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Abstract—Development of end-to-end advanced driver 
assistance system (ADAS) becomes handy with current 
paradigm shift in computer vision and deep learning based 
image processing. Such advanced system can provide a safety 
precaution for drivers during driving. Lane detection is a key 
aspect of developing driving safety system. In this paper, two 
approaches including random sample consensus (RANSAC) and 
deep convolutional image segmentation were discussed. The 
RANSAC approach used the video streams collected from 
PAPAGO GoSafe 530G camera to detect the lane appearing on 
the front scene of the vehicle on highway. In addition, a deep 
learning based semantic segmentation architecture called SegNet 
was used for land detection based on the benchmark CamVid 
dataset. The SegNet model was trained for 11 classes. On 
validation, it was found that the mean intersection over union 
(mIOU) is around 60.1 and the global average of the model is 
90.40. 

Index Terms—lane detection, random sample consensus, deep 
convolutional neural network, image segmentation. 

I. INTRODUCTION 
HE current, advance in driver assist system (DAS)  has 
significantly improved the vehicle safety records [1]. 

Many scholars have been researching the development of 
driver assistance system [2] in quest for new algorithms which 
can have the better understanding of the road scene. 
According to a survey, 59% of all road accidents were caused 
by lane departure  [3]. Hence, in an efficient DAS system 
detecting the road lanes accurately is one sought requisite. 
This research aims at developing lane detection system to 
improve the traffic safety and avoid accidents due to human 
error. Moreover, a camera is used in vision-based systems [4] 
as sensing device due to its comparatively low cost than radar 
or laser technology and relatively well developed base 
knowledge on computer vision algorithms. 

Fast growing prospect of self-deriving cars, regardless of 
philosophical question on safety issues surrounding it, has 
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introduced advanced deriving technologies. On the other hand, 
the race in development of autonomous vehicle(AV) is 
showing remarkable results [5]. Nevertheless, the effort to 
make human-controlled driving safe has continued and its 
showing promising results. The juncture, sometimes with 
overlapping results, of these three line of researches is a 
promise for emergency of new technologies in driving 
experience. 

Usually, highways and freeway roads will have well 
marked multiple numbers of lanes. It’s through this line that 
drivers sharing common road communicate for safe drive. It is 
obvious that the car needs to move either within a lane or 
change its track to another lane. Lanes are the curvature and 
boundaries of every road segment. Each lane is considered as 
the reference line [6] for driver assistant vehicle to maintain 
the driving path and safe distance from other vehicles. Hence, 
it is essential to detect the lane quickly and more accurately. 
Additional lane information under different lightning 
environment is required to make the rapid decision and 
necessary action. 

Computer vision is essentially integrating itself into our 
daily life such as object recognition, healthcare automation, 
robotics control, autonomous vehicle and driver assist system 
[7]. Computer vision system is used to capture the road scene 
images from the front view camera and recognize objects in 
scene and other important road information such as road signs 
and markings [8]. Under the structured road condition, it is 
assumed that the road is flat and lanes are in parallel with each 
other. Furthermore, same interval is maintained by the lanes. 
The major problem in lane detection is the lanes are 
intermittent and insufficient for detection. As a result, no lanes 
are detected which is a very serious challenge in driver 
assistant system. Therefore, region of interest (ROI) 
estimation, and a deep learning based lane detection 
mechanism are proposed in this paper. 

Deep learning is specific form of machine learning which 
learn data representation without explicitly dictated features 
[9]. Deep learning uses several hidden layers and neurons as 
compared to traditional neural network [10]. Essentially deep 
learning is extracting features of dataset it introduced to such 
that it able to classify or predict information embed in the data. 
Various deep learning methods such as deep neural networks, 
convolutional neural network (CNN), deep recurrent 
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networks (RNN), etc. have been proposed which can be 
applied in computer vision, image recognition, and driver 
assistant system. CNN [11] model can effectively be used in 
lane detection. Hence, a CNN model is used in our proposed 
work, to detect the lane segments from the road image taken 
by the camera present in the car. 

The rest of the paper is organized as follows. Existing 
works on lane detection, computer vision, and deep learning 
are discussed in section 2. In section 3, a RANSAC approach 
for lane detection is proposed. In section 4, a deep learning 
based semantic segmentation architecture with SegNet for 
lane detection is discussed. Experimental setup and results of 
two approaches are given in section 5 and the concluding 
remarks are made in section 6. 

II. RELATED WORK 

Many lane detection mechanisms have been proposed in 
the recent past. In [12], a drivable path detection algorithm 
was proposed for the autonomous vehicles. The lanes of the 
road were detected in real-time by analysing each frame of 
video through edge detection and Hough transform techniques 
for safe navigation. Similarly, [11] has developed end-to-end 
lane position estimating deep neural network model that 
inputs images from laterally-mounted down-facing cameras. 
In [13], a lane detection method was introduced by integrating 
lane shape for online vehicle position calculation. A lane 
detection and departure warning system were integrated and 
investigated by [14]. However, long processing time and high 
computation are required by Hough transformation. 

In [15], a parallel processing model was used for Hough 
transformation and image analysis for faster lane detection. A 
reliable lane detection method was proposed in [16] based on 
spatiotemporal images. The images were generated by 
accumulating the consecutive scan line pixels to improve the 
accuracy of detection. In [17], a computer vision based 
multi-vehicle detection mechanism was proposed by 
considering vehicle location in a single CNN model. However, 
different lighting effect is not considered in the existing works. 
Hence, we plan to incorporate unlike lighting effect in our 
work to improve the detection efficiency. 

In [18], a deep neural network-based car-following model 
was proposed by considering velocity and position difference 
as inputs. By using deep learning, the feature extraction is 
more accurate to describe complicated human actions. 
However, the lane position is not considered in this work 
which also equally important in a driver assistant system. In 
[19], a deep fully convolutional neural network architecture 
known as SegNet was proposed for semantic pixel-wise 
segmentation images. An encoder and corresponding decoder 
network were designed for pixel-wise classification and 
feature map production. The performance of SegNet is better 
in the segmentation process. Hence, we plan to use the SegNet 
model as our base CNN model. 

INPUT VIDEOI

EXTRACT AND RESIZE FRAME

EXTRACT THE REGION OF INTERSEST 

FEATURE EXTRACTION

PERFORM INVERSE PERSPECTIE MAPPING ON THE REGION OF 
INTEREST

CONVERT TO RGB COLOR SPACE CONVERT TO HSV COLOR SPACE