposed in this paper.

Deep learning is specific form of machine learning which
learn data representation without explicitly dictated features
[9]. Deep learning uses several hidden layers and neurons as
compared to traditional neural network [10]. Essentially deep
learning is extracting features of dataset it introduced to such
that it able to classify or predict information embed in the data.
Various deep learning methods such as deep neural networks,
convolutional neural network (CNN), deep recurrent

Lane Detection Approaches: RANSAC and
Deep Convolutional Image Segmentation

Asheber Techane Wagshum, Anjana Kumar, Yu-Cheng Kuo and Chung-Hsien Kuo*

T

Kuo et. al.
Lane Detection Approaches: RANSAC and Deep Convolutional Image Segmentation

2

networks (RNN), etc. have been proposed which can be
applied in computer vision, image recognition, and driver
assistant system. CNN [11] model can effectively be used in
lane detection. Hence, a CNN model is used in our proposed
work, to detect the lane segments from the road image taken
by the camera present in the car.

The rest of the paper is organized as follows. Existing
works on lane detection, computer vision, and deep learning
are discussed in section 2. In section 3, a RANSAC approach
for lane detection is proposed. In section 4, a deep learning
based semantic segmentation architecture with SegNet for
lane detection is discussed. Experimental setup and results of
two approaches are given in section 5 and the concluding
remarks are made in section 6.

II. RELATED WORK

Many lane detection mechanisms have been proposed in
the recent past. In [12], a drivable path detection algorithm
was proposed for the autonomous vehicles. The lanes of the
road were detected in real-time by analysing each frame of
video through edge detection and Hough transform techniques
for safe navigation. Similarly, [11] has developed end-to-end
lane position estimating deep neural network model that
inputs images from laterally-mounted down-facing cameras.
In [13], a lane detection method was introduced by integrating
lane shape for online vehicle position calculation. A lane
detection and departure warning system were integrated and
investigated by [14]. However, long processing time and high
computation are required by Hough transformation.

In [15], a parallel processing model was used for Hough
transformation and image analysis for faster lane detection. A
reliable lane detection method was proposed in [16] based on
spatiotemporal images. The images were generated by
accumulating the consecutive scan line pixels to improve the
accuracy of detection. In [17], a computer vision based
multi-vehicle detection mechanism was proposed by
considering vehicle location in a single CNN model. However,
different lighting effect is not considered in the existing works.
Hence, we plan to incorporate unlike lighting effect in our
work to improve the detection efficiency.

In [18], a deep neural network-based car-following model
was proposed by considering velocity and position difference
as inputs. By using deep learning, the feature extraction is
more accurate to describe complicated human actions.
However, the lane position is not considered in this work
which also equally important in a driver assistant system. In
[19], a deep fully convolutional neural network architecture
known as SegNet was proposed for semantic pixel-wise
segmentation images. An encoder and corresponding decoder
network were designed for pixel-wise classification and
feature map production. The performance of SegNet is better
in the segmentation process. Hence, we plan to use the SegNet
model as our base CNN model.

INPUT VIDEOI

EXTRACT AND RESIZE FRAME

EXTRACT THE REGION OF INTERSEST

FEATURE EXTRACTION

PERFORM INVERSE PERSPECTIE MAPPING ON THE REGION OF
INTEREST

CONVERT TO RGB COLOR SPACE CONVERT TO HSV COLOR SPACE

COMPUTE GRADIENT MASK
USING SOBEL OPERATOR

COMPUTE GRADIENT MASK
USING SOBEL OPERATOR

COMBINE THE GRADIENT MASKS TO OBTAIN ROBOUST FEATURES

RANDOM CONCENSUS ALGORITHM FOR CURVE FITTING

CREATE LOOK UP TABLE WITH HORIZONDAL AND VERTICAL COORDINATES OF
FEATURE POINTS

SELECT
RANDOM
FEATURE
POINTS

SELECT THE
FINAL
CURVE

WITH THE
MAXIMUM
INSIDERS

FIT A
POLYNOMIAL

FUNCTION FOR
FEATURE POINTS

OF ROAD LANE
MARKERS ALONG

ONE SIDE

FIT A POLYNOMIAL
FUNCTION FOR FEATURE

POINTS OF ROAD LANE
MARKERS ALONG THE

OTHER SIDE WITH SAME
CENTER OF CURVATURE
OF THE PREVIOUS SIDE

CALCULATE THE LANE OFFSET AND RADUIS OF CURVATURE OF THE ROAD LANE

TRANSFORM FINAL DETECTIONS TO THE ORIGINAL PERSPECTIVE

OUTPUT FRAME WITH FINAL DETECTIONS

Fig. 1. Flow char of the proposed RANSAC lane detection appatroach.

III. METHOD I: RANSAC

In this section, a RANSAC approach is proposed to detect
the lane on the highway. The flow chart of the proposed
approach is shown in Figure 1.

For road lane detection, the road lane markers which are
white or yellow in color are used as reference to obtain the
boundary of the road lane in which the vehicle is present. Each
frame from the input video data is extracted and resized. The
region of interest (ROI) which represents the lane in which the
vehicle is present is extracted and the inverse perspective
transform is computed to obtain the top view. Utilizing the
image obtained in HSL color space and in gray scale image,
gradient mask to extract the features corresponding to the
yellow and white road lane markers is computed. The gradient
mask computed for each color space is combined to obtain
final feature points corresponding to the road lane markers. A
look up table is created to record the horizontal and vertical
coordinates of the feature points extracted. Random sample
consensus algorithm is used for fitting a curve for the
extracted feature points.

The feature points are extracted for road lane markers
along the right and left side of the vehicle. Primarily, the
feature points of the road marker along left side is utilized. A
random set of points are taken and a curve fitting function is
used to compute the parameters of the polynomial and the
number of feature points that are well-fitting is computed.
After iterating over all the subset sets of feature points that are

iRobotics
Vol. 2, No. 2, June, 2019

3

randomly selected, the regression parameters which can fit the
maximum number of feature points are taken as the final
parameter. These well-fitting feature points are known as
insiders.

For the feature points along the right side, similar process
is used to obtain the final regression parameters. But, to
compute the final regression parameter, an additional
condition is used. The center of curvature of the curve
obtained through the curve fitting function for the feature
points on the right side of the lane must be same as that of the
left side. Hence both the curves obtained are parallel to one
another. Similar process is done taking the feature points on
the right side of the lane as reference. From the two results
obtained, the curve which has the maximum number of
insiders is taken as the final estimation.

The radius of curvature of the lane and the lane offset are
computed. To represent the final prediction, the lane boundary
prediction is converted to the original perspective and is
plotted on the original input frame for visualization.

A. Extraction of Region of Interest (ROI) and Perspective
Transformation

The road lane is present in the lower half of the input
image in Figure 2. The region of interest (ROI) represents the
road lane in which the vehicle is present. Every frame from the
input video is extracted and resized to 1280 X 720 resolution.
This region of interest is a trapezoidal region which is
extracted from the resized image. Perspective transformation
for this region of interest (ROI) is computed to obtain the top
view of the road lane. Perspective transformation or Inverse
perspective mapping is computed to avoid the perspective
effect.

B. Feature Extraction

To estimate the boundary of the road lane in which the
vehicle is present, the road lane markers which are either
yellow and white in color are used as reference. The
perspective transformed image is converted to gray scale and
in HSL color space. Using the Sobel operator, gradient mask
is computed for both gray scale image and for the saturation
channel of the HSL color space. The Sobel operator uses a
3X3 kernels which is convolved with the original image to
calculate approximations of the derivatives. There are two
different kernels each for computing the approximation of
derivatives along the horizontal and vertical direction.

Let I be the original image and Gx and Gy are images
representing the horizontal and vertical derivative
approximation. The calculation is represented as (1) – (2),

 (1)

 (2)

Input Image Region of Interest (ROI)

Extracting the Region Of Interest
(ROI)

Inverse Perspective
Transformation

Fig. 2. Region of interest extraction and inverse perspective transform.

where, *denotes the 2-dimensional signal processing
convolution operation.

At each point in the image I, the resulting gradient
approximations Gx and Gy can be combined to obtain the
gradient magnitude G as (3); the gradient direction can be
computed as (4).

 (3)

 (4)

After computing the gradient mask for gray scale and the
saturation channel of HSL color space, the image is divided
into two and the feature points corresponding to the road lane
markers along the left and the right side are detected as shown
in Figure 3. A look up table is created which contains the x and
y coordinates of the feature points which represents the road
lane markers.

C. RANSAC Based Curve Fitting

Random sample consensus algorithm (RANSAC) is an
iterative method to estimate various parameters of a
mathematical model. This algorithm iterates over a set of data
which contains data points that can fit well as well as outliers.
Outliers are data points which are distant from other
observations. The presence of these outliers do not affect the
estimates of parameters of the mathematical model. Hence,
this algorithm can detect outliers from the given data points.

Kuo et. al.
Lane Detection Approaches: RANSAC and Deep Convolutional Image Segmentation

4

Input Image Region of Interest (ROI)

Extracting the Region Of Interest
(ROI)

Inverse Perspective
Transformation

Fig. 3. Feature points extracted from grayscale image and from HLS color
space.

Basically, a set of data points can be classified into two
namely inliers and outliers. Inliers are data points which can
fit well in a mathematical model whereas outliers are data
points which are distant from the mathematical model. The
main advantage of using RANSAC is that the presence of
outliers in the input data points do not influence the estimation
of parameters for a mathematical model. The RANSAC
algorithm consists of two steps which are executed iteratively,

Step 1: A subset of data points from the given data set is
randomly selected. The parameters for the curve
fitting model is computed using this subset.

Step 2: The algorithm checks if the input data point fits the in
the model with the estimated parameters from the
first step with other data points in the given data set
apart from data points which were randomly picked
in the step 1. Data points which do not fit well in the
model with estimated parameters within the given
threshold are called outliers.

Through the above steps, set of data points which are
well-fitting with the model is obtained. These data points are
known as inliers. The RANSAC algorithm iterates over the
input data points until sufficient amount of inliers are obtained.
This set of inliers is known as consensus set.

The input to the RANSAC algorithm are input data points,
the model for which data points must be fit, maximum number
of iterations and threshold to determine if the data points can
be classified as inlier. For road lane detection system, input
data points are taken from the look up table containing the
features corresponding to road lane markers. Linear
regression is used to estimate parameters of the curve fitting
function. The overall algorithm for RANSAC based curve
fitting is shown in Table I, and their results are shown in
Figures 4 - 5. The RANSAC algorithm is shown in Table II.

Table I Overall algorithm for RANSAC curve fitting

Algorithm 1 RANSAC curve fitting
Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Step 10

Get input feature points of left lane markers (x1, y1) and
right lane markers (x2, y2) and maximum number of
iterations. Check for consistency of data points.
Fit the feature points of left lane markers (x1, y1) using
RANSAC linear regression for estimation of parameters
for second degree curve equation.
Accumulate inliers estimated by for every iteration of
RANSAC linear regressions and select the best fit based
on the maximum number of inliers estimated from each
iteration.
Fit the feature points of right lane markers (x2, y2) using
RANSAC linear regression for estimation of parameters
for second degree curve equation.
Accumulate inliers estimated by for every iteration of
RANSAC linear regressions and select the best fit by
using the curve which has the same center of curvature as
that of the fit selected for the feature points of left road
lane markers.
Similarly, fit the feature points of right lane markers (x2,
y2) using RANSAC linear regression for estimation of
parameters for second degree curve equation.
Accumulate inliers estimated by for every iteration of
RANSAC linear regressions and select the best fit based
on the maximum number of inliers estimated from each
iteration.
Fit the feature points of left lane markers (x1, y1) using
RANSAC linear regression for estimation of parameters
for second degree curve equation.
Accumulate inliers estimated by for every iteration of
RANSAC linear regressions and select the best fit by
using the curve which has the same center of curvature as
that of the fit selected for the feature points of right road
lane markers.
Select the estimated parameters for the pair of fit which
has the maximum number of feature points are classified
as inliers.

Table II Overall algorithm for RANSAC curve fitting
Algorithm 2 Random sample consensus algorithm

 Step 1

Step 2

Ransac_function (x, y, maximum_iteration, validity_bounds):
for (i <= maximum_iteration)

(a, b) = Randomly select data points from (x, y) to form
a subset
Solve linear regression.
Check for other data points which fit well in the
mathematical model for the estimated parameters.
Check for number of inliers obtained for the estimated
parameters

Select estimated parameters for which maximum number of
inliers are obtained as the final fit for the given data points

(a).Right to Left Curve Fitting (b).Left to Right Curve Fitting

Number of Inliers :
Right Side = 6487
Left Side = 5035

Number of Inliers :
Right Side= 3889
Left Side = 15004

Fig. 4. Results of RANSAC curve fitting.

iRobotics
Vol. 2, No. 2, June, 2019

5

(a). Final Curve Fitting Result (b). Inliers present in Finalized Curve
Fitting Result

Fig. 5. Results of final curve fitting.

D. Transformation to Original Perspective and Calculation
of Curvature and Lane Offset

After estimating the boundary of the road lane in which the
vehicle is present using the top view image, the final detection
is transformed back to the original perspective. The curvature
of the lane and the lane offset are calculated using the linear
regression parameters of the final detection. For a second
order polynomial of form as (5), the radius of curvature R can
be calculated as (6). Where A, B, C are parameters to represent
the polynomial curve fitting equitation. The final lane
detection experiments were done via Taiwan’s No. #1
highway, and the results are shown in Figures 6 - 7.

 (5)

 (6)

Fig. 6. Transformation to the original perspective and calculation of lane
curvature and lane offset.

IV. METHOD II: IMAGE SEGMENTATION

In addition to RANAC algorithm, this paper also discuss a
deep learning based image segmentation approach. The
step-by-step procedure of the proposed method is shown in
Figure 8. The video of the road scene is taken as input and
each frame is extracted. SegNet [19] which is a deep learning
based semantic segmentation algorithm is used to segment the
pixel corresponding to the road surface marking in the image.
Afterward, the perspective transformation is computed on the
extracted feature to obtain the inverse perspective mapping or
the bird’s eye view. The histogram for the bottom half of the
image is computed to determine the location of the feature

corresponding to the road surface marking. Besides, a sliding
window based search is used across the entire image to detect
required features. Finally, a polynomial curve fitting function
is used to fit the feature points.

Fig. 7. Road lane detection using RANSAC curve fitting.

Input Image

Deep learning based
Feature Extraction using

SegNet architecture

Sliding Window Search to
search for coordinates of
non zero pixels along the

vertical axis

Second-order polynomial
Curve Fitting to estimate
the curvature of the lane

Transformation to Original
Perspective with

highlighted lane markers

Inverse Perspective
Mapping

Stop

Histogram computation to
determine coordinates of
non zero pixels along the

vertical axis

Extract ROI

Fig. 8. Flowchart of the proposed image segmentation approach.

A. Deep Learning Based Feature Extraction

Extracting accurate features of the road marking and signs
is necessary to build a robust navigation system. In this paper,
a deep learning based semantic segmentation architecture
called SegNet is used. The SegNet architecture is shown in

Kuo et. al.
Lane Detection Approaches: RANSAC and Deep Convolutional Image Segmentation

6

Figure 9. It is deep fully convolutional neural network
architecture to perform pixel-wise semantic segmentation. It
consists of an encoder network, a decoder network followed
by a classification layer to enable pixel-wise classification.

Fig. 9. SegNet: a deep convolutional encoder-decoder architecture for image
segmentation.

The encoder network consists of 13 convolutional layers
similar to VGG16 network [20] architecture. Therefore,
pre-trained network parameters on large image dataset can be
used to initialized the weights during training. The main
purpose of the decoder is to map low-resolution feature maps
to input resolution feature maps. The decoder uses the pooling
indices calculated in the max-pooling layer in the encoder to
perform upsampling thus eliminating learning to upsample
during training. The upsampling performed by the decoder is
non-linear by nature. In SegNet unlike the other decoder, the
output decoder (decoder corresponding to first encoder)
produces multi-channel feature maps regardless of the fact
that the input to first encoder is RGB image [11]. The
classification layer is used to classify every pixel in the image
into its corresponding class.

The main advantage of the SegNet architecture is that the
number of trainable parameters are less compared to other
semantic segmentation architectures and the network can be
end to end using stochastic gradient descent. This architecture
is computation and memory efficient.

B. Inverse Perspective Mapping, Histogram Computation
and Sliding Window Search

The feature extracted using SegNet semantic segmentation
algorithm described above is plotted as a binary image. The
region of interest (ROI), which span size of a lane, is selected
to separate the feature representing the lane corresponding to
the user’s vehicle. This ROI is the constant trapezoidal area.
Since the lane marker features are captured as oblique lines in
the front view, the perspective effect must be removed for
easier computation. To solve this issue, the perspective
transformation to compute the Bird’s eye view or top view of
the image is performed as similarly to Figures 2 – 3 that were
previously stated in Subsection A of Section III.

This transformed image is converted to gray scale and in
HSL color space. Using the know Sobel operator, which can
be a filter learned through CNN, gradient mask is computed
for both gray scale image and for the saturation channel of the

HSL color space.

To obtain the coordinates of the non-zero pixels along the
horizontal axis, the histogram is drawn for the bottom half of
the image. A sliding window search is used to scan along the
vertical axis to obtain the position of non-zero pixels which
represent the feature corresponding to the road surface
marking. The width of the sliding window is set to 40 pixels.
The centroid of the window can be adjusted to re-center the
window.

D. Polynomial Curve Fitting and Transformation to Original
Perspective

Transformation back to the original perspective view is
necessary to compute curvature and lane offset. A
second-degree polynomial curve fitting function is used to fit
the coordinates obtained from the previous step. This is used
to determine the shape of the area in between detected road
markers and to understand the curvature of the road. Thus,
after computing the location of the road surface marking, the
image is transformed back to the original perspective position
and the detected region is highlighted.

E. Experiment Results and Discussion

In this study, the benchmark dataset, CamVid dataset [20]
is used to validate our lane detection method. The pre-trained
weights for the deep learning based semantic segmentation
model are used to initialize parameters at the start of the
training. This model is trained for 3433 training images
obtained for a combination of datasets [21] and [22]. The
SegNet model is trained for 11 classes. On validation, it is
found that the mIOU is around 60.1 and the global average of
the model is 90.40 [18].

Threshold is set to separate the feature with respect to the
road lane marker from the segmented image as shown in
Figure 10. Deep learning based segmentation model is
observed to be better than color and edge detection method as
these conventional methods as shown in Figure 10 may not
perform well under different lighting conditions. The region
of interest is then separated as shown in Figure 10 and then
this region is converted to top view or bird’s eye view.

The histogram of the bottom half of the perspective
transformed image is computed to locate the position of
non-zero pixels along the x-axis. A sliding window based
search is used to extract the coordinates of the non-zero pixels
along the y-axis as shown in Figure 10. The centroid of the
window is adjusted automatically to detect the non-zero pixels.
A second-degree polynomial curve fitting function is used to
fit the extracted coordinates. The image is then transformed to
the original perspective and the detected lane is highlighted.
This image is combined with the original image to provide the
entire road scene with the detected lane. The entire process
involves computation time of 0.355 per frame.

iRobotics
Vol. 2, No. 2, June, 2019

7

Fig. 10. Experimental Results.

Kuo et. al.
Lane Detection Approaches: RANSAC and Deep Convolutional Image Segmentation

8

V. CONCLUSION AND FUTURE WORKS

In this paper, we have presented a RANSAC and a deep
learning based lane detection approaches for advanced driver
assistant system. The RANSAC used the algorithms proposed
in Tables I and II to perform robust lane detections in the
highway. In addition, by incorporating deep learning based
semantic segmentation algorithm for feature extraction, the
lane detection system is more accurate and robust with 0.355s
processing time.

In the future, this work can be extended to improve the
detection speed to identify the lane and a warning system can
be designed for the driver during overtaking of the vehicle in a
freeway environment.

REFERENCES
[1] J. Dai, L. Wu, H. Lin, and W. Tai, "A driving assistance

system with vision based vehicle detection techniques,"
in 2016 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA),
2016, pp. 1-9.

[2] L. Fletcher, L. Petersson, and A. Zelinsky, "Driver
assistance systems based on vision in and out of
vehicles," in IEEE IV2003 Intelligent Vehicles
Symposium. Proceedings (Cat. No.03TH8683), 2003,
pp. 322-327.

[3] F. Zhang, H. Stähle, C. Chen, C. Buckl, and A. Knoll, "A
lane marking extraction approach based on Random
Finite Set Statistics," in 2013 IEEE Intelligent Vehicles
Symposium (IV), 2013, pp. 1143-1148.

[4] M. Jeong, B. C. Ko, and J. Nam, "Early Detection of
Sudden Pedestrian Crossing for Safe Driving During
Summer Nights," IEEE Transactions on Circuits and
Systems for Video Technology, vol. 27, no. 6, pp.
1368-1380, 2017.

[5] B. Huval et al., An Empirical Evaluation of Deep
Learning on Highway Driving. 2015.

[6] Jim et al., "Improving the Lane Reference Detection for
Autonomous Road Vehicle Control %J Journal of
Sensors," vol. 2016, p. 13, 2016, Art. no. 9497524.

[7] M. Bolaños, M. Dimiccoli, and P. Radeva, "Toward
Storytelling From Visual Lifelogging: An Overview,"
IEEE Transactions on Human-Machine Systems, vol. 47,
no. 1, pp. 77-90, 2017.

[8] J. Yan, G. Feng, and X. Guoyan, "Computer
vision-based multiple-lane detection on straight road and
in a curve," in 2010 International Conference on Image
Analysis and Signal Processing, 2010, pp. 114-117.

[9] Soniya, S. Paul, and L. Singh, "A review on advances in
deep learning," in 2015 IEEE Workshop on
Computational Intelligence: Theories, Applications and
Future Directions (WCI), 2015, pp. 1-6.

[10] D. Ravì et al., "Deep Learning for Health Informatics,"
IEEE Journal of Biomedical and Health Informatics, vol.
21, no. 1, pp. 4-21, 2017.

[11] A. Gurghian, T. Koduri, S. V. Bailur, K. J. Carey, and V.
N. Murali, "DeepLanes: End-To-End Lane Position
Estimation Using Deep Neural Networks," in 2016 IEEE
Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW), 2016, pp. 38-45.

[12] J. Wadhwa, G. Kalra, and B. V. Kranthi, Real Time Lane
Detection in Autonomous Vehicles Using Image
Processing. 2015, pp. 429-433.

[13] H. Cai, Z. Hu, G. Huang, and D. Zhu, Robust road lane
detection from shape and color feature fusion for vehicle
self-localization. 2017, pp. 1009-1014.

[14] S. P. Narote, P. N. Bhujbal, A. S. Narote, and D. M.
Dhane, "A review of recent advances in lane detection
and departure warning system," Pattern Recognition,
vol. 73, pp. 216-234, 2018/01/01/ 2018.

[15] C. Premachandra, R. Gohara, and K. Kato, "Fast lane
boundary recognition by a parallel image processor," in
2016 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), 2016, pp. 000947-000952.

[16] S. Jung, J. Youn, and S. Sull, "Efficient Lane Detection
Based on Spatiotemporal Images," IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 1, pp.
289-295, 2016.

[17] Y. Yao, B. Tian, and F. Wang, "Coupled Multivehicle
Detection and Classification With Prior Objectness
Measure," IEEE Transactions on Vehicular Technology,
vol. 66, no. 3, pp. 1975-1984, 2017.

[18] X. Wang, R. Jiang, L. Li, Y. Lin, X. Zheng, and F. Wang,
"Capturing Car-Following Behaviors by Deep
Learning," IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 3, pp. 910-920,
2018.

[19] V. Badrinarayanan, A. Kendall, and R. Cipolla, "SegNet:
A Deep Convolutional Encoder-Decoder Architecture
for Image Segmentation," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 39, no. 12, pp.
2481-2495, 2017.

[20] K. Simonyan and A. Zisserman, Very Deep
Convolutional Networks for Large-Scale Image
Recognition. 2014.

[21] G. J. Brostow, J. Fauqueur, and R. Cipolla, "Semantic
object classes in video: A high-definition ground truth
database," Pattern Recognition Letters, vol. 30, no. 2, pp.
88-97, / 2009.

[22] A. Geiger, P. Lenz, and R. Urtasun, "Are we ready for
autonomous driving? The KITTI vision benchmark
suite," in 2012 IEEE Conference on Computer Vision
and Pattern Recognition, 2012, pp. 3354-3361.

iRobotics
Vol. 2, No. 2, June, 2019

9

Asheber Techane Wagshum

Anjana Kumar

Yu-Cheng Kuo received the Ph.D. degree in
electrical engineering from National Taiwan
University of Science and Technology, Taipei,
Taiwan, in 2017. He is currently a postdoctoral
fellow at the Department of Electrical Engineering,
National Taiwan University of Science and
Technology. His research interests include
humanoid robots, human-machine interface and
smart automation.

Chung-Hsien Kuo received the Ph.D. degree in
mechanical engineering from National Taiwan
University in 1999. Since 2007 he has been with the
Department of Electrical Engineering, National
Taiwan University of Science and Technology
(Taiwan TECH) and is currently a professor of
Taiwan TECH. His research interests include
humanoid robots, autonomous mobile robots, smart
automation, medical instrumentation and
brain-computer interface.

Tsai et. al.
Autonomous Navigation of an Indoor Mecanum-Wheeled Omnidirectional Robot Using SegNet

10

Autonomous Navigation of an Indoor Mecanum-
Wheeled Omnidirectional Robot Using SegNet

 Abstract-This paper proposes an autonomous navigation
control structure using SegNet for autonomous navigation of
an indoor Mecanum-wheeled omnidirectional robot (MWOR)
in an indoor environment. The SegNet is used to achieve
environment recognition and obstacle avoidance. The
navigation control architecture is composed of one FastSLAM
2.0 module, one global path planning module using Dijstra
algorithm, one obstacle avoidance module by fusing the
outputs of the existing DWA method and SegNet, and one
motion control module for the MWOR. The autonomous
navigation experimental system is equipped with one Jetson
TX2 module from Nvidia, one LiDAR, one OpenCR, one Intel
RealSense D435i, and one MWOR. Localization and mapping
of the working environment are done by the known FastSLAM
2.0 algorithm along with the MWOR’s odometry and LiDAR
scanning data, where the LiDAR data are also employed to
avoid any collisions from any static, or dynamic, or unexpected
moving objects. Intel RealSense D435i along with SegNet is
used to detect environmental objects and obstacles in the
environment. Experimental results are conducted to show the
effectiveness and merits of the proposed autonomous
navigation method.

Index Terms—Deep learning, Omnidirectional mobile robot,
autonomous navigation, SegNet.

I. INTRODUCTION

EEP learning is very popular in recent years. Deep
learning models have sometimes achieved increasing

success due to the availability of massive datasets and
extenting model depth and parameterisation. Nevertheless,
practical factors licluding memory and computational time
during training and testing are important factors to consider
while choosing a model from a large bank of models.
Hence,the time of training turns into a major consideration
particularly while the performance gain is not
commensurate with increased training time as shown in our
experiments.Test time memory and computational load are
important to deploy models on specialised embedded
devices.From an overall efficiency viewpoint, less attention
has been paid to smaller and more memory, time efficient
models for immediate applications such as road scene
understanding.It was the primary motivation behind the

Po-An Wei, Ching-Chih Tsai, and Feng-Chun Tai are with the

Department of Electrical Engineering, National Chung Hsing University,
Taichung 40227, Taiwan.
(Corresponding author Ching-Chih Tsai, email: cctsai@nchu.edu.tw)
(email: g106064501@mail.nchu.edu.tw, fctai@nchu.edu.tw)

The authors gratefully acknowledge financial support from the Ministry
of Science and Technology, Taiwan, the R.O.C., under contract MOST
107-2221-E-005 -073-MY2.

proposal of SegNet, which is significantly than other
competing architectures. SegNet has been shown efficient
for tasks such as road scene understanding.

Autonomous navigation of mobile robots or vehicles is
expected to provide various services within living
environments of humans [1]. Such a robotic technology has
been ready to show its practical use in industry, but, so far,
the robots for industry simply follow a given motion by
humans.Therefore, we will conduct as a means to allow
elderly and physically impaired people to travel to
destinations within public facilities such as airports.
Nowadays, image segmentation is more popular such that it
can be used to identify the regions of interest in a scene or
annotate the data [2]. In image recognition by deep learning,
areas within the image are recognized and classified as, for
example, a person, road, sidewalk, or building. With this
recognition method, the vehicle can estimate its position and
direction of travel with great reliability. The authors in [3]
used deep learning to achieve image recognition and
extraction of the travelable area by proceessing the images
acquired from monocular camera images mounted on
autonomous cars. The authors in [4] showed that an electric
mobile robot autonomously travels through a passage, and
its own position and direction were estimated using deep
learning.In particular, this system in [4] operated by using a
camera in a smart phone to obtain an input image in order
to make it as simple as possible.

Mecanum-wheeled omnidirectional robots (MWORs)
have been widely used for our living life and industrial
material handling, such as omnidirectional wheelchairs,
automatic guided vehicles, and etc. There are two kinds of
MWORs built by using 45-degree and 90-degree Mecanum
wheels. Unlike conventional differential driving, MWORs
have the superior flexibility to move towards any position
and orientation. MWORs can be made using different wheel
configurations including three wheels, four wheels, car-like
four wheels, and etc.

Motivated by [1-4], this paper aims to develop and
verify an autonmous navigation system for an indoor car-
like MWOR that has varous applications in industry and our
daliy life. The proposed techniques would provide
references for professionals working in this area, especially
for researchers and engineers working for personal care
robots.

Po-An Wei, Ching-Chih Tsai, Fellow, IEEE, and Feng-Chun Tai

D

iRobotics
Vol. 2, No. 2, June, 2019

11

MWOR

LiDAR

MX-64

Jetson
TX2

RealSense
D435i

Open CR

UART UART

UART

RS-485

Figure 1. System structure and configuration of the experimental MWOR.

TX2

DYNAMIXEL Motor

Realsense D435i

360-degree LiDAR

Figure 2. Picture of the experimental MWOR.

II. SYSTEM DESCRIPTION OF THE EXPERIMENTAL MWOR

A. System Structure

Figure 1 shows the system configuration of the
experimental Mecanum-wheeled omnidirectional mobile
robot (MWOR). The autonomous navigation system is
equipped with one Jetson TX2 module from Nvidia, one
OpenCR, one Laser scanner (LiDAR), one Intel RealSense
D435i, and one MWOR. The well-known FastSLAM2.0
method is adopted to address the localization and mapping
problem by using the MWOR’s odometry and LiDAR
scanning data. The laser scanner is also employed to avoid
any collisions from any static, or dynamic, or unexpected
moving objects. The Intel RealSense D435i uses to
environment and people recognition and obstacle avodidance
for the working environment.

Figure 2 displays the physical configuration of the
experimental MWOR, and Figure 3 shows the pose
definitions of the laboratory-built MWOR. Moreover,
Figure 4 depicts the four main modules of a general
navigation control system, whereas Figure 5 illustrates the
proposed autonomous navigation system of the experimental
MWOR. As a special case of the general navigation control
system, the proposed navigation control architecture includes
the existing FastSLAM2.0 method, global path planning,
environment and object recognition, 2D and 3D obstacle
avoidance, and motion control of the experimental MWOR.

θ

Ic

O XI

X

Y

Figure 3. Pose definition of the laboratory-built MWOR.

Perception

Localization

Motion ControlReal Word
Environment

Environment Model
Local Map

O
bs

ta
cl

e
A

vo
id

an
ce

Po
sit

io
n

Fe
ed

ba
ck

Pa
th

Local Map

Position Cognition

Local Map

Position

Pe
rc

ep
tio

n
to

A

ct
io

n

Figure 4. Flowchart of a general navigation control system.

Localization and Mapping
Using FastSLAM 2.0

Sensing Inputs

Global Path planning
Via Dijstra Algorithm

Environment and
Obstacles Detection

Local Path Planning
Using DWA and SegNet

Motion Control

Figure 5. Flowchart of the proposed autonomous navigation system.

B. Kinematic Model of the Experimental MWOR

The subsection will briefly describe the kinematic model,
both forward and inverse kinematic models of the
experimental MWOR are formulated in the global frame,
where the pose vector x=[x y θ]T denotes the position and
orientation of the robot in the world frame as shown in
Figure 3. The forward kinematics of the experimental mobile
robot is then described by

w

w () w

x
y θ
θ

 
  = 
  

J υ






 (1)

where 1w 2w 3w 4w[] T
w υ υ υ υ=υ represents the velocity

vector of the four wheels and i , 1,..., 4,w iυ = denotes the
speed of the ith wheel. Moreover, ()θJ is given by

Tsai et. al.
Autonomous Navigation of an Indoor Mecanum-Wheeled Omnidirectional Robot Using SegNet

12

2 sin() 2 cos() 2 cos() 2 sin()1 1 1 1
1() 2 cos() 2 sin() 2 sin() 2 cos()1 1 1 14

1 1 1 1
L l L l L l L l

θ θ θ θ

θ θ θ θ θ

 
 
 

= − − 
 
 − −

+ + + + 

J (2)

where 1 / 4θ θ π= + , L and l respectively denote the length
shown in Figure 3. By using the pseudo inverse matrix,

()θ+J , of the matrix ()θJ where 3() () Iθ θ+ =J J , one
expresses the inverse kinematics model of the robot by

w
+

w()w

x
yθ
θ

 
 =  
  

υ J






 (3)

where

1 1

1 1+

1 1

1 1

2 sin() 2 cos() ()

2 cos() 2 sin() ()
()

2 cos() 2 sin() ()

2 sin() 2 cos() ()

l L

l L

l L

l L

θ θ

θ θ
θ

θ θ

θ θ

 − − +
 

+ 
=  

− + 
 − + 

J

The forward model (1) of the experimental MWOR is used
to accomplish odometry for the existing FastSLAM2.0
method, while the inverse kinematic model is exploited to
achieve motion control.

C. Kinematic Motion Control

This subsection will recall the kinematic control method
of the MWOR for tracking any smooth differentiable
trajectory [] 1() () () T

d d dx t y t t Cθ ∈ . To this end, define
the following tracking error vector

() () ()
() () ()
() () ()

e w d

e w d

e d

x t x t x t
y t y t y t

t t tθ θ θ

     
     = −     
          

 (4)

Taking the time derivative of (4) and using (2) yield obtains

1

2

3

4

()
() () () ()

()
() () () (()) ()

()
() () () ()

()

e d d

e d d

e d d

r t
x t x t x t x t

r t
y t y t y t t y t

r t
t t t t

r t

ω
ω

θ
ω

θ θ θ θ
ω

 
        
        = − = −        
               

 

J
   

   

   

 (5)

Hence, the kinematic motion control law is proposed as
below.

1 0

2

0
3

4 0

()()
() ()

() 1 (()) () () ()
()

() ()
() ()

t

e
e d

t

e e d

te d
e

x dt
x t x t

t
t y t y d y t

t r
t t

t d

τ τω
ω

θ τ τ
ω

θ θ
ω θ τ τ

+

                  = − − +                        

∫
∫
∫

p IJ K K






 (6)

where the two gain matrices, PK and IK , are symmetric and
positive-definite. Substituting (6) into (5) and using the
identity JJ+ = I3 leads to the succeeding closed-loop error
system

()()
1

2

3

4

0

0

0

()
()

()
()

()
()

()

()
()

 () ()
()

()

e d

e d

e d

t

e
e

t

e e

te
e

t
x t x

t
y t t r y

t
t

t

x d
x t
y t y d

t
d

ω
ω

θ
ω

θ θ
ω

τ τ

τ τ
θ

θ τ τ

 
    
    = −    
       

 
 
  
  = − −   
     
 

∫
∫
∫

p I

J

K K

 

 

 

 (7)

where the globally asymptotical stability of the closed-loop
error system can be easily proven by selecting the
subsequent quadratic Lyapunov function

[]3

0

0 0 0 0

0

()
1() () () () ()
2

()

()
1 () () () ()
2

()

e

e e e e

e

t

e

t t t t

e e e e

t

e

x t
V t x t y t t y t

t

x d

x d y d d y d

d

θ
θ

τ τ

τ τ τ τ θ τ τ τ τ

θ τ τ

 
 =  
  

 
 
  +      
 
 

∫
∫ ∫ ∫ ∫

∫

IK

 (8)

III. FASTSLAM 2.0
This section briefly recalls how to localize the MWOR

and construct its 2D map by using FastSLAM2.0 with a 360-
degree Lidar sensor mounted atop the MWOR. This
approach is used to sample the path via particle filters and
include the kinematic model of the MWOR. Each particle
will be attached to its own map, consisting of N extended
Kalman filters. Figure 6 depicts the working principle of
FastSLAM 2.0 that uses a particle filter (PF) to sample the
robot trajectory, and Figure 7 illustrates the basic flowchart
of FastSLAM algorithm for each particle, where the
procedure includes the retrieval of a robot pose from the
previous particle set, new pose prediction, updating of new
observed features, and calculation of the important weights
from new particles. Worthy of mention is that the accuracy
of the existing FastSLAM2.0 is improved by incorporating
with the kinematic model of the experimental MWOR with a
two-dimensional LiDAR (light detection and ranging) and a
camera. Although there still exist accumulating errors caused
by the used odometry method even with the MWOR
kinematic model, pose estimation errors of the FastSLAM
2.0 algorithm are substantially reduced by fusing the
readings from the LiDAR.

iRobotics
Vol. 2, No. 2, June, 2019

13

[1]
1:ts [1] [1]

1 1,µ Σ [1] [1]
2 2,µ Σ [1] [1],N Nµ Σ

[2] [2]
1 1,µ Σ [2] [2]

2 2,µ Σ [2] [2],N Nµ Σ

[M]
1:ts

[2]
1:ts

[M] [M]
1 1,µ Σ [M] [M]

2 2,µ Σ [M] [M],N Nµ Σ

...

......

...

...

...

Robot
trajectory

Landmark
1

Landmark
2

Landmark
N

Particle
K=1

Particle
K=2

Particle
K=M

Figure 6. PFs in FastSLAM is used to compute the robot path, where the
EKF is used to compute mean and covariance of each landmark.

Retrieve a pose from
previous particle set

New pose prediction

Update observed feature
with EKF

Calculate Importance weight
for the new particle

Figure7. Flowchart of the used FastSLAM 2.0 algorithm for each particle.

TABLE I
THE PSEUDO CODE OF DIJKSTRA’S ALGORITHM.

1. Function Dijkstra (Graph, source):
2. for each vertex in Graph:
3. dist[v] := infinity;
4. previous[v] := undefined
5. end for
6. dist[source] := 0;
7. Q:=the set of all nodes in Graph
8. while Q is not empty:
9. u := vertex in Q with smallest distance in dist[];
10. remove u from Q;
11. if dist[u]=infinity;
12. Break
13. end if
14. for each neighbor v of u
15. alt := dist[u]+dist_between (u,v);
16. if alt < dist[v]:
17. dist[v] := alt;
18. previous[v] := u;
19. decrease-key v in Q;
20. end if
21. end for
22. end while
23. return dist
24. End Function

Goal Global
Planner

Global map

Goal Path Local
Planner

Local map

Sensor
DataMap

Trajectory

Figure 8. Flowchart of the proposed path planning method.

IV. GLOBAL PATH PLANNING

A. Dijkstra Algorithm

Using Dijkstra algorithm as a global path planning
method will enable the MWOR to carry out global path
planning easily. Once the map of the working space around
the MWOR has been obtained, the map can be utilized to
search for the best optimal path. Table 1 illustrates the
pseudocode of the existing Dijkstra algorithm. When the
goal is commanded, the global planner based on the Dijkstra
algorithm will be used to produce a global path trajectory
which will not hit any obstacles in the global cost map based
on the shortest path. Furthermore, Figure 8 shows the
flowchart of the proposed path planning method. As can be
seen in Figure 8, once the global path has been found, the
local path will be done by the local path planner as discussed
in the sequel.

V. ENVIRONMENT RECOGNITION AND OBSTALE AVOIDANCE
USING DYNAMIC WINDOW APPROACH AND SEGNET

A. Introduction to SegNet

SegNet has an encoder network and also has a
corresponding decoder network, followed by a final
pixelwise classification layer. The architecture is illustrated
in Figure 9 The encoder network makes up of 13
convolutional layers which correspond to the first 13
convolutional layers in the VGG16 [5] network designed for
object classification.Therefore, we can initialize the training
process fromweights trained for classification on large
datasets. Also we can discard the entirly connected layers in
favour of retaining higher resolution feature maps at the
deepest encoder output. This also reduces the number of
parameters in the SegNet encoder network significantly as
compared to other recent architectures [6]. Every encoder
layer has a corresponding decoder layer. Hence, the decoder
network has 13 layers. The last decoder output is fed to a
multi-class soft-max classifier in order to produce class
probabilities for every pixel independently.

Every encoder in each encoder network shows
convolution with a filter bank to produce a set of feature
maps. These are then batch normalized [7-8].Then an
element-wise rectifiedlinear non-linearity (ReLU) max is
applied. Following that, max-pooling with a 2 × 2 window
and stride 2 is performed and the resulting output is sub-
sampled by a factor of 2. Max-pooling is used to achieve
translation invariance over small spatial shifts in the input
image. Sub-sampling results in a large input image context
for each pixel in the feature map. While several layers of
max-pooling and

Input RBG
image

Output
Segmentation

Convolutional Encoder-Decoder

Poloing Indices

Figure 9. Architecture of SegNet.

Tsai et. al.
Autonomous Navigation of an Indoor Mecanum-Wheeled Omnidirectional Robot Using SegNet

14

Figure 10. Decoders of the SegNet.

Mecanum-wheeled omnidirectional mobile robot Webcam image

 Extraction of travelable area by Center line extraction
deep learning

Figure 11. Flowchart of the image recognition.

sub-sampling can achieve more translation invariance for
robust classification correspondingly. There is a loss of
spatial resolution of the feature maps. This increasingly
lossy image representation is not beneficial for segmentation
where boundary delineation is vital. Hence, it is necessary to
catch and store boundary information in the encoder feature
maps before sub-sampling is expressed. If memory during
inference is not constrained, all the encoder feature maps
can be stored well-done. The map is sometime not the case
in practical applications. Hence, we propose a efficient way
to store this information. It involves storing only the max-
pooling indices,i.e, the locations of the maximum feature
value in each pooling window is memorized for each
encoder feature map. In principle,the map can be done using
2 bits for each 2 × 2 pooling window.Therefore, it is more
efficient to store as compared to memorizing feature maps
in float precision. This can lower memory storage results in
a slight loss of accuracy.However, it is still suitable for
practical applications.

This appropriate decoder in the decoder network
upsamples its input feature maps using the memorized max-
pooling indices from the corresponding encoder feature
maps. The step produces sparse feature maps [9]. The
SegNet decoding technique is illustrated in Figure 10. These
feature maps are then convolved with a trainable decoder
filter bank to produce dense feature maps.A batch
normalization step is then applied to each of these
maps.Note that the decoder corresponding to the first
encoder produces a multi-channel feature map, although its

encoder input has 3 channels (RGB). It is not like the other
decoders in the network which produce feature maps with
the same number of size and channels as their encoder
inputs.The huge dimensional feature representation at the
output of the final decoder is fed to a trainable soft-max
classifier. The soft-max classifies every pixel independently.
The output of the soft-max classifier is a K channel image of
probabilities where K is the number of classes. The
predicted segmentation corresponds to the class with
maximum probability at every pixel [10].

B. Environment Recognition

Semantic segmentation is based on image recognition,
except the classifications occur at the pixel level as opposed
to classifying entire images as with image recognition. This
is accomplished by convolutionalizing a pre-trained image
recognition model (like Alexnet), which turns it into a fully-
convolutional segmentation model capable of per-pixel
labelling. Useful for environmental sensing and collision
avoidance, segmentation yields dense per-pixel
classification of many different potential objects per scene,
including scene foregrounds and backgrounds.

C. Obtacle Avoidance Using Dynamic Window Approach

After the global path has been planned by the global
planner, the local planner will start up obstacle avoidance at
any time based on the sensing data. The DWA (Dynamic
Window Approach) method based on the LiDAR data is
used for the local planner. The basic idea of DWA is
delineated in the following steps.

1. Discretely sample robot's control space (dx,dy,dtheta).
2. For each sampled velocity, perform forward simulation

for the robot to see the result of the sampled velocity
applied for a period of time.

3. Evaluate each trajectory from the result of forward
simulation, using a metric that includes properties such
as: proximity to obstacles, proximity to goal, and
proximity to the global path and discard those collide
with obstacles. The cost function is defined as follows:

()
cost = path distance bias *
 distance to path from the endpoint of the trajectory
 + goal distance bias *
 (distance to local goal from the endpoint of hte trajectory)
 + occdist scale *
 (The closer to the obstacle the higher of this cost)

4. Pick the highest-score velocity and send it to the robot.
5. Rinse and repeat.

Input RGB image Convolution Encoder-
Decoder Output Segmentation

Con+Batch
Normalisation+ReLU

Pooling
Upsampling

Softmax

Figure 12. Image segmentation process of SegNet.

iRobotics
Vol. 2, No. 2, June, 2019

15

Figure 13. Centerline calculation.

(a) (b)

(c)

Figure 14. Segmentation results using SegNet and centerline detection. (a)
An original picture. (b) Segmentation results using SegNet. (c) Detected the
centerline of travelling area.

D. Obstacle Avoidance Using SegNet

This subsection will briefly describe the approach to
avoiding any static and dynamic obstacles by using SegNet.
The self-driving procedure to prevent any collisions from
obstacles is described in the following six steps. First, the
image recognition is done by using the flowchart shown in
Figure11. As depicted in Figure 12, the webcam images are
processed and extracted by SegNet via the Jetson TX2 board,
in order to find a travelable area. Second, calculate the
determined centerline. Figure13 shows how to find the
centerline (locations represented as a “1” in Figure 13). The
centerline is extracted from the travelable area using the least
squares method by finding the centers of the widths of the
travelable area; afterwards, a straight line is then obtained
along these centers with the least error, as shown in Figure
14(c). Third, calculate the orientation deviation between the
centerline and the current orientation of the mobile robot.
Forth, generate the motion commands. After the positions of
the tip of the centerline and the front of the MWOR are
mapped to two-dimensional space, the deviation between the
centerline and the direction in which the mobile robot is
facing is calculated by the Jetson TX2 board, and send the
feedback commands to mobile robot so as to reduce the
deviation from the centerline. Fifth, calculates the current
position of the robot via the Intel RealSense D435i camera
and location system and LiDAR. Sixth, generates motion
control commands to activate the four servomotors for
autonomous navigation.

MWOR
Sensors

3D information 2D information

Fuse both maps to
obtain a new 2D map

Use the DWA to achieve
obstacle avoidance

Figure 15. Flowchart of the fused obstacle avoidance.

E. Fused Obstacle Avoidance

Since the MWOR uses both on-board sensors to create
2D and 3D map, both 2D and 3D environmental mapping
can be combined together to acquire a new 2D map. Based
on the newly modified map, the DWA approach is exploited
to achieve obstacle avoidance. Figure 15 shows the
conceptual idea of the fused obstacle avoidance scheme.

VI. EXPERIMENTAL RESULTS AND DISCUSSION
This section will show experimental results to show the

effectiveness of the proposed navigation method. The first
experiment is aimed to test the experimental MWOR under
ROS 1.0. Figure 16 displays the experimental environment,
and Figure17 shows the environmental map created by
using the FastSLAM 2.0 algorithm, showing the success of
the system integration for the experimental MWOR.

The second experiment is performed to examine the
effectiveness of the proposed autonomous navigation method.
Figure 18 depicts the experimental results of the proposed
navigation method without any unexpected obstacles,
showing the feasibility of the proposed method. Figure 19
shows the experimental results of the steering MWOR using
DWA and SegNet avoidance in the environment, where an
unexpected people was regarded as a static obstacle. The
result in Figure 10 indicated that the fused obstacle
avoidance method worked well. Figure 20 displays the
experimental results of the environmental objects by using
SegNet. The results in Figure 20 reveals that the SegNet
successfully recognized different objects of the working
space. Worthy of mention is that the SegNet has to work in
an environment with good illumination.

(1) Find the center point in
the width direction in the
travelable area

(2) Find a straight line with
the least error from the
center point. (Least
squares method)

Tsai et. al.
Autonomous Navigation of an Indoor Mecanum-Wheeled Omnidirectional Robot Using SegNet

16

Figure 16. Experimental environment.

Figure 17. Map created by Using the FastSLAM 2.0 algorithm.

Figure 18. Experimental pictures of the autonomous navigation methods
when the MWOR encountered with static obstacles.

Figure 19. Experimental pictures of the autonomous navigation methods
when the MWOR encountered with a moving people.

Figure 20. Experimental pictures of the used SegNet that recognized some
objects in the environment.

iRobotics
Vol. 2, No. 2, June, 2019

17

VII. CONCLUSIONS AND FUTURE WORK
The paper has presented an autonomous navigation

method using SegNet to steer the WMOR from one starting
place to another in an indoor environment. The built map and
SegNet have been systematically used to find the shortest
global and local paths. During the autonomous navigation
stage, the FastSLAM 2.0 algorithm under ROS has been
implemented to find the poses of the MWOR. The SegNet
has been utilized to carry out objects recognition in the
environment. The dynamic window approach (DWA) and
SegNet have been combined together to find a safe local path
for obstacle avoidance. Through experimental results, the
proposed approach has been shown capable of enabling the
MWOR to carry out autonomous navigation usefully and
efficiently. An interesting research topic for future work
would be to install an onboard 3D RGBD camera on the
MWOR, in order to obtain useful external environment
information.

 REFERENCES
[1] C. C. Yu, C. F. Hsu, and F. C. Tai, “A laboratory course on mobile

robotics education, “iRobotics, vol. 1, no.4, pp.37-43, December 2018..
[2] J. Tang, J. Li, and X. Xu, "Segnet-based gland segmentation from colon

cancer histology images," in Proc. of 2018 33rd Youth Academic
Annual Conference of Chinese Association of Automation (YAC),
Nanjing, 2018, pp. 1078-1082.

[3] S. Quinlan and O. Khatib, "Elastic bands: connecting path planning and
control," in Proc. of IEEE International Conference on Robotics and
Automation, Atlanta, GA, USA, 1993, pp. 802-807 vol.2.
doi: 10.1109/ROBOT.1993.291936.

[4] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, "The
SYNTHIA Dataset: A Large Collection of Synthetic Images for
Semantic Segmentation of Urban Scenes," in Proc. of 2016 Int. IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, 2016, pp. 3234-3243.

[5] S. Isobe and S. Arai, "Inference with model uncertainty on indoor scene
for semantic segmentation," in Proc. 2017 IEEE Global Conf. on Signal
and Information Processing (GlobalSIP), Montreal, QC, 2017, pp.
1170-1174.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[7] J. Long ,E.Shelhamer,and T. Darrell,”Fully convolutional networks for
semantic segmention,”in CVPR, pp.343331-3440,2015.

[8] S. loffe and C. Szegedy,”Batch normailization :Accelerating deep
network training by reducing internal covariate shift,” CoRR, vol.
abs/1502.03167, 2015.

[9] V. Badrinarayanan, A. Kendall, and R. Cipolla, "SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image
Segmentation," IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 39, no. 12, pp. 2481-2495, Dec. 1 2017.

[10] D. Naik and C. D. Jaidhar, "Image segmentation using encoder-decoder
architecture and region consistency activation," 2016 11th International
Conference on Industrial and Information Systems (ICIIS), Roorkee,
2016, pp. 724-729.

[11] S. Isobe and S. Arai, "Inference with model uncertainty on indoor scene
for semantic segmentation," 2017 IEEE Global Conf. on Signal and
Inform. Processing (GlobalSIP), Montreal, QC, 2017, pp. 1170-1174.

[12] L. Reger, "Securely connected vehicles - what it takes to make self-
driving cars a reality," 2016 21th IEEE European Test Symposium
(ETS), Amsterdam, 2016, pp. 1-1.

Po-An Wei he is currently pursuing Master's
degree in Department of Electrical Engineering
from National Chung Hsing University, Taichung,
Taiwan, ROC. His current research interests
include Mecanum robot, exploration, cooperative
3D SLAM and their applications for the robot
autonomous navigation.

Ching-Chih Tsai received the Diplomat in
Electrical Engineering from National Taipei
Institute of Technology, Taipei, Taiwan, ROC, the
MS degree in Control Engineering from National
Chiao Tung University, Hsinchu, Taiwan, ROC
and the Ph.D degree in Electrical Engineering
from Northwestern University, Evanston, IL, USA,
in 1981, 1986 and 1991, respectively. Currently, he
is currently a Distinguished Professor in the
Department of Electrical Engineering, National
Chung-Hsing University, Taichung, Taiwan, where
he served the Chairman in the Department of

Electrical Engineering from 2012 to 2014. He is a Fellow of IEEE, IET and
CACS.

Dr. Tsai served as the Chair, Taipei Chapter, IEEE Control Systems
Society, from 2000 to 2003, and the Chair, Taipei Chapter, IEEE Robotics
and Automation Society from 2005 to 2006. In 2007, he was the program
chair of 2007 CACS international automatic conference sponsored by
Taipei chapter, IEEE control systems society. In 2010, he served as the
program co-chair of SICE 2010 annual conference in Taiwan, which was
technically sponsored by IEEE CSS; in 2011, he served as the General
Chair, 2011 International conference on service and interactive robotics; in
2012, he has served as the General Chair, 2012 International conference on
Fuzzy Theory and Its Applications, the General Chair, 2012-2015 CACS
International Automatic Control Conferences, and the General Chair, 2016-
2017 International Conference on Advanced Robotics and Intelligent
Systems. Dr. Tsai served the two-term President, Chinese Institute of
Engineers in Central Taiwan, Taiwan from 2007 to 2011, and two-term
President of Chinese Automatic Control Society from 2012 to 2015. Since
2008, he has been the Executive Directors in Boards of Government of thee
professional associations, including Robotic Society of Taiwan, Taiwan
Fuzzy Systems Association, and Taiwan Systems Association. He has
served as the Chair, Taichung Chapter, IEEE Systems, Man, and
Cybernetics Society since 2009, the Chair of IEEE SMC Technical
Committee on intelligent learning in control systems since 2009, the
President of Robotics Society of Taiwan since 2016, the steering committee
of Asian Control Association since 2014, a BOG member of IEEE
Nanotechnology council since 2012, the Vice President of International
Fuzzy Systems Association since 2015, and a BOG member of the IEEE
SMCS since 2017.

Dr. Tsai has published more than 500 technical papers, and seven
patents in the fields of control theory, systems technology and applications.
Web of Science has indexed his paper entitled "Adaptive Neural Network
Control of a Self-Balancing Two-Wheeled Scooter" in the category
Automation Control Systems, where the paper was ranked 408 out of
37607 articles (published between 2010 to 2014). Dr. Tsai is respectively
the recipients of the Third Society Prize Paper Award from IEEE Industry
Application Society in 1998, the Outstanding Automatic Control
Engineering Award in 2008 from Chinese Automatic Control Society
(CACS), and the Outstanding Engineering Professor Award in 2009 from
the Chinese Institute of Engineers in 2009, the IEEE Most Active SMC
Technical Committee (TC) Award in 2012 from IEEE SMC Society, the
Outstanding Electrical Engineering Professor Award from the Chinese
Institute of Electrical Engineering in 2014, Outstanding Industry
Contribution Award from Taiwan Systems Association in 2016, the best
paper award in the International Journal of Fuzzy Systems in 2017, and
many best paper awards from many international conferences technically
supported by IEEE. He is the advisor, IEEE SMC student branch chapter at
National Chung Hsing University; this chapter was the recipient of
certificate of appreciation from IEEE SMCS in 2009. He has served as the
associate editors of International Journal of Fuzzy Systems, and IEEE
Transactions on Systems, Man and Cybernetics: Systems, IEEE

Tsai et. al.
Autonomous Navigation of an Indoor Mecanum-Wheeled Omnidirectional Robot Using SegNet

18

Transactions on Industry Informatics, and International Journal of
Electrical Engineering. Recently, he has served as the Editor-in-Chief of a
new international robotics journal called “iRobotics”. His current interests
include advanced nonlinear control methods, deep model predictive control,
fuzzy control, neural-network control, advanced mobile robotics, intelligent
service robotics, intelligent mechatronics, intelligent learning control
methods with their applications to industrial processes and intelligent
machinery.

iRobotics
Vol. 2, No. 2, June, 2019

19

Self-Piloting of an Indoor Quadrotor Using Deep
Reinforcement Learning

Abstract-This paper presents a self-piloting method using
deep reinforcement learning (DRL) for an indoor quadrotor
flying from one place to another. The self-piloting system is
equipped with one ultrasonic sensor, one Intel RealSense depth
camera, one Jetson TX2 computing module (Nvidia), and a
quadrotor with two cameras. The ultrasonic sensor together
with the look-down camera is used to accomplish constant
height flight. A deep Q-network (DQN) is employed to proceed
with images acquired from the quadrotor and learn motion
control commands from these images using end-to-end
reinforcement learning, in order to generate motion commands
to fly the quadrotor autonomously. The Jetson TX2 module is
then utilized to implement the improved DQN network.
Simulations and experimental results are conducted to show
the effectiveness and merit of the proposed self-piloting method.

Index Terms—Deep Q-network (DQN), deep reinforcement
learning (DRL), quadrotor, self-piloting

I. INTRODUCTION

Nowadays, self-piloting is an important issue for flying
mobile robots including UAVs. There are various topics
related to this issue, such as robot control for UAVs or
vehicles with applications to forests, deserts, streets or indoor
environments, and etc. There are a lot of problems needed to
be solved in each type of environment. Among many deep
learning methods, deep reinforcement learning algorithms,
such as DNN, DRL and/or DQN, have been shown to
provide outstanding solutions for self-piloting of autonomous
UAVs flying in unknown or complicated environments.

Several past research results with different settings have
obtained distinct technical contributions for autonomous
navigation or self-piloting of UAVs. For example, Giusti et
al. [1] studied the problem of perceiving forest or mountain
trails from a single monocular image acquired from the
viewpoint of a robot traveling on the trail itself, and Wang et
al. [2] modeled autonomous navigation of an UAV in a
large-scale unknown complex environment as a discrete-time
continuous control problem and solved it using deep
reinforcement learning. Moreover, Mnih et al. [3] used deep
reinforcement learning with Q learning, called deep Q-
network or DQN, successfully in achieving outstanding
human-level operations on the Atari games. About
localization and navigation in GPS-denied environment,
Zhang et al. [4] proposed a vision-based localization method
for an indoor, small-size quadrotor that using parallel
tracking and mapping algorithm (PTAM algorithm) with the
onboard camera. Furthermore, Mirowski et al. [5] created a
reinforcement learning method for learning to navigate from
raw sensory input in complicated 3D mazes, approaching

human-level performance even under conditions where the
goal location changes frequently.

As authors’ best understanding, there are no studies of
using DRL and DQN for indoor self-piloting. This motivates
us to apply the DQN algorithm to address the problem that
the quadrotor can autonomously navigate any indoor GPS-
denied environment.

The objectives of the paper are to propose a self-piloting
method using the improved DQN algorithm for a quadrotor
flying from one place to another in a GPS-denied and
unknown indoor environment, and to verify the applicability
of the improved DQN algorithm by conducting simulations
and one experiment. The improved DQN algorithm will be
implemented on a real quadrotor to process the images
acquired from the front camera of the quadrotor and then
generate motion control commands to fly autonomously.
The presented contents are written in two principal
contributions. One is the proposal of the self-piloting method
using the improved DQN algorithm, and the other is
effectiveness verification of the proposed method using three
simulations in a powerful computer with one 1080-TI GPU,
and one real experimental testing via a real quadrotor with
one on-board NVIDIA Jetson TX2 AI computing module.
The constructed techniques would provide useful references
for professionals working for unmanned aerial vehicles
and/or quadrotors.

The rest of this paper is organized as follows. Section II
briefly describes the system architecture of the self-piloting
indoor quadrotor. Section III details the improved DQN
structure and algorithm for the self-piloting quadrotor. In
Section IV, three simulations are conducted for illustration of
the effectiveness and superiority of the proposed approach in
Section IV. Section V presents and discusses the
experimental results to show the applicability of the
proposed method. Section VI concludes the paper.

II. SYSTEM STRUCTURE AND DESCRIPTION OF
AUTONOMOUS INDOOR QUADROTOR

This section is aimed to describe the system structure of
the proposed system by including the system configuration
of the experimental indoor quadrotor under the ROS
environment. The ROS will be used as a software framework
for the system, where each sensor or module will be
registered as a node and communicate with each other via the
master of the ROS. The autonomous driving of the quadrotor
will be implemented in the ROS environment.

Hsiu-Chen Tsai and Ching-Chih Tsai, Fellow, IEEE

Tsai et. al.
Self-Piloting of an Indoor Quadrotor Using Deep Reinforcement Learning

20

Motors

 Quadrotor

RealSense

Front camera

Flight controller

RGB images

RGBD images

Terminal
Computer

Jeston TX2

IMU

YOLOv3-tiny

Commands

First-perspective

DRL/DQN

Time counter

Wi-Fi
Bluetooth

Inside
cable

Figure 1. System Structure of the autonomous indoor quadrotor.

Perception

Localization Cognition

Motion Control
Real Word

Environment

En
vi

ro
nm

en
t

M
od

el

Position

Local Map

Pe
rc

ep
tio

n
to

A

ct
io

n

O
bs

ta
cl

e
A

vo
id

an
ce

Po
si

tio
n

F
ee

db
ac

k

Pa
th

Deep Q Network

RealSense/IMU.etc

ORB-SLAM2.0
OctoMap

Flight Control

Lo
ca

l M
ap

Local Map

Position

Figure 2. Flowchart of the proposed self-piloting system.

Figure 3. Physical picture of the experimental autonomous quadrotor: (a)
top view of the complete experimental set-up; (b) exploded illustration of
NVIDIA Jetson TX2 and Intel RealSense depth camera.

2.1 System Structure

Self-piloting in real indoor environments is a challenging
problem without the help of GPS. Figure 1 shows the system
structure of the autonomous indoor quadrotor, which is
Bebop2 from Parrot. In Figure 1, the front camera and
installed Intel RealSense depth camera device are used to
acquire environmental images in front of the quadrotor, and
measure the distances from the quadrotor to its surrounding
walls and/or obstacles, respectively. All the readings from
both sensors will be passed on to the main controller, which
is made by NVIDIA Jetson TX2 AI computing board. The
computing board is exploited to execute an improved DQN
algorithm with the previous input data, in order to generate
flight control commands. The flight controller of the
quadrotor receives these commands to carry out required
flight motions. Worthy of mention is that the improved
DQN method is employed to offline train the quadrotor to fly
from one place to another with its environmental perception
and the front image camera and on-board Intel RealSense in

Planned
trajectory

Coordinate
transformatio

n
Controllers Plant

ORB SLAM 2

r

r

r

d

x
y
z
ϕ

 
 
 
 
 
  +

-
Yaw

x

y

z

e
e
e

eϕ

 
 
 
 
 
  

Yaw

Altitude

Pithch

Roll

Z

e

e

e

e

ϕ

φ

θ

 
 
 
 
 
 
 

Yaw

Altitude

Pithch

Roll

Z

u

u

u

u

ϕ

φ

θ

 
 
 
 
 
 
 

r

r

r

Yaw

x
y
z
ϕ

 
 
 
 
 
 

Action
Command

Figure 4. Block diagram of the flight control system.

ReLu

Distance
Direction
Images
Position
Time

ReLu ReLu

(1,0,0)

(-1,0,0)

(0,1,0)

(0,0,0)

Figure 5. Improved DQN-based control architecture for the autonomous
indoor quadrotor.

an unknown indoor environment. Figure 2 shows the
flowchart of the general navigation control and obstacle
avoidance system.

Figure 3 shows the physical picture of the experimental
autonomous quadrotor, Bebop2 from Parrot, with the on-
board front camera, AI computing module, light-weight
NVIDIA Jetson TX2 board-ACE-N510, and Intel RealSense,
model D435i. Inside this type of TX2 board, there exist an
integrated 256-core NVIDIA Pascal GPU, a hex-core
ARMv8 64-bit CPU complex, and 8GB of LPDDR4
memory with a 128-bit interface, and one dual-core NVIDIA
Denver 2 alongside a quad-core ARM Cortex-A57. Worthy
of mention is that this TX2 board is particularly useful in
accelerating cutting-edge deep neural-network (DNN)
architectures using the cuDNN and ensorRT libraries, which
support for recurrent neural networks (RNNs), long-short-
term-memory networks (LSTMs), and online reinforcement
learning. On the other hand, being a depth camera, the Intel
RealSense obtains 85° sensing data around the quadrotor and
also supports the USB interface for the use of ROS.

2.2 Flight Control of the Experimental Quadrotor

This subsection is devoted to briefly describing the flight
control system of the experimental quadrotor. Figure 3
depicts the block diagram of the quadrotor flight control
system, whose working principle is explained as follows.
First of all, the pose tracking error []

Yawx y ze e e eϕ is found by
computing the desired and current trajectories of the
quadrotor. Afterwards, the pose error vector, []T

x y ze e e , is
then transformed via the following inverse coordinate
transformation in (1), in which the resultant Euler error angle
vector , []Te e eφ θ ϕ is then computed.

iRobotics
Vol. 2, No. 2, June, 2019

21

TABLE I
 CNN STRUCTURE WITHOUT POOLING LAYER [3].

Figure 6. Fixed Q-target structure.

1
0
0

x

y

z

e S T C T e
e C S e
e S C C C e

φ φ θ φ θ

θ φ φ

ϕ φ θ φ θ

     
     = −     
         

 (1)

where ϕ is the pitch angle, θ the roll angle, and ϕ the yaw
angle; Sϕ=sin(ϕ); Cϕ=cos(ϕ); Cθ=cos(θ); Tθ=tan(θ). Finally,
once the Euler error angles of the quadrotor have been
calculated, the control command signals are obtained from
the four proportional altitude and attitude controllers, thus
achieving closed-loop flight control. To achieve
autonomous navigation, it is necessary to find the current
position of the quadrotor by using a new Oriented Fast and
Rotated BRIEF-Simultaneous Location and Mapping (ORB-
SLAM2) algorithm.

The quadrotor is controlled to fly at a fixed speed and
height, and move along the yaw direction, x and y frames.
Note that one ultrasonic sensor and one overlook camera are
used by the quadrotor to accomplish the fixed altitude
control. Since action commands will be generated by the
DQN algorithm, we provide six commands with their
trajectory generators, which are “go forward for one meter”,
“go right for one meter”, “go left for one meter”, “stop”,
“turn left”, and “turn

III. IMPROVED DQN CONTROLLER

This section will describe the improved deep Q-network
(DQN) controller, which generates the six commands. With
the ORB-SLAM2, six commands can be done by the flight
control system as shown in Figure 4. The aforementioned six
commands are then generated according to the incoming data
from all the on-board sensors. Figure 5 shows the schematics
of the improved DQN-based control architecture for the self-
piloting indoor quadrotor, where the DQN consists of two-
layer convolutional neural networks with the rectified linear
activation functions (ReLUs) and two-layer fully connected
neural networks for generating these six flight commands. In
what follows begins with a brief introduction to DQN and
then proposes the improved DQN with new rewards settings.

3.1 Brief Introduction to DQN

Q Learning is indeed a model-free reinforcement learning
technique, which find the action-value function Q through
experiences with the working environment. Once the Q value
has been obtained, the Q learning method will select desired
action that gives the biggest expected reward, thereby
achieving the optimal policy specified by designers. It is
worthwhile to note that the deep Q learning is about using
deep learning techniques to represent the Q table.

Table I shows the CNN structure with pooling layer in
the DQN. The CNN structure is composed of three
convolutional layers and two fully connected NNs with their
input sizes, filter sizes, strides, and numbers of used filters,
activation functions and output sizes. To match the input
sizes of the CNN structure, all the incoming images have to
be scaled down to the sizes of 84×84 and then converted into
8-bit grayscale ones at the outset. Next, those found 84×84×4
tensors are inputted to the CNN, which will have one output
for each action, namely that a corresponding Q value will be
generated by the CNN for each possible action. Afterwards,
the real Q values will be iteratively obtained by continuously
proceeding with the CNN. Learning the parameter vector, θ,
which presents all the weights of the Q network, is the goal
of the DQN. Having learned vector θ, the network will
approximate the optimal value function Q*, as shown in (2).

*(, ,) (,)Q s a Q s aθ ≈ (2)

where S is the current state, a is a possible action to take at
the current state. With the Bellman equation, (3) is given.

* *(, ,) max (,) (,)aQ s a r Q s a Q s aθ γ ′ ′ ′= + ≈ (3)

where r is the reward, γ is the discount factor, s´ and a´ are
respectively the expected state and action. Now, the goal is
to find the optimization on minimizing the mean-squared
error loss, which is the loss function.

Due to the CNN being a regression model, the loss
function is chosen as the following squared error loss
function,

* 2 2((,) (, ,)) (max (, ,) (, ,))aL Q s a Q s a r Q s a Q s aθ γ θ θ′ ′= − ≈ + − (4)

where max (, ,)ar Q s aγ θ′ ′+ is the target to be maximized,
and (, ;)Q s a θ is the current Q value. The Q function,

(,)Q s a , is defined as maximum expected discounted reward
of future that will take an action a on state s , and choose
actions by the policy derived from Q. Usually the Q function
can be obtained by using the following iterative Bellman
equation.

(,) (,) [max ((,)) (,)]aQ s a Q s a Q s a Q s aα γ ′ ′ ′← + − (5)

where α denote the learning rate. In (5), the estimated Q
value is usually wrong in the beginning, but after a period of
time, if the experience from the environment will give a
correct reward r, then the Q value will iteratively turn out to
become correct one.

Tsai et. al.
Self-Piloting of an Indoor Quadrotor Using Deep Reinforcement Learning

22

TABLE II. PSEUDOCODE OF ALGORITHM 1.

3.2 DQN with Fixed Q-target and Experience Replay

This subsection is aimed to delineate the DQN with fixed
Q-target and prioritized experience replay (PER). Figure 6
shows the system structure of the DQN with fixed Q-target.
The concept of the fixed Q-target was introduced by Google
DeepMind team, who desired to estimate the real temporal
difference (TD) target. Via the Bellman equation, the team
found that the TD target is the reward after taking the action
at the state plus the discounted highest Q value for the next
state. (,)Q s a is the Q target to be computed in (6)

(,) (,) ax (,)aQ s a r s a m Q s aγ ′= + (6)

where (,)r s a is the reward of taking that action at that state
and m ax (,)a Q s aγ ′ is the discounted maximized Q value
among all possible actions from the next state. To this end,
the TD error, ˆax (, ,)) (, ,)aR m Q s a Q s aγ θ θ′+ − , is calculated
by finding the difference between the Q-target and estimated
Q̂ . Afterwards, the change in parameter, θ∆ , is obtained
from (7)

ˆ ˆ[(ax (, ,)) (, ,)] (, ,)aR m Q s a Q s a Q s aθθ α γ θ θ θ′∆ = + − ∇ (7)

where is gradient of the current predicted Q-value. As in (6),
the same weights are used to estimate the target and Q value
such that the changing TD target and weights are related.
Hence, below are two ideas for the fixed Q-target:

1. Use a separate network with a fixed weight to
estimate the TD target.

2. After several (T) steps, the weights are copied from
DQN network to update the target network.

After several (T) steps, the fixed parameters, θ − ,will be
updated with θ from the main network in (8)

ˆ ˆ[(ax (, ,)) (, ,)] (, ,)aR m Q s a Q s a Q s aθθ α γ θ θ θ−′∆ = + − ∇ (8)

Thus, the fixed Q-target makes learning more stable due to
the target function staying fixed for a while.

Q-learning with experience replay is an off-policy offline
learning method that can be learned using the previous
experience. During offline training, some experiences may
be more important than others, but occur less frequently.
Therefore, the PER method [5] aims to take in priority
experience which has the big difference between the
prediction and TD target. The actions, rewards and states of
the PER will be stored into its memories and then some of
them will randomly be joined to the q-target network. The
advantages of experience replay hinges on the fact of
reducing the relevance between experiences.

Another important issue is to define rewards. Depending
on the situations, the quadrotor will receive different rewards
and penalties to learn more its correct behavior. For example,
crashed penalty, obstacle penalty, time penalty, direction
reward, pixel reward, arrived reward, and so on. Each
reward or penalty has its own way of calculation, and some
may be constant values, and some may vary from state to
state. The proposed DQN algorithm with experience replay,
called Algorithm 1, is shown in Table 2.

IV. SIMULATIONS AND DISCUSSION

This section will conduct three simulations to show the
effectiveness of the proposed improved DQN algorithm with
experience replay using Unreal Engine and AirSim. Unreal
Engine, which has been widely used for computer games or
scenario creations, is utilized to build the three simulation
environments. AirSim [5], developed by Microsoft, is here
exploited to provide application programming interfaces to
interact with the unmanned quadrotor, in order to retrieve
images, get current states, control the vehicles or robots and
so on. The AirSim modules for these simulations were coded
by using well-known Python and C++ programming
languages. The improved DQN algorithm was also
implemented using Python. Figure 6 depicts the indoor three
simulation environments and DQN-controlled quadrotor
constructed by employing the Unreal Engine and AirSim.

The first simulation is performed to examine the
effectiveness of the proposed improved DQN algorithm to
fly the indoor quadrotor from its starting point to a desired
ending location in a simple indoor environment as Figure 7(a)
shows. Figure 7(a) displays the simulation results and motion
pictures during the simulation. The results in Figure 7(a)
reveal that the DQN-controlled quadrotor flies autonomously
from the beginning point to the desired position.

Algorithm 1: DQN with experience replay.
1. Initialize replay memory M to capacity C
2. Initialize acwtion-value function Q with random

weights vector θ
3. Initialize target action-value function *Q with weights

θ θ− ←
4. For episode = 1, E do
5. Initialize sequence 1 1{ }s x= and

preprocessed sequence 1 1()sφ φ=
6. For t=1,T do
7. With probability ε select a random action ta
8. Otherwise select arg max ((), ;)t a ta Q s aφ θ=
9. Execute action ta in emulator and observe

reward tr and image tx′
10. Set , ,t t t ts s a x′ ′= and preprocess ()t tsφ φ′ ′=
11. Store transition (, , ,)t t t ta rφ φ′ in M
12. Set

1

 if episode terminates at step 1
 ˆmax (, ;) otherwise

j

t
j a j

r j
y

r Q aγ φ θ −
′ +

+= 
′+

13. Perform a gradient descent step on
2((, ;))j j jy Q aφ θ− with respect to the

network parameters θ
14. Every N steps rest Q̂ Q= .
15. End For
16. End For

iRobotics
Vol. 2, No. 2, June, 2019

23

(a)

(b)

(c)

Figure 7. Simulation indoor environments constructed by using Unreal
Engine.

The second simulation is conducted to validate the
proposed improved DQN algorithm in a slightly complicated
environment as drawn in Figure 6 (b) by comparing to the
first simulation. Figure 6(b) illustrates the simulation settings,
in which the total length of the flight routine is 3000 meters,
its width is 2050 meters and height is 2.7 meters. The bottom
picture in Figure 7(b) illustrates one glimpse of the
simulation done for the environment, showing that the self-
piloting system works as predicted.

Unlike the previous two simulations, the third one is
particularly carried out to verify the proposed algorithm in a
maze environment as displayed in Figure 7(c). Figure 7(c)
describes the simulation results, thus ensuring the merit of
the proposed method in this more complex maze
environment. As can be observed in Figure 7(c), the results
confirm the capability of the proposed algorithm, where the
gray points denote the trajectories of the quadrotor during
iterations, and the red points represent the quadrotor’s
trajectories in the last three iterations.

(a) (b)

(c) (d)

(e)

(f)

(g)

Figure 8. Experimental results: (a) flight path. (b) Flight environment. (c)
Key features using ORB-SLAM2.0. (d) 3D cloud-point map and actual
flight trajectories. (e) OctoMap construction process. (f) Experimental
pictures during self-piloting. (g) Destination marked by a mat.

Tsai et. al.
Self-Piloting of an Indoor Quadrotor Using Deep Reinforcement Learning

24

V. EXPERIMNETAL RESULTS AND DISCUSSION

This section is aimed to present and discuss the
experimental results of the experimental quadrotor using the
improved DQN algorithm by conducting one experiment in a
GPS-denied indoor environment. The experimental
environment is almost identical to the second simulation
environment. Figure 8(a) depicts the experimental
environment and the expected flight path, which is
highlighted by the orange line. During the motion, the image
from the front camera of the quadrotor is displayed in Figure
8(b). Figs. 8(c) and (d) show the ORB-SLAM 2.0. Figure 8(e)
shows the construction process of the OctoMap experimental
results obtained from the on-board TX2 AI computing
module, thereby showing the implementation success of the
overall system integration. As shown in Figure 8(f), the
quadrotor flied with all the previous described devices.
Through the results in Figs. 8(f) and (g), the proposed DQN
controller was shown to autonomously fly online the
quadrotor from the starting point to the destination position
marked with the special mat.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a self-piloting method using an
improved DQN algorithm for an indoor quadrotor flying
from one place to another. The experimental quadrotor has
been equipped with its on-board front camera, Intel
RealSense depth camera and NVIDIA Jetson TX2 AI
computing board. The improved DQN algorithm has been
proposed by including designated rewards and penalties, and
then implemented and executed in order to process the
images acquired from the front camera of the quadrotor and
then generate motion control commands to fly autonomously.
Simulations via AirSim and Unreal Engine have been
conducted to show the feasibility and effectiveness of the
proposed DQN-based autonomous driving method. Through
the experimental results, proposed DQN-based autonomous
driving method has been shown capable of navigating the
quadrotor to reach its destination in one floor of a building in
real time. An interesting future work world be to control the
quadrotor to fly from one floor to another by passing through
staircases.

REFERENCES
[1] A. Giusti, J. Guzzi, D. C. Cire¸san, Fang-Lin He, J. P. Rodríguez, F.

Fontana, M. Faessler, C. Forster, J. Schmidhuber, G. D. Caro, D.
Scaramuzza, and L. M. Gambardella, “A machine learning approach
to visual perception of forest trails for mobile robots,” IEEE Robotics
and Automation Letters, vol. 1, no. 2, pp. 661-667, July 2016.

[2] C. Wang, J. Wang, X. Zhang, and X. Zhang, "Autonomous navigation
of UAV in large-scale unknown complex environment with deep
reinforcement learning," 2017 IEEE Global Conf. on Signal and
Inform. Processing (GlobalSIP), Montreal, QC, pp. 858-862, 2017.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D.
Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level
control through deep reinforcement learning,” Nature, vol. 518. pp.
529–533, 26 February 2015.

[4] X. Zhang, B. Xian, B. Zhao, and Y. Zhang, "Autonomous Flight
Control of a Nano Quadrotor Helicopter in a GPS-Denied

Environment Using On-Board Vision," IEEE Trans. Industrial
Electronics, vol. 62, no. 10, Oct. 2015.

[5] P. Mirowski, R. Pascanu, F. Viola, H. Soyer, A. J. Ballard, A. Banino,
M. Denil, R. Goroshin, L. Sifre, K. Kavukcuoglu, D. Kumaran, and R.
Hadsell, “Learning to Navigate in Complex Environments,” ICLR
2017, arXiv:1611.03673, Jan. 2017

[6] T. Schaul, J. Quan, L. Antonoglou, and D. Silver, “Prioritized
Experience Replay,” ICLR 2016, arXiv:1511.05952, Feb. 2016.

Hsiu-Chen Tsai

Ching-Chih Tsai received the Diplomat in
Electrical Engineering from National Taipei
Institute of Technology, Taipei, Taiwan, ROC, the
MS degree in Control Engineering from National
Chiao Tung University, Hsinchu, Taiwan, ROC
and the Ph.D degree in Electrical Engineering
from Northwestern University, Evanston, IL, USA,
in 1981, 1986 and 1991, respectively. Currently, he
is currently a Distinguished Professor in the
Department of Electrical Engineering, National
Chung-Hsing University, Taichung, Taiwan, where
he served the Chairman in the Department of

Electrical Engineering from 2012 to 2014. He is a Fellow of IEEE, IET and
CACS.

Dr. Tsai served as the Chair, Taipei Chapter, IEEE Control Systems
Society, from 2000 to 2003, and the Chair, Taipei Chapter, IEEE Robotics
and Automation Society from 2005 to 2006. In 2007, he was the program
chair of 2007 CACS international automatic conference sponsored by
Taipei chapter, IEEE control systems society. In 2010, he served as the
program co-chair of SICE 2010 annual conference in Taiwan, which was
technically sponsored by IEEE CSS; in 2011, he served as the General
Chair, 2011 International conference on service and interactive robotics; in
2012, he has served as the General Chair, 2012 International conference on
Fuzzy Theory and Its Applications, the General Chair, 2012-2015 CACS
International Automatic Control Conferences, and the General Chair, 2016-
2017 International Conference on Advanced Robotics and Intelligent
Systems. Dr. Tsai served the two-term President, Chinese Institute of
Engineers in Central Taiwan, Taiwan from 2007 to 2011, and two-term
President of Chinese Automatic Control Society from 2012 to 2015. Since
2008, he has been the Executive Directors in Boards of Government of thee
professional associations, including Robotic Society of Taiwan, Taiwan
Fuzzy Systems Association, and Taiwan Systems Association. He has
served as the Chair, Taichung Chapter, IEEE Systems, Man, and
Cybernetics Society since 2009, the Chair of IEEE SMC Technical
Committee on intelligent learning in control systems since 2009, the
President of Robotics Society of Taiwan since 2016, the steering committee
of Asian Control Association since 2014, a BOG member of IEEE
Nanotechnology council since 2012, the Vice President of International
Fuzzy Systems Association since 2015, and a BOG member of the IEEE
SMCS since 2017.

Dr. Tsai has published more than 500 technical papers, and seven
patents in the fields of control theory, systems technology and applications.
Web of Science has indexed his paper entitled "Adaptive Neural Network
Control of a Self-Balancing Two-Wheeled Scooter" in the category
Automation Control Systems, where the paper was ranked 408 out of
37607 articles (published between 2010 to 2014). Dr. Tsai is respectively
the recipients of the Third Society Prize Paper Award from IEEE Industry
Application Society in 1998, the Outstanding Automatic Control
Engineering Award in 2008 from Chinese Automatic Control Society
(CACS), and the Outstanding Engineering Professor Award in 2009 from
the Chinese Institute of Engineers in 2009, the IEEE Most Active SMC
Technical Committee (TC) Award in 2012 from IEEE SMC Society, the
Outstanding Electrical Engineering Professor Award from the Chinese
Institute of Electrical Engineering in 2014, Outstanding Industry
Contribution Award from Taiwan Systems Association in 2016, the best
paper award in the International Journal of Fuzzy Systems in 2017, and
many best paper awards from many international conferences technically
supported by IEEE. He is the advisor, IEEE SMC student branch chapter at
National Chung Hsing University; this chapter was the recipient of
certificate of appreciation from IEEE SMCS in 2009. He has served as the

iRobotics
Vol. 2, No. 2, June, 2019

25

associate editors of International Journal of Fuzzy Systems, and IEEE
Transactions on Systems, Man and Cybernetics: Systems, IEEE
Transactions on Industry Informatics, and International Journal of
Electrical Engineering. Recently, he has served as the Editor-in-Chief of a
new international robotics journal called “iRobotics”. His current interests
include advanced nonlinear control methods, deep model predictive control,
fuzzy control, neural-network control, advanced mobile robotics, intelligent
service robotics, intelligent mechatronics, intelligent learning control
methods with their applications to industrial processes and intelligent
machinery.

Tsai et. al.
Single-Domain Reptile Meta-Tracking

26

Abstract—Visual tracking has been one of the main topics in

computer vision for decades, and it is still a challenging topic.
The goal of visual tracking is to continuously locate a specific
target in a predefined bounding box throughout an incoming
video stream or a sequence of images. Typically, this issue
requires tracking algorithms to recognize and locate the target
with robustness against a variety of uncertainties such as
appearance changes, illuminance changes, and image blurring,
etc. This requirement produces some unique challenges
especially for some tracking algorithms based on deep learning
techniques that require online learning during the tracking
process. Although deep learning methods provide really strong
and robust feature representation, they are easy to be
over-fitted if given a really small set of training data and thus
making the overall performance throughout tracking poorly. To
deal with this issue, this paper presents a novel deep-learning
based meta-tracker, which adopts a first-order meta-learning
technique so that during online initialization, the visual tracker
only requires few training samples and a few steps of
optimization to perform well in online tracking. Experiment
results show that the proposed method outperforms eight
state-of-the-art deep visual trackers and achieves up to 66.4% of
average success rate on OTB2015 dataset using one-pass
evaluation.

Index Terms—Deep learning, deep visual tracking, Reptile
meta-learning, few-shot learning, single-domain neural
network.

I. INTRODUCTION

ESPITE visual tracking has been one of the main topics in
computer vision for decades, it is still a very challenging

topic. When a visual tracker receives an initial location of the
target in the first frame of a video sequence, its main objective
is to locate the location of the target in all the remaining
frames of the video sequence. This goal creates a unique
challenge for visual tracking algorithms because they have to
perform online learning to adapt to target changes such as
appearance changes, illuminance changes, motion blurring,
and partial/full occlusion, etc. In recent years, deep learning
methods become urgency due to their great capacity in
applications of object classification [1-3], image
segmentation [4-5], and image recognition [6], etc. So far,
there have been several visual tracking algorithms that
incorporate the deep learning technique to improve tracking

This work was supported by the Ministry of Science and Technology of

Taiwan under Grant MOST 107-2218-E-032-004 and MOST
107-2221-E-032-049.

The authors are with the Department of Electrical and Computer
Engineering, Tamkang University, No. 151, Yingzhuan Road, Tamsui
District, New Taipei City 251, Taiwan R.O.C. (the corresponding author’s
e-mail: chiyi_tsai@mail.tku.edu.tw).

robustness and tracking accuracy. In this paper, we focus our
attention on the current deep learning based visual tracking
algorithms, in which we examine them into two categories
according to their online tracking strategies.

The first category of the convolutional neural network
(CNN) trackers needs to fine-tune the neural network or to
update the target classifier in the tracking stage. For instance,
Wang et al. proposed a fully convolutional network based
tracker (FCNT) [7], which consists of a general network
(GNet) and a specific network (SNet). The GNet captures the
category information of the target using feature maps from
top CNN layers, while the SNet discriminates the target from
the background with similar appearance using feature maps
from lower ones. To avoid the background noise introduced
during tracking the target, they fixed GNet and only updated
SNet after the initialization in the first frame. In [8], Hong et
al. proposed an online visual tracking method, which trains a
CNN to produce a discriminative saliency map and uses a
support vector machine (SVM) to perform online learning of
discriminative target appearance models. In [9], Danelljan et
al. investigated the impact of convolutional features for visual
tracking problem, and they found that the convolutional
features provide improved results compared to standard
handcrafted features. Based on this observation, they
proposed to use activations from the CNN layer in the
discriminative correlation filter (DCF) framework [10],
which updates the correlation filter based on a linear
interpolation rule. In [11], Nam and Han proposed a
multi-domain neural network (MDNet) learning method,
which trains a general CNN model during offline learning
while using binary regularization heavily during online
learning. However, the processing speed of the MDNet is
very slow because it uses three CNN layers to produce 512
feature maps for each selected image patch.

On the other hand, the second category of the CNN trackers
ignores fine-tuning the neural network in the tracking stage
by using the Siamese neural network (SNN), which is a
two-input and multiple-output neural network architecture
that inputs two images individually into two CNNs shared
with the same weights to extract feature maps of both images.
The main advantage of using the SNN is that the trained SNN
does not need online fine-tuning at test time, making its
processing speed very fast. Several studies already use
large-scale datasets to train the SNN model for object
tracking applications [12-14]. In [12], Held et al. proposed a
generic object tracking using regression networks (GOTURN)
based on the SNN architecture. The GOTURN tracker

Single-Domain Reptile Meta-Tracking

Chi-Yi Tsai*, Member, IEEE, and Shang-Jhih Jhang

D

iRobotics
Vol. 2, No. 2, June, 2019

27

produces target bounding box simply by regression and is the
first neural network based generic object tracker achieving
real-time performance about 100 frames per second (fps). In
[13], Bertinetto et al. proposed a fully-convolutional SNN
with a cross-correlation layer without online learning
operation. The cross-correlation layer uses convolution
operators to compute cross-correlation between feature maps
of the reference image and of the query image. The position
of tracking target is then determined by the position of the
maximum score relative to the center of the output score map.
In [14], Tao et al. proposed a Siamese instance search tracker
(SINT), which uses SNN to learn a robust and generic feature
embedding network for object tracking, aiming to be
invariant to all appearance variations in the robust tracking
scenarios. Although the SNN can work well with high
processing speed, its tracking performance is still worse than
the MDNet because it is without fine-tuning during the
tracking process.

Although the deep CNN model provides really strong and
robust feature representation for visual tracking, it is easy to
be over-fitted since only a single training data from the first
frame of the video sequence can be used in the online learning
process. To deal with this issue, choosing small network
architecture is more suitable for fine-tuning and
online-updating the CNN tracker during the online tracking
process in order to keep the robustness of the tracker. For
instance, the MDNet only uses a small CNN model composed
of three CNN layers and three fully connected (FC) layers to
deal with the multi-domain visual tracking problem. The
MDNet produces state of the art performance; however, the
initial online learning process at the first frame of the
sequence costs significantly more time than other deep visual
tracking methods. In [15], Park and Berg proposed another
solution, which combines the model-agnostic meta-learning
(MAML) technique [16] and a variety of existing methods to
obtain a competitive tracking performance but with less
initialization time at the beginning of the sequence. However,
the MAML technique requires second-order derivative
operations, which greatly increase the computational cost of
the offline training process. This issue motivates us to
develop a computational efficient meta-tracking architecture
based on [11] and [15] while providing robust tracking
performance. To achieve this, this paper presents a novel
deep-learning based meta-tracker, which adopts a first-order
meta-learning technique [17] so that during online
initialization, the visual tracker only requires few training
samples and a few steps of optimization to perform well in
online tracking. Experiment results show that the proposed
method outperforms eight state-of-the-art deep visual trackers
and achieves up to 66.4% of average success rate on
OTB2015 dataset using one-pass evaluation.

The remainder of this paper is organized as follows.
Section II introduces the related few-shot meta-learning
algorithms. The proposed Reptile meta-tracking algorithm is
introduced in Section III. Section IV reports experimental

results to evaluate the tracking robustness and tracking
accuracy of the proposed algorithm compared to four
state-of-the-art deep visual trackers. Section V concludes
with the contributions of this paper.

II. FEW-SHOT META-LEARNING

One of the most struggling problems of the current deep
neural nets is the ability to learn different tasks quickly with
little data. The main reason behind this problem is that the
deep neural net itself and the traditional gradient-based
learning process are not designed to reuse precious
knowledge learned from other tasks. On the other hand, a
human can easily adapt to a wide variety of new and
previously unseen tasks with little supervision, this kind of
fast adapting ability is now considered the key to achieving
the ultimate goal of AI: human level intelligence [18].
Meta-learning, also known as learning to learn, is one way to
achieve such a fast adapting ability, which can leverage past
experiences to learn faster when presenting a new task, like
the goal of generic object tracking. Generally, a meta-learning
algorithm has to learn rapidly within each task while
accumulating knowledge across different tasks. In order to
perform meta-learning, a training dataset needs to be exposed
to a large number of tasks.

In few-shot meta-learning problems, a dataset is first
separated as a meta-training and a meta-testing set as shown
in Figure 1. Each set has a unique collection of classes and no
repeated examples between two sets. During meta-learning,
the model is trained to learn tasks in the meta-training set. For
example, in the context of five-way one-shot learning, every
single task contains five training examples, one example for
each class, and some test examples to test how well it learned
from that five training examples. Hence, the goal of few-shot
meta-learning is to train a model that can be adapted to new
tasks or new environments fast with little among of data. To
solve this problem, the model is first trained in a
meta-learning phase on a wide variety of tasks, but each task
only contains a few training examples. There are several
meta-learning methods proposed in recent years, below are
two of the methods related to this work.

A. Model-Agnostic Meta-Learning (MAML)

Considering a meta-learning model f for mapping an input
x to an output y, the model is trained to be capable of adapting
to huge among of tasks quickly during the training phase of
meta-learning. In the K-shot learning problem, each new task
Ti is drawn from a distribution over tasks p(T) with only K
examples per class drawn from a distribution over initial
observations. Then, the model is trained on the task with a
loss

iTL

generated from the training data in the task Ti. After

training, the model is tested on the test data in the task Ti to
improve the model f based on the feedback test error. At the
meta-testing phase, new tasks are drawn from p(T), which are
used to measure how well the model performs after training
from K samples per class.

Tsai et. al.
Single-Domain Reptile Meta-Tracking

28

Figure 1. Data setup of few-shot meta-learning.

The purpose of the MAML method is to learn the parameters
of any model through meta-learning for capable of fast
adapting. Its main idea is to find internal feature
representations that are more transferrable to wide arrange of
tasks. Unlike previous works, the MAML does not put any
constraint on the model architecture itself; instead, the model
only needs few update steps to perform well on a new dataset.
To find this general purpose feature representations for the
model of choice, the MAML method directly optimizes the
model on a completely new task using traditional
gradient-based learning rules without overfitting.

Algorithm 1 shows the pseudo code of the MAML.
Considering a model fθ that is parameterized by parameters θ.
When the model is trained on a new task Ti using gradient

descent, the i-th adapted parameters iθ~ is computed using the

loss from the task Ti as follows:

)(
~

θθαθθ fL
iTi ∇−= , (1)

where α is the step size,)(θfL
iT is the loss function

associated with the model fθ given the task Ti that only

contains few examples per class, and)(θθ fL
iT∇ is the

corresponding gradient vector with respect to (w.r.t.) the
current parameters θ. When computed the adapted parameters
of all tasks, the model parameters are then trained using a
total loss function


i

T
ii

fL)(~θ
, (2)

which measures how well the updated model
i

fθ~
 performs on

the test data in tasks sampled from p(T). The goal is to
minimize the total loss function w.r.t. θ such that with a small
number of update step (1) the model is able to achieve
maximum effectiveness on the task. According to the total
loss function (2), the meta-learning update rule to improve the
model’s fast adapting ability can be written as:

∇−←
i

T
ii

fL)(~θθβθθ , (3)

where β is the step size, and ∇
i

T
ii

fL)(~θθ is the gradient

vector of the total loss function w.r.t. to θ through stochastic
gradient descent (SGD).

B. Reptile

The main drawback of the MAML algorithm is that the
optimization process involves second-order derivatives.
Specifically, when calculating the derivatives of (2), the

derivatives of)(θθ fL
iT∇ w.r.t. θ will also need to be

calculated. This operation not only consumes a lot of
additional memory but also slows down the overall
optimization speed. To address this issue, Alex Nichol et al.
proposed Reptile algorithm [17], which simplifies the MAML
to improve computational efficiency. Similar to MAML, the
Reptile also aims to train a network initialization that can be
adapted to new tasks quickly using only little training data
and a small number of gradient steps. At each meta-training
iteration, it first samples a task from the training dataset,
trains on it using mini-batch gradient descent for few steps,
and moves the initialization towards the trained weights on
that task using a simple update method. After training on
many meta-training iterations, it is able to obtain a general

Algorithm 1. Pseudo Code of the Model-Agnostic
Meta-Learning (MAML) [16]
Require : p(T): distribution over tasks
Require : α, β: step size hyperparameters
Randomly initialize θ, the initial parameters of the model
while not done do
 Sample batch of tasks Ti ~ p(T)
 for all Ti do
 Evaluate)(θθ fL

iT∇ with respect to K examples

 Compute adapted parameters with gradient descent :

)(
~

θθαθθ fL
iTi ∇−=

 end for
 Update ∇−←

i
T

ii
fL)(~θθβθθ

end while

iRobotics
Vol. 2, No. 2, June, 2019

29

weight initialization that is close to the optimal weights for many tasks.

Figure 2. Neural network architecture of the proposed CNN tracker.

Algorithm 2 shows the pseudo code of the serial version of
Reptile, which also aims to learn a general initialization for
parameters of a neural network model to make the model
having the ability to generalize quickly from the new task. Let

)(θk
TU denote the operator that updates θ k times using

gradient descent or Adam [19] on batches of data sampled
from T. At the i-th iteration, the task-adaptation parameters

iθ~ defined in Eq. (1) can then be computed using the update

operator such that

)
~

(θθεθθ −+← i , (5)

where ε is a real number. However, the Reptile can be
extended into a parallel or batch version. Instead of only
sampling a single task at each iteration, we can evaluate n
tasks at each iteration to update the model parameters θ using

 −+←
n

i
in

)
~

(
1 θθεθθ , (6)

where n is a nonzero positive number.

III. THE PROPOSED REPTILE META-TRACKING

In this section, we introduce the proposed meta-tracking

algorithm, which is developed based on the MDNet method
but with different offline learning and online learning process
inspired by the Reptile meta-learning algorithm.

A. The Proposed Neural Network Architecture

Figure 2 illustrates the neural network architecture of the
proposed CNN tracker, which has a total of seven layers,
including six CNN layers (Conv1-Conv6) and one
fully-connected (FC) layer at the last layer. The proposed
network receives a 107×107 RGB image patch as input. The
first four layers are identical to the first four layers of VGG11
[6] with pre-trained parameters on ImageNet dataset [20].
The following two layers are CNN layers, each of them with
128 filters, batch normalization, and ReLU activation
function. The 6th convolutional layer has a max-pooling
operation, and the last layer is an FC layer with two output
units that classify the input image patch belonging to the
target or the background class. We trained the proposed CNN
tracker using cross-entropy loss. Unlike the network
architecture in MDNet, it does not have multi-domain
branches in the last layer. Therefore, the proposed
architecture is a single-domain network.

B. Parameters Update during Offline Reptile
Meta-Learning

The goal of offline meta-learning is to learn a generic
feature representation of targets that can be easily adapted to a
new task or domain with only a few updates and few training
examples. During training, the parameters of the first four
CNN layers (Conv1-Conv4) remain fixed while the
parameters of the last two CNN layers (Conv5-Conv6) and
the FC layer are meta-trained.

Denote wj as the parameters of the model in the j-th layer.
We first randomly initialize the parameters w5 to w7. The
parameters w1 to w4 are pre-trained on the ImageNet dataset
and remain fixed throughout the offline meta-training as well

Algorithm 2. Pseudo Code of the Reptile in Serial Version

Require : p(T): distribution over tasks
Require : ε: step size hyperparameter
Require : k: iteration number of gradient descent
Randomly initialize θ, the initial parameters of the model
for iteration i = 1,2,3,… do
 Sample a task Ti ~ p(T)

 Compute)(
~ θθ k

Ti i
U= , denoting k steps of SGD or Adam

 Update)
~

(θθεθθ −+← i , ε is a real number

end for

Tsai et. al.
Single-Domain Reptile Meta-Tracking

30

as online tracking. We denote the trainable parameters w5 to
w7 as the symbol θ. At the i-th iteration, we sample a video
sequence from the training dataset ΩD and randomly sample a
total of 64 positive sample regions and 192 negative sample
regions to form a training task Ti. The positive samples have
an intersection of union (IoU) overlap ratio with ground truth
bounding boxes equal to or greater than 0.7, while the
negative samples have the IoU overlap ratio with the ground
truth bounding boxes equal to or less than 0.5. After the i-th
training task Ti is sampled, we perform k steps of SGD on the
parameters θ with the training task Ti as input, resulting in
new parameters

iθ according to Eq. (4), then we update θ

using Eq. (5). We repeat this training procedure until a
predefined iteration is reached. After the offline meta-training,
we obtain general model parameters θ* that can be used
during online tracking. The pseudo-code of the proposed
Reptile meta-learning algorithm is shown in Algorithm 3.

C. Parameters Update during Online Reptile Meta-Tracking

1) Target estimation

In the online tracking procedure, the general model
parameters θ* is updated using the new video sequence.
Similar to MDNet, the tracker estimates the target at frame t by
first sampling N target candidates {xt

1,xt
2,…,xt

N} around the
estimated target location from the previous frame t−1, then
evaluates them using the fine-tuned model fθ to obtain positive
score ()n

tfθ
+ x and negative score ()n

tfϕ
− x for n=1~N. The

optimal target state xt
* at frame t is estimated by finding the

candidate with the maximum positive score such that

* arg max ()
n
t

n
t tfθ

+=
x

x x , (7)

where the target candidates (, ,)n n n n
t t t tu v s=x for n=1~N at

frame t are sampled in the translation of (u,v) coordinates and
scale dimension s of the n-th sample in Gaussian distribution.
The standard deviation of the translation dimension (u,v) is
0.3r and the standard deviation of the scale dimension s is 0.5,
where r is the mean of width and height of the *

1−tx in

previous frame t−1. The total number of target candidates for
every frame is N=256.

2) Parameters update

There are three types of parameters update during online
tracking. The first one is the initial update, which samples 32
positive examples with IoU overlap 7.0≥ and 96 negative
examples with IoU overlap 5.0≤ as training data, and
performs three steps of SGD on the parameters θ* using the
sampled training data. The second one is the short-term
update, which is performed using the positive and negative
samples collected for a short period of time when the
estimated optimal target state is considered unreliable
(*() 0.0fθ

+ ≤x). The third one is the long-term update,

which is performed every ten frames using positive samples
collected for a long period of time and negative samples

collected for a short period of time.

For long-term and short-term update, the tracker holds two
frame index sets Tl and Ts, which respectively store 100 and
20 most recent frame indexes of reliable estimated target state
(*() 0.0fθ

+ >x). When the frame index t is multiple of ten,

we perform a few steps of SGD on θ to compute θ using Eq.
(4) with positive samples collected in long-term and negative
samples collected in short-term, then update θ using Eq. (5).
If *() 0.0fθ

+ ≤x , then we perform a few steps of SGD on θ to

compute θ using positive samples and negative samples

collected in short-term, then overwrite θ directly using θ .

3) The proposed tracking procedure

The full tracking procedure is described as follows. At the
start of the sequence, the tracker draws positive samples

0t
S +

and negative samples
0t

S − from the first frame and update θ*

using 3 steps of SGD to result in the initialized parameters θ.
Then it trains a bounding box regression model [2] using the
target bounding box of the first frame. After the initialization,
the tracker draws target candidates n

tx and estimates the

optimal target state *
tx using Eq. (7) at frame t. If

*() 0.0tfθ
+ >x , the tracker draws positive samples +

tS and

negative samples −
tS for the online learning and adjusts the

bounding box of *
tx using bounding box regression. Next, we

store the frame index t into the frame index sets Tl and Ts, if
the number of indexes in Tl and Ts is greater than 100 and 20,
respectively, then delete the smallest index in the set.

When the frame index t is multiple of ten, we perform a few
steps of SGD on θ using positive samples collected in
long-term and negative samples collected in short-term,

resulting θ , then update θ using Eq. (5). If *() 0.0tfθ
+ ≤x , we

perform a few steps of SGD on θ using positive samples and

negative samples collected in short-term, resulting θ , then

overwrite θ directly using θ . The proposed Reptile
meta-tracking algorithm is shown in Algorithm 4.

Algorithm 3. Pseudo Code of the Proposed Reptile
Meta-Learning
Require : ΩD: training dataset
Require : ε: step size hyperparameter
Require : k: iteration number of gradient descent
Import w1 to w4 from pre-trained model
Randomly initialize the parameters w5 to w7 as the symbol θ
for iteration i = 1,2,3,… do
 Randomly sample a task Ti from the training dataset ΩD

 Compute ()
i

k
i TUθ θ= , denoting k steps of SGD

 Update ()iθ θ ε θ θ← + −

end for
Output the general model θ* for online meta-tracking

iRobotics
Vol. 2, No. 2, June, 2019

31

IV. EXPERIMENTAL RESULTS

This section shows the experiment results of the proposed
method compared to other state-of-the-art methods using the
OTB2015 dataset for visual tracking benchmark.

A. Detail Settings

We implemented the proposed algorithm in Ubuntu 16.04
using Python 3.5 as the programming language and Pytorch
0.3.0 as the deep learning framework. For SGD optimization,
we used Adam optimizer with learning rate 0.001, the first
order momentum β1=0, and the second-order momentum
β2=0.999. During the initialization in online learning, the
tracker samples 32 positive samples with IoU overlap

7.0≥ and 96 negative samples with IoU overlap 5.0≤ . The
last three layers of the model are trained for three steps of
Adam optimization.

After the initialization, the tracker draws 256 samples
around the previous target at each frame and estimates the
target bounding box by the bounding box with a maximum
positive score. During the short-term update, the algorithm
trains the last three layers of the model for five steps using
Adam optimization. For the long-term update, the tracker first
trains the parameters of last three layers θ of the model for
five steps using Adam optimization, resulting in new

parameters for the last three layers θ , and then updates θ
using Eq.(5) with ε=0.1.

For the OTB2015 experiment, we used a large scale
ImageNet detection dataset [20] and VOT dataset [21] as the
training dataset. For the VOT dataset, we used the sequences
in VOT2013, VOT 2014 and VOT 2015, excluding the video
sequences that are also in OTB2015.

B. Performance Evaluation

The dataset used for performance evaluation is OTB2015,
also known as OTB100 or TB-100. It is a data set with a total of
100 video sequences. Each image in every sequence is annotated
with the ground truth of the target bounding box. Each ground
truth bounding box includes four values, the top left corner of the
bounding box (x, y) as well as its width and height (w, h).

There are two types of evaluation criteria used in
OTB2015. The first one is the precision plot, which is defined
as the average Euclidean distance between the center location
of the estimated targets and ground truth over all the frames in
one or multiple sequences. The second one is success plot,
which measures the overlap score in each frame using the
following equation:

t g

t g

r r
Score

r r
=




, (8)

where rt and rg denote the estimated bonding box and ground
truth bounding box in each frame, respectively. To measure
the success rate (SR) on multiple sequences, the success plot
counts the number of frames that have overlap scores higher
than certain thresholds, and then divides the number with the
total number of frames. This work uses one-pass evaluation
(OPE) on the success plots and the precision plots to evaluate
the tracking performance.

For the result comparison, we select eight state-of-the-art visual
tracking algorithms including DeepSRDCF[9], MDNet[11],
SiamFC[13], SINT[14], Meta-SDNet[15], Meta-CREST[15],
CREST[22] and PTAV[23]. Figure 3 shows the OTB2015
precision and success plot of the proposed method as well as the
other compared methods mentioned above. Both plots in Figure 3
show that the proposed Reptile meta-tracker achieves competitive
performance on OTB2015 in terms of tracking precision and
tracking success rate. Figure 3(b) show that the proposed Reptile
meta-tracker obtains an average SR of 66.4%, outperforming the
existing meta-SDNet and meta-CREST tracker by 0.2% and 0.7%,
respectively. The proposed method also outperforms the other
deep visual trackers.

Algorithm 4. Pseudo Code of the Proposed Reptile
Meta-Tracking
Require : θ*: general model parameters
Require : ε: step size hyperparameter
Require : k: iteration number of gradient descent
Import model fθ with trainable parameters θ* from the
offline meta-learning
Draws positive and negative samples

0t
S + and

0t
S − from the

first frame t0
Train a bounding box regression model using the target
bounding box of the first frame
Update θ* using three steps of SGD to θ
Store the first frame index t0 into both frame index sets Tl
and Ts
for frame t = 1,2,3,… do

Draw target candidate samples n
tx for n=1~N with

frame t

Estimate * arg max ()
n
t

n
t tfθ

+=
x

x x

if *() 0.0tfθ
+ ≤x

Short-Term Update
Perform k steps of SGD on θ using candidate samples

sTS + and
sTS − to compute θ

Update θ θ← 
 else

Draw training candidate samples
tS + and

tS −

Adjust *
tx using bounding box regression

Update the frame index t into both frame index
sets Tl and Ts

if t mod 10 = 0
Long-Term Update
Perform k steps of SGD on θ using candidate

samples
lTS + and

sTS − to compute θ

Update ()θ θ ε θ θ← + −
end for

Tsai et. al.
Single-Domain Reptile Meta-Tracking

32

(a) (b)

Figure 3. Result comparison: (a) Precision plots and (b) Success plots on OTB2015 using OPE.

#0007 #0467 #0667

#006

#0018 #0535 #0642

#0169 #0239 #0369

SiamFcMDNetOurs DeepSRDCFMeta-SDNet

Figure 4. Tracking result for sequence Basketball (Row1), Board (Row2), and ClifBar (Row3).

C. Tracking Results

This section presents some of the most challenge
sequences in OTB2015 and compares the tracking results of
the proposed method against four state-of-the-art deep visual
trackers: DeepSRDCF[9], MDNet[11], SiamFC[13], and
Meta-SDNet[15]. Figure 4 shows tracking results of three
challenge sequences in background clutter: Basketball
(Row1), Board (Row2), and ClifBar (Row3). In the

Basketball sequence, the target is one of the basketball
players wearing the green shirt. During the sequence, there
are multiple occasions where the target is running fast,
resulting in motion blur effect. There are also several objects
in the background that are very similar to the target, which
causes some tracking algorithms (e.g., MDNet and SiamFC)
to track the wrong object toward the end of the sequence. In
the Board sequence, the target is a

iRobotics
Vol. 2, No. 2, June, 2019

33

#0006 #0170 #0258

#0033 #0089 #0109

#0006 #0032 #0151

#0009 #0029 #0071

SiamFcMDNetOurs DeepSRDCFMeta-SDNet
Figure 5. Tracking result for sequence DragonBaby (Row1), Bird1 (Row2), MotorRolling (Row3), and Skiing (Row4).

motherboard moving around in a cluttered background. During
the sequence, the target is rotated for several times or even
flipped to the opposite side. This out-of-view issue causes the
SiamFC tracker to lose the target while the other compared
trackers may not produce an accurate bounding box of the
target. In the ClifBar sequence, the target is a card with a
special texture on it. During the sequence, the target is moved
around and rotated by a person’s hand. The scale of the target
changes dramatically in some parts of the sequence. Moreover,
the target is out-of-view for a short time. These issues cause
some trackers like SiamFC and MDNet to lose the target. By
contrast, the proposed meta-tracker can track and redetect the
target successfully.

Figure 5 shows tracking results of four challenge sequences
in fast motion and scale variation: DragonBaby (Row1), Bird1
(Row2), MotorRolling (Row3), and Skiing (Row4). The target
of the DragonBaby sequence is the head of the baby. During the
sequence, the target constantly moves very fast while rotating,
causing the SiamFC tracker to lose the target. The target of the
Bird1 sequence is one of the birds in the scene. This sequence is
very challenging because the target is occluded for a long time

toward the middle of the sequence, causing the search area of
all compared trackers to drift away and never recover. On the
contrary, the proposed meta-tracker is able to stay in the
position until the target re-appears and then tracks the correct
target toward the end of the sequence.

The target of the MotorRolling sequence is a rolling
motorcycle, which constantly rotates in some occasions with a
cluttered background. This type of target causes some trackers
to either have bad bounding boxes or completely lose the target.
However, the proposed meta-tracker is able to track the target
accurately throughout the sequence. Next, the target in the
Skiing sequence is a person skiing down the hill very fast with a
large scale variation. During this challenging sequence, the
proposed meta-tracker still can track the target throughout the
sequence. In contrast, the SiamFC and DeepSRDCF trackers
lose the target when it passes through the tree in the
background.

Figure 6 shows tracking results of two challenge sequences
in fast motion with illumination variation and occlusion:
Ironman (Row1) and Matrix (Row2). The target of the Ironman

Tsai et. al.
Single-Domain Reptile Meta-Tracking

34

Figure 6. Tracking result for sequence Ironman (Row1) and Matrix (Row2).

Figure 7. Tracking result for sequence Football (Row1) and Freeman4 (Row2).

sequence is head of the ironman. This sequence is very
challenging because the target not only suffers from very poor
lighting conditions, but also constantly moves very fast while
rotating. In addition, the target is also occluded in some
occasions. This causes most of the trackers to finally lose the
target including the proposed one. Next, the target of the
Matrix sequence is the head of a person. During the sequence,
the target moves very fast while in a dark lighting condition.
The proposed meta-tracker and MDNet are able to track the
target most of the time while the other trackers drift away
from the target toward the end of the sequence.

Figure 7 shows tracking results of two challenge sequences
in rotation and occlusion: Football (Row1) and Freeman4
(Row2). The target in the Football sequence is one of the
football payers’ head. The biggest challenge is that there are
many similar objects in the background and very close to the
target most of the time. This issue causes some trackers to
drift away such as SiamFC and MDNet. By contrast, the
proposed meta-tracker can track the target throughout the
whole sequence. Finally, the target in the Freeman4 sequence

is the head of a walking person. The other people in the
background are waving books while the person is slowly
walking through them, causing the target to be partially or
completely occluded several times. The proposed
meta-tracker is able to track the target without drifting to
background throughout the sequence. Therefore, the above
experimental results validate the tracking performance and
robustness of the proposed meta-tracking method. More
experimental results can refer to online web-page [24].

V. CONCLUSIONS AND FUTURE WORK

The proposed meta-tracking method combines a first order
meta-learning technique called Reptile into general
initialization of a deep visual tracker. Moreover, a novel CNN
architecture is also proposed to implement a single-domain
CNN tracker. The proposed single-domain meta-tracker
performs well on the OTB2015 dataset, which includes many
challenging conditions such as occlusion, motion blur, fast
motion, rotation, deformation, and background clutters, etc.
The proposed meta-tracking method achieves average SR up
to 66.4% across all sequence. Compared to eight

iRobotics
Vol. 2, No. 2, June, 2019

35

state-of-the-art methods, the proposed meta-tracking method
can achieve comparable or even better performance in term of
tracking precision and average SR given less training data and
fewer update steps during online tracking. Experimental
results not only validate the tracking performance and
robustness of the proposed Reptile meta-tracker, but also
show that meta-learning has a great potential to be used in the
field of generic object tracking. In the future, the combination
of Reptile meta-learning with other deep visual trackers will
be further investigated.

ACKNOWLEDGMENT

The authors would like to thank Yen-Chang Feng and
Yu-Kai Su of Tamkang University for their participating in
experiments.

REFERENCES
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet

classification with deep convolutional neural networks,”
International Conference on Neural Information Processing
Systems, Lake Tahoe, Nevada, pp. 1097-1105, 2012.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature
hierarchies for accurate object detection and semantic
segmentation,” IEEE Conference Computer Vision and Pattern
Recognition, Columbus, USA, pp. 580-587, 2014.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: Unified, real-time object detection,” IEEE Conference
on Computer Vision and Pattern Recognition, Las Vegas, USA, pp.
779-788, 2016.

[4] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional
networks for semantic segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 39, No. 4, pp.
640-651, 2017.

[5] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected crfs,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol. 40, No. 4, pp. 834-848, 2018.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” International
Conference on Learning Representations, San Diego, USA, 2015.

[7] L. Wang, W. Ouyang, X. Wang, and H. Lu, “Visual tracking with
fully convolutional networks,” IEEE International Conference on
Computer Vision, Santiago, Chile, pp. 3119-3127, 2015.

[8] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by
learning discriminative saliency map with convolutional neural
network,” International Conference on Machine Learning, Lille,
France, pp. 597-606, 2015.

[9] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg,
“Convolutional features for correlation filter based visual
tracking,” IEEE International Conference on Computer Vision
Workshop, Santiago, Chile, pp. 621-629, 2015.

[10] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg,
“Discriminative scale space tracking,” IEEE Transactions Pattern
Analysis and Machine Intelligence, Vol. 39, No. 8, pp. 1561-1575,
2017.

[11] H. Nam and B. Han, “Learning multi-domain convolutional neural
networks for visual tracking,” IEEE Conference on Computer
Vision and Pattern Recognition, Las Vegas, USA, pp. 4293-4302,
2016.

[12] D. Held, S. Thrun, and S. Savarese, “Learning to track at 100 fps
with deep regression networks,” European Conference on
Computer Vision, Amsterdam, the Netherlands, pp. 749-765, 2016.

[13] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. S.
Torr, “Fully-convolutional Siamese networks for object tracking,”
European Conference on Computer Vision, Amsterdam, the
Netherlands, pp. 850-865, 2016.

[14] R. Tao, E. Gavves, and A. W. M. Smeulders, “Siamese instance
search for tracking,” IEEE Conference on Computer Vision and
Pattern Recognition, Las Vegas, USA, pp. 1420-1429, 2016.

[15] E. Park and A. C. Berg, “Meta-tracker: Fast and robust online
adaptation for visual object trackers.” European Conference on
Computer Vision, Munich, Germany, pp. 587-604, 2018.

[16] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” International Conference on
Machine Learning, Sydney, Australia, pp. 1126-1135, 2017.

[17] A. Nichol and J. Schulman, “Reptile: A scalable meta learning
algorithm,” arXiv:1803.02999, 2018.

[18] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman,
“Building machines that learn and think like people,” Behavioral
and Brain Sciences, Vol. 40, pp. 1-72, 2017.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” International Conference on Learning
Representations, San Diego, USA, 2015.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and F.-F. Li,
“ImageNet: A large-scale hierarchical image database,” IEEE
Conference on Computer Vision and Pattern Recognition, Miami,
USA, pp. 248-255, 2009.

[21] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Čehovin, G.
Fernández, T. Vojír, G. Häger, et al., “The visual object tracking
VOT2015 challenge results,” IEEE Conference on Computer
Vision Workshop, Santiago, Chile, pp. 564-586, 2015.

[22] Y. Song, C. Ma, L. Gong, J. Zhang, R. W.H. Lau, M.-H. Yang,
“CREST: Convolutional residual learning for visual tracking,”
IEEE Conference on Computer Vision, Venice, Italy, pp.
2574-2583, 2017.

[23] H. Fan and H. Ling, “Parallel tracking and verifying: A framework
for real-time and high accuracy visual tracking,” IEEE Conference
on Computer Vision, Venice, Italy, pp. 5487-5495, 2017.

[24] Experimental results of single-domain Reptile meta-tracking:
https://www.youtube.com/watch?v=q1JWHTwNUI8

Chi-Yi Tsai received the B.S. and M.S. degree in
electrical engineering from National Yunlin
University of Science and Technology, Yunlin,
Taiwan, in 2000 and 2002, respectively, and the
Ph.D. degree in electrical and control engineering
from National Chiao Tung University, Hsinchu,
Taiwan, in 2008.

In 2010, he joined the Department of Electrical
Engineering, TamKang University, New Taipei
City, Taiwan, where he is currently a Professor. His

research interests include image processing, color image enhancement
processing, visual tracking, visual servoing, deep learning and computer
vision.

Shang-Jhih Jhang received the B.S. and M.S. degree in electrical
engineering from Tamkang University, New Taipei City, Taiwan, in 2015
and 2018, respectively. In 2018, he joined the Mindtronic AI, Taipei,
Taiwan, where he is currently a computer vision engineer responsible for
developing driver monitoring system. His research interests include deep
learning and computer vision.

XXX-X-XXXX-XXXX-X/XX/$XX.00 © 20XX IEEE

Mobile Spherical Robot Design

Chin-Cheng Liu

Department of Electrical and

Computer Engineering

Tamkang University

New Taipei City, Taiwan

136382@mail.tku.edu.tw

Cheng-En Tsai

Department of Electrical and

Computer Engineering

Tamkang University

New Taipei City, Taiwan

hanknot83@gmail.com

Wei-Fan Lai

Department of Electrical and

Computer Engineering

Tamkang University

New Taipei City, Taiwan

a13572468u@gmail.com

Yang-Han Lee

Department of Electrical and

Computer Engineering

Tamkang University

New Taipei City, Taiwan

yhleepp@gmail.com

Ching-Chang Wong*

Department of Electrical and Computer

Engineering

Tamkang University

New Taipei City, Taiwan

wong@ee.tku.edu.tw

Chia-Hao Hsu

Green Energy & Environmental

Laboratories

Industrial Technology Research Institute

Chutung, Hsinchu, Taiwan

haohaohsu@itri.org.tw

Yang-Guang Liu

Green Energy & Environmental

Laboratories

Industrial Technology Research Institute

Chutung, Hsinchu, Taiwan

ygliu@itri.org.tw

Abstract—In this paper, a simulation system of a spherical

robot is designed and implemented. The Gazebo, a physics

simulation engine of Robot Operating System (ROS), is used to

implement the simulation system to simulate and analyze the

spherical robot. The spherical robot can move freely on the field.

The outside of the spherical robot is a hollow spherical shell.

There is a two-wheeled car driven by motors on the inside of the

spherical robot. When the motor of the two-wheeled car rotates,

the driving wheels drive the two-wheeled car. Then the spherical

robot changes the posture in the hollow spherical shell to change

the center of gravity of the spherical robot so that the spherical

robot moves on the field. Then, the spherical robot is used as a

carrier. A fan is mounted above the sphere and the spherical

robot still can move on the field. After installing the fan device

above the spherical robot, some results show that the

implemented motion controller and balance controller are

effective.

Keywords—Spherical Robot, Physics Simulation Engine, Fuzzy

System, Motion Control, Balance Control

I. INTRODUCTION

In 1996, Halme et al. [1] proposed a mobile robot ball, a
spherical surface omni-directional mobile robot driven by an
inside drive unit, and analyzed the uphill movement and
obstacles crossing. Bicchi et al. [2] designed a two-wheeler
into a hollow ball and described its kinematics, dynamics, and
motion planning. The device is an unrestricted spherical
vehicle that automatically rolls on the floor and can be moved
anywhere in the environment. Bhattacharya and Agrawal [3]
designed a spherical robot based on the principle of
conservation of angular momentum, placing two motors
vertically inside, and using the angular momentum generated
by the high-speed rotation of the motor to move the robot in
the opposite direction. Mukherjee et al. [4] proposed a
spherical robot and used the center of gravity displacement to
move the robot. The telescopic limbs and cameras are added to
the sphere to facilitate unmanned missions such as battlefield
reconnaissance and environmental detection. Javadi and

Mojabi [5] proposed a new prototype of an omnidirectional
robot system and analytical studied this spherical rolling robot.
Sun et al. [6] proposed a double-driven moving sphere robot by
changing its center of gravity and orthogonal crossing
mechanism. Xiao et al. [7] designed a type of spherical mobile
robot to serve as a platform for carrying sensing devices or
actuators in environments where demanding conditions and
stability of mechanical platforms are critical. The moving
sphere robot BHQ-1 was designed by Zhan et al. [8] and the
prototype BHQ-1 robot was designed to improve the structure
of the BHQ-1G spherical mobile robot. Zhan et al. [9]
developed a spherical mobile robot BHQ-1 for environmental
detection. The spherical mobile robot has a radius of 200mm
and has a camera and an infrared sensor mounted on one side
of the robot spindle. Liu et al. [10] designed an
environmentally-detected spherical mobile robot BHQ-2 with
two cameras, which is a non-holonomic constraint system.
Based on the spin theory, the velocity Jacobian matrix of the
spherical mobile robot is derived. Q-Taro ball-type robot
developed by SONY [11] and the test machine exhibited in
2002. It has dozens of sensors and basic single-word speech
recognition that can be moved away from obstacles, interact
with the user, or automatically return to the base. GroundBot
mobile monitoring ball robots developed by Rotundus [12].
The ball has a height of 60cm, a width of 80cm and a weight of
25kg. It can work in -30°C~40°C environment such as snow,
sand, mud, and other roads.

This paper intends to develop a simulation system specially
designed for a spherical robot with Gazebo, a physics
simulation engine of Robot Operating System (ROS) [13]. In
the future, virtual scene testing of the venue or workplace can
be linked to the robot-related technologies to verify and
confirm some functions of the spherical robot. The rest of the
paper is organized as follows: Design of the mobile spherical
robot is described in Section II. Motion control of the spherical
robot is described in Section III. Some straight-line simulation
results are presented in Section IV. Two-dimensional balance
control of the spherical robot is described in Section V. Some

Bureau of Energy, Ministry of Economic Affairs of the Republic of China

Wong et. al.
Autonomous Navigation of an Indoor Mecanum-Wheeled Omnidirectional Robot Using SegNet

36

two-dimensional simulation results are presented in Section VI.
Finally, some conclusions are made in Section VII.

II. DESIGN OF MOBILE SPHERICAL ROBOT

In the design of the spherical robot, it mainly referenced to
two related products: (1) Sphero SPRK plus [14] and (2)
Sphero Star War BB-9E [15]. The entity of Sphero SPRK plus
is shown in Fig. 1, where a two-wheeled car is in the inside of
the robot ball and a metal object is placed at the bottom of the
two-wheeled car. The object lowers the center of gravity of the
moving sphere. The center of gravity needs to be kept as low as
possible to improve the stability of movement. The entity of
Sphero SPRK plus is shown in Fig. 2, where the upper object is
fixed above the robot with magnetic force and two small
contact rollers are arranged on the contact surface to facilitate
the movement on the spherical surface.

Design of bottom

weighted metal block

(a) (b)

Fig. 1. Entity of Sphero SPRK plus [14].

Magnetic

Adsorption

(a)

Design of small roller

convenient in spherical

surface movement.

(b)

Fig. 2. Entity of Sphero Star War BB-9E [15].

The mathematical model of the spherical robot is obtained
from the two-wheeled car and the schematic diagram of the
two-wheeled car is shown in Fig. 3, where L is the distance
between the wheel and center of the two-wheeled car and α is
the angle between the direction of the spherical robot and the
field coordinates. When the forward speeds of the two wheels

are equal, the spherical robot will roll forward. When forward
speeds of the two wheels are not equal, the spherical robot will
change its rolling direction. In this paper, a fuzzy controller is
proposed to control the spherical robot to achieve the desired
motion trajectory.

Fig. 3. Schematic diagram of the two-wheeled car.

The moving speed and the angular velocity of the two-
wheeled car can be respectively described as

 2 2
x yv v v   

and

    

Its double wheels conversion matrix can be described as

 1

1

L

R

v L v

v L 

     
     
    

 

In the straight-line simulation experiment, the bottom of the
two-wheeled car is provided with an object, which lowers the
center of gravity of the moving sphere. When the two-wheeled
car moving inside the spherical shell, the center of gravity of
the spherical robot is changed and the spherical robot moves.
The diameter and weight of the sphere are 40 cm and 0.5 kg,
respectively. The weight of the body of the two-wheeled car
inside the sphere is 1 kg. In order to make the sphere move
more easily, an additional object of 4 kg is added under the
main body of the two-wheeled car to lower the center of
gravity of the entire sphere. Simulation of a straight-line
moving sphere is shown in Fig. 4. Detailed specifications of
the two-wheeled car, spherical shell, and wheel are listed in
Table I, Table II, and Table III, respectively.

Fig. 4. Simulation of spherical robot.

iRobotics
Vol. 2, No. 2, June, 2019

37

TABLE I. SPECIFICATIONS OF TWO-WHEELED CAR

Description Value

Length (cm) 22.5

Width (cm) 20

Height (cm) 32.1

Body weight (kg) 1

Attachment height (cm) 2.5

Attachment weight (kg) 4

TABLE II. SPECIFICATIONS OF SPHERICAL SHELL

Description Value

Diameter (cm) 40

Thickness (cm) 0.8

Weight (kg) 0.5

TABLE III. SPECIFICATIONS OF WHEEL

Description Value

Diameter (cm) 20

Thickness (cm) 2.5

Weight (kg) 0.2

Distance between two wheels (cm) 20

III. MOTION CONTROL OF SPHERICAL ROBOT

An straight-line moving simulation of the spherical robot is
designed and described in Fig. 5. There is a motor-driven two-
wheeled car inside and it can move freely on the field. When
two motors drive the two-wheeled car to move inside the
hollow spherical shell, the center of gravity of the spherical
robot is shifted at the same time so that the spherical robot
rotates and moves on the field. Its system diagram is described
in Fig. 6. The trajectory planning, motion control, and
simulation are respectively described as follows:

Fig. 5. Straight-line moving simulation of the spherical robot.

Trajectory Planning

Motion Controller

Motion Equation Spherical Robot

Gazebo

–

+

ROS

e


b

yv

,L Rv v

Fig. 6. System diagram of straight-line moving simulation of the spherical

robot.

A. Trajectory Planning

The spherical robot is set to go forward from left to right,
that is, the moving target direction θ of the spherical robot is 0,
the forward speed vx is a constant and the side moving speed vy
is 0.

B. Motion Controller

The fuzzy theory is used to design the motion controller.
This controller is to calculate the compensation amount of the
side movement speed based on the front angle when the sphere
robot moves so that the robot can maintain the forward
direction in the desired trajectory. The motion controller is a
single-input-and-single-output system, where the input variable

e is the difference between the moving target direction  of

the robot and the actual forward direction
b , and the output

variable
yv is the compensation speed of the lateral

movement direction of the robot. The input variable e is can

be described as


be     

The ranges of the input variable e and the output variable
yv

are defined respectively as

 [90,90]e    

 [3,3]yv    

The following term sets are used to describe the fuzzy sets of
each input and output fuzzy variables:


1 2 3() {P,Z,N} { , , }T e A A A    


1 2 3() {P,Z,N} { , , }yT v B B B    

where the following linguistic terms (Positive (P), Zero (Z),
and negative (N)) are considered to describe the input and
output variables of the fuzzy system. In the definition of the
fuzzy set, as shown in Fig. 7, the fuzzy set of input variables

e are described by the triangle membership function and the

trapezoidal membership function, where ()Ai
e represents the

attribution of the input variable. On the definition of the fuzzy

set of output variables
yv , as shown in Fig. 8, the singleton

membership functions are used to describe the fuzzy set, where

()B yi
v  is its degree of attribution.

e

()Ai
e

Z

2
A3A 1A

N P

−30 300

Fig. 7. Membership functions of input variable e .

Wong et. al.
Autonomous Navigation of an Indoor Mecanum-Wheeled Omnidirectional Robot Using SegNet

38

−3 0 3

()B yi
v 

PZN

3B 2B 1B

yv

Fig. 8. Membership functions of Output variable
yv .

The proposed rule bases for the motion controller are
described in Table IV. The proposed fuzzy rules of motion
controller can be described as follows:

Rule
1()iR j ：

 If e is
1j

A THEN
yv is

2j
B  

where
1

()jA T e ,
2

()j yB T v  ,
1j {1,2,3} and

2j {1,2,3}.

TABLE IV. FUZZY RULE BASE OF MOTION CONTROLLER

e

N Z P

yv N(
3B) Z(

2B) P(
1B)

Based on the weighted average defuzzifier,
yv is taken as

the output of this fuzzy control system, so the output of the
motion controller can be expressed as



3 3

1 2 2
1 1

3 3

1
1 1

() () () ()

() ()

j A ji
i i

y

Ai
i i

w j c B e c B

v

w j e









 

 

 

  

 

 

 

where
1()w j is the appropriate degree to which the

1()iR j rule

is touched, and
2

()jc B is the crisp value represented by the

singleton membership function.

C. Simulation Environment

In the simulation environment, a physics engine simulator
Gazebo is used to build related virtual scenes. Gazebo is an
open-source 3D robotics simulator. The structural parts of the
designed spherical robot can be imported into Gazebo to build
a virtual robot. Gazebo can be used to control the robot motion
and verify the algorithm by the simulation results. One
environment for the designed spherical robot is shown in Fig. 9.

Fig. 9. One simulation environment for the designed spherical robot.

IV. STRAIGHT-LINE SIMULATIONS OF MOTION CONTROL

In order to effectively test the effect of the motion
controller, the simulator Gazebo is used to build an
experimental field to compare the control results without and
with the motion controller. As shown in Fig. 9, the leftmost
position and the rightmost position in the experimental field are
the initial position and the end position of the spherical robot,
respectively. When the simulation starts, the spherical robot
rolls in a straight line to the right side of the experimental field
until it rolls to the far right of the experimental field. The
movement trajectory is the center horizontal line of the site.

Some simulation results of the moving process of the
spherical robot without the motion controller are shown in Fig.
10 and the trajectory errors are shown in Fig. 11. The initial
position of the spherical robot is at the center of the leftmost
position of the field. At the starting time, the error is 0. When
the spherical robot rolls to the right side, an error occurs. The
spherical robot gradually moves away from the straight
trajectory of the center horizontal line and the trajectory error
gradually becomes larger.

(a)

(b)

(c)

(d)

Fig. 10. Simulation results of the moving process of the robot without the

motion controller (Depart from the center of the far left of the field).

0 2 4 6 8 10 12 14 16
sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

m

Fig. 11. Trajectory error without the motion controller (Depart from the

center of the far left of the field).

iRobotics
Vol. 2, No. 2, June, 2019

39

In Fig. 12, the initial position of the spherical robot is at
0.5m above the center of the leftmost position of the field, so
there is an initial error. When the spherical robot is in the
rolling, the error gradually becomes larger, making the
spherical robot more offset from the linear line of the center
horizontal line. These trajectory errors are shown in Fig. 13.

(a)

(b)

(c)

(d)

Fig. 12. Simulation results of the moving process of the robot without the

motion controller (Depart from the top 0.5m of the center of the leftmost
position of the field).

0 2 4 6 8 10 12 14 16
sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

m

Fig. 13. Trajectory error without the motion controller (Depart from the top

0.5m of the center of the leftmost position of the field)

Another moving process of the spherical robot with the
motion controller is described in Fig. 14. The initial position of
the spherical robot is at the center of the leftmost position of
the field. At the starting time, the error is 0. When the spherical
robot rolls to the right side, an error occurs. The spherical robot
is kept near the straight trajectory of the center horizontal line
and the trajectory error is kept within a certain range. These
trajectory errors are shown in Fig. 15.

In Fig. 16, the initial position of the spherical robot is at 0.5
above the center of the leftmost position of the field, so there is
an initial error. The motion controller performs the control
compensation and the spherical robot still moves near the
straight track close to the center horizontal line. These
trajectory error are shown in Fig. 17.

(a)

(b)

(c)

(d)

Fig. 14. Simulation results of the moving process of the robot with the motion

controller (Depart from the center of the far left of the field).

0 2 4 6 8 10 12 14 16
sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

m

Fig. 15. Trajectory error with motion controller (Depart from the center of the

far left of the field).

(a)

(b)

(c)

(d)

Fig. 16. Simulation results of the moving process of the robot with motion

controller (Depart from the top 0.5m of the center of the leftmost
position of the field).

Wong et. al.
Autonomous Navigation of an Indoor Mecanum-Wheeled Omnidirectional Robot Using SegNet

40

0 2 4 6 8 10 12 14 16
sec

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

m

Fig. 17. Trajectory error with motion controller (Depart from the top 0.5 of

the center of the leftmost position of the field).

The spherical robot rolls by the center of gravity offset.
When the spherical robot is rolling, the direction error of
traveling is likely to occur at this time. The two-wheeled car
inside the robot continues to have errors in the direction of
travel and the error will continue to expand. The experimental
results represent the proposed motion controller can effectively
control the spherical robot and let the trajectory error within a
certain range.

V. TWO-DIMENSIONAL SIMULATION OF MOTION CONTROL OF

SPHERICAL ROBOT

In the two-dimensional simulation, a fan is fixed above the
vertical axis of the center of the spherical robot, and the
distance is from the vertical axis of the center of the two-
wheeled car to the distance between the spherical shells. The
size of the fan has no effect on the simulation. The main effect
is the weight of the fan. The weight of the fan mechanism,
circuit and battery needs to be concentrated on the bottom of
the fan. It is assumed that the fan can be completely adsorbed
on the spherical robot by the magnetic force and the relative
position of the fan and the spherical robot is fixed. This
problem does not calculate the problem of magnetic attraction,
but in the future, the magnetic force problem needs to be
considered in the actual production. The two-dimensional
simulation of the spherical robot is shown in Fig. 18 and the
detailed specifications of the fan are shown in Table V. The
system diagram of the two-dimensional simulation of the
spherical robot is shown in Fig. 19. A balance controller is
added in this system diagram and described as follows:.

18cm

18cm

20cm

20cm
40cm

0.8kg

1kg

4kg

7.62cm

5cm

Fig. 18. Two-dimensional simulations of the spherical robot.

TABLE V. DETAILED SPECIFICATIONS OF FAN

Description Value

Length (cm) 18

Width (cm) 7.62

Height (cm) 18

Weight (kg) 0.5

Trajectory Planning

Motion Controller

Motion Equation Spherical Robot

Gazebo

–

+

ROS

e


b

yv

,L Rv v

Balance Controller

xv

–
+

e
b



Fig. 19. System diagram of two-dimensional simulation of the spherical robot.

The fuzzy theory is used to design the balance controller.
When the spherical robot moves, this controller observes the
fan tilt angle and determines a compensation amount for the
forward movement acceleration and deceleration so that the fan
is maintained above the robot. The balance controller is a
single-input-and-single-output system, where the input variable

e is the difference between the moving target direction  of

the robot and the actual forward direction
b , and the output

variable
xv is the compensation speed of the lateral

movement direction of the robot. The input variable e is can

be described as


be     

The ranges of the input variable e and the output variable
xv

are defined respectively as

 [180,180]e    

 [1,1]xv    

The following term sets are used to describe the fuzzy sets of
each input and output fuzzy variables:


1 2 3() { ,M,L} { , , }T e S C C C    


1 2 3() {P,Z,N} { , , }xT v D D D    

where the linguistic terms (Small (S), Middle (M), and Large
(L)) and (Positive (P), Zero (Z), and Negative (N)) are

iRobotics
Vol. 2, No. 2, June, 2019

41

considered to describe the input and output variables of the
fuzzy system. As shown in Fig. 20, the triangle membership
function and the trapezoidal membership function are used to

describe the fuzzy sets of the input variable e . On the

definition of the fuzzy set of the output variables
xv , as

shown in Fig. 21, the singleton membership functions are used
to describe the fuzzy set.

e

()Ci
e

M

2C3C 1C
L S

-50 0-25

Fig. 20. Membership functions of input variable e
.

-1 0 1

()D xi
v 

PZN

3D 2D 1D

xv

Fig. 21. Membership functions of output variable
xv .

The proposed rule base for the motion controller is
described in Table VI. The proposed fuzzy rules of the motion
controller can be described as follows:

Rule
3()iR j ：

 If e is
3j

C THEN
xv is

4j
D  

where
3

()j pC T e ,
4

()j xD T v  ,
3j {1, 2, 3} and

4j {1, 2,

3}.

TABLE VI. FUZZY RULE BASE OF BALANCE CONTROLLER

e

N Z P

xv N(
3D) Z(

2D) P(
1D)

Based on the weighted average defuzzifier,
xv is taken as

the output of this fuzzy control system, so the output of the
balance controller can be expressed as follows:



3 3

3 4 4
1 1

3 3

3
1 1

() () () ()

() ()

j C ji
i i

x

Ci
i i

w j c D e c D

v

w j e









 

 

 

  

 

 

 

where
3()w j is the appropriate degree to which the

3()iR j rule

is touched, and
4

()jc D is the crisp value represented by the

singleton membership function.

VI. TWO-DIMENSIONAL SIMULATIONS OF BALANCE CONTROL

When the spherical robot follows a curved trajectory in a
two-dimensional space, some simulation results of the balance
controller are shown in Fig. 22. It illustrates the spherical robot
can actually follow the desired curved trajectory. The tilt angle
of the fan can be kept within a certain range. The trajectory
error of the robot and the tilt angle of the fan are respectively
shown in Fig. 23 and Fig. 24. These results show that the
designed motion controller can effectively control the motion
of the spherical robot and limit the trajectory error within a
certain range. However, after adding the fan in the top of the
spherical robot, the weight of the fan tilts the spherical robot
backwards, increasing the difficulty of balancing for the
spherical robot. But the balance controller can limit the tilt
angle of the fan within a certain range.

(a)

(b)

(c)

(d)

Fig. 22. Simulation results of the two-dimensional moving process of the

spherical robot with the motion controller and balance control.

Wong et. al.
Autonomous Navigation of an Indoor Mecanum-Wheeled Omnidirectional Robot Using SegNet

42

0 10 20 30 40 50 60 70 80
sec

-0.1

-0.05

0

0.05

0.1
m

Fig. 23. Moving trajectory errors of the spherical robot follows a curved

trajectory in a two-dimensional space.

0 10 20 30 40 50 60 70 80
sec

-80

-60

-40

-20

0

20

40

60

80

de
g

Fig. 24. Fan tilt angle of spherical robot when it follows a curved trajectory in

a two-dimensional space.

VII. CONCLUSION

In this paper, a simulation system of a spherical robot is
designed and implemented. A 3D physics engine simulator
Gazebo is used to build a simulation environment and a
spherical robot is designed in the Gazebo to test the designed
functions. Through the simulation environment, the situation of
the viewing motion mode can be presented. Before the
completion of the spherical robot, the simulation environment
can be used to verify the posture control and movement of the
spherical robot. First, the spherical robot model and its related
parameter are established. Then, a motion controller and a
balance controller based on the fuzzy theory are designed for
the spherical robot. Some simulation results are presented to

illustrate the efficiency of the proposed method. We can see
that the dedicated simulation environment makes the
development of the control strategy for the spherical robot is
quite convenient.

ACKNOWLEDGMENT

This research was supported in part by the Bureau of
Energy, Ministry of Economic Affairs of the Republic of China.

REFERENCES

[1] A. Halme, T. Schonberg, and Y. Wang, “Motion control of a spherical
mobile robot,” in Proc 4th IEEE International Workshop on Advanced
Motion Control AMC' 96, Japan, 1996, pp. 100-106.

[2] A. Bicchi, A. Balluch, D. Prattichizzo, and A. Gorelli, “Introducing the
“SPHERICLE”: An experimental testbed for research and teaching in
nonholonomy,” in Proc 1997 IEEE Int. Conf. on Robotics and
Automation, Albuquerque, New Mexico, 1995, pp. 2620-2625.

[3] S. Bhattacharya and S. K. Agrawal, “Design, experiments and motion
planning of a spherical rolling robot,” in Proc 2000 IEEE International
Conference on Robotics & Automation, San Francisco, 2000, pp. 1207-
1212.

[4] R. Mukherjee, M. A. Minor, and J. T. Pukrushpan, “Simple motion
planning strategies for Spherobot: a spherical mobile robot,” in Proc.
IEEE Int. Conference on Decision and Control, Phoenix, 1999, pp.
2132-2 137.

[5] A. H. Javadi and P. Mojabi, “Introducing august: A novel strategy for an
omnidirectional spherical rolling robot” in Proc. IEEE Int. Conference
on Robotics and Automation, 2002, pp. 3527 - 3533.

[6] H. Sun, A. Xiao, Q. Jia, and L. Wang, “Omnidirectional kinematics
analysis on bi-driver spherical robot,” Journal of Beijing University of
Aeronautics and Astronautics, vol. 31, pp. 736 -739, 2005.

[7] A. Xiao, H. Sun, and Q. Liao, “The design and analysis of a kind of
spherical mobile robot,” Development & Innovation of Machinery &
Electrical Products, vol. 17, pp. 14-16, 2004.

[8] Q. Zhan, C. Jia, X. Ma, and M. Chen, “Analysis of moving capability of
a spherical mobile robot,” Journal of Beijing University of Aeronautics
and Astronautics, vol. 31, pp. 744 -747, 2005.

[9] Q. Zhan, T. Zhou, M. Chen, and S. Cai, “Dynamic trajectory planning of
a spherical mobile robot” in Proc IEEE International Conferences on
Robotics, Automation & Mechantronics (RAM 2006), Bangkok, 2006,
pp. 714-719.

[10] Z. Liu, Q. Zhan, and Y. Cai, “Motion control a spherical mobile robot
for environment exploration,” ACTA Aeronautica et Astronautica Sinca,
vol. 29, pp. 1673-1679, 2008.

[11] Website of Sony Q-Taro: http://www.sonyaibo.net/aboutqtaro.htm.

[12] Website of Rotundus: http://www.rotundus.se/.

[13] URL “ROS.org | Powering the world’s robots.”: http://www.ros.org.

[14] Website of of Sphero SPRK plus: https://www.sphero.com/sphero-sprk-
plus

[15] Website of Sphero Star War BB-9E: https://www.sphero.com/bb-9e-
app-enabled-droid

iRobotics
Vol. 2, No. 2, June, 2019

43

Wong et. al.
Autonomous Navigation of an Indoor Mecanum-Wheeled Omnidirectional Robot Using SegNet

44

Information for Authors
Aim and Scope

The iRobotics is an official journal of Robotics Society of Taiwan (RST) and is published quarterly. The iRobotics will consider high
quality papers that deal with the theory, design, and application of intelligent robotic system, intelligent artificial system, and extension
theory systems ranging from hardware to software. Survey and expository submissions are also welcome. Submission of a manuscript
should indicate that it has been neither published, nor copyrighted, submitted, accepted for publication elsewhere (except that the short
version may have been presented at the conferences). Submitted manuscripts must be typewritten in English and as concise as possible.
Process for Submission of a Manuscript

The iRobotics publishes two types of articles: regular papers and technical notes. All contributions are handled in the same procedure,
where each submission is reviewed by an associate editor who makes an initial decision to send the manuscript out for peer review or to
reject without external review. Articles can be rejected at this stage for a variety of reasons, such as lack of novelty, topics outside the scope
of the Journal, flaws in the scientific validity, or unprofessional presentation. We are therefore not normally able to provide authors with
feedback on rejected manuscripts. If the associate editor believes the article may be of interest to our readers, it is then sent out for external
peer review by at least two external reviewers. According the recommendation of the associate editor, the Editor-in-Chief makes the final
decision. All manuscripts should be submitted electronically in Portable Document Format (PDF) through the manuscript submission
system at [http://www.rst.org.tw]. The corresponding author will be responsible for making page proof and signing off for printing on
behalf of other co-authors. Upon acceptance of a paper, authors will be requested to supply their biographies (100 to 200 words) and two
copies of the final version of their manuscript (in DOC format and in PDF format).
Style for Manuscript

Papers should be arranged in the following order of presentation:
1) First page must contain: a) Title of Paper (without Symbols), b) Author(s) and affiliation(s), c) Abstract (not exceeding 150 words for

Papers or 75 words for Technical Note, and without equations, references, or footnotes), d) 4-6 suggested keywords, e) Complete
mailing address, email address, and if available, facsimile (fax) number of each author, f) Preferred address for correspondence and
return of proofs, and g) Footnotes (if desired).

2) The text: Submitted manuscripts must be typewritten double-spaced. All submitted manuscripts should be as concise as possible.
Regular papers are normally limited to 26 double-spaced, typed pages, and technical notes are 12 double-spaced, typed pages. Please
see the Page charge for those who want to submit long papers.

3) Acknowledgements of financial or other support (if any).
4) References: References should be numbered and appear in a separate bibliography at the end of the paper. Use numerals in square

brackets to cite references, e.g., [15]. References should be complete and in the style as follows.
[1] C. C. Lee, "Fuzzy logic in control systems: Fuzzy logic controller - Part I," IEEE Trans. Syst. Man Cybern., vol. 20, no. 2, pp.

404-418, 1990.
[2] C. Golaszewski and P. Ramadge, "Control of discrete event processes with forced events," in Proc. of 26th IEEE Conf. Decision and

Control, Los Angeles, CA, pp. 247-251, Dec. 1987.
[3] P. E. Wellstead and M. B. Zarrop, Self-Tuning Systems, New York: Wiley, 1991.
[4] Project Rezero, available at http://rezero.ethz.ch/project_en.html (last visited: 2017-07).

5) Tables
6) Captions of figures (on separate sheet of paper)
Style for Illustrations
1) It is in the author's interest to submit professional quality illustrations. Drafting or art service cannot be provided by the Publisher.
2) Original drawings should be in black ink on white background. Maximum size is restricted to 17.4 by 24.7 cm. Glossy prints of

illustrations are also acceptable.
3) All lettering should be large enough to permit legible reduction of the figure to column width, sometimes as small as one quarter of the

original size. Typed lettering is usually not acceptable on figures.
4) Provide a separate sheet listing all figure captions, in proper style for the typesetter, e.g., "Fig. 5. The error for the proposed controller."
5) Illustrations should not be sent until requested, but authors should be ready to submit these immediately upon acceptance for publication.
Page Charges

After a manuscript has been accepted for publication, the author's company or institution will be approached with a request to pay a
page charge to cover part of the cost of publication. The charges include:
1) NT$ 5000 for the 10 printed pages of a full paper or for the 6 printed pages of a short paper, and the excess page charge of NT$ 1500

per extra printed page for both full and short papers.
2) For color figures or tables, an additional cost will be charged. The cost, depending on the number of color figures/tables and the final

editing result, will be given upon the acceptance of this paper for publication.
Copyright

It is the policy of the RST to own the copyright of the technical contributions. It publishes on behalf of the interests of the RST, its
authors, and their employers, and to facilitate the appropriate reuse of this material by others. Authors are required to sign a RST Copyright
Form before publication.
Manuscripts (in PDF Format) Submission Website: http://www.rst.org.tw
Editor-in-Chief: Prof. Ching-Chih Tsai, Department of Electrical Engineering, National Chung Hsing University, Taiwan

 Email: cctsai@nchu.edu.tw
 Prof. Tzuu-Hseng S. Li, Department of Electrical Engineering, National Cheng Kung University, Taiwan
 Email: thsli@mail.ncku.edu.tw

Managing Editor: Dr. Feng-Chun Tai, Department of Electrical Engineering, National Chung Hsing University, Taiwan
Email: fctai@nchu.edu.tw

iRobotics

VOLUME 2, NUMBER 2 JUNE, 2019

CONTENTS

REGULAR PAPERS

Lane Detection Approaches: RANSAC and Deep Convolutional Image
Segmentation
Asheber Techane Wagshum, Anjana Kumar, Yu-Cheng Kuo and Chung-Hsien Kuo

1

Autonomous Navigation of an Indoor Mecanum-Wheeled Omnidirectional Robot
Using SegNet
Po-An Wei, Ching-Chih Tsai, and Feng-Chun Tai

10

Self-Piloting of an Indoor Quadrotor Using Deep Reinforcement Learning
Hsiu-Chen Tsai and Ching-Chih Tsai 19

Single-Domain Reptile Meta-Tracking
Chi-Yi Tsai and Shang-Jhih Jhang 26

Mobile Spherical Robot Design
Chin-Cheng Liu, Cheng-En Tsai, Wei-Fan Lai, Yang-Han Lee, Ching-Chang Wong, Chia-
Hao Hsu, and Yang-Guang Liu

36

TECHNICAL NOTE

iR
o

b
o

tics
Volum

e 2, N
um

ber 2, JU
N

E, 2019

	[01] Cover_Front
	投影片編號 1

	[02] Inner_Front
	[03] Paper1
	I. INTRODUCTION
	II. Related Work
	III. Method I: RANSAC
	IV. Method II: Image Segmentation
	V. Conclusion and Future Works
	References

	[04] Paper2
	I. Introduction
	II. System Description of the Experimental MWOR
	III. FastSLAM 2.0
	IV. Global Path Planning
	V. Environment Recognition and Obstale Avoidance Using Dynamic Window Approach and Segnet
	VI. Experimental Results and Discussion
	VII. Conclusions and Future Work
	References

	[05] Paper3
	I. Introduction
	II. System Structure and Description of Autonomous Indoor Quadrotor
	III. Improved DQN Controller
	IV. Simulations and Discussion
	V. Experimnetal Results and Discussion
	VI. Conclusions and Future Work
	References

	[06] Paper4
	[07] Paper5
	空白頁面

	[09] Inner_Rear
	[10] Cover_Rear
	投影片編號 2

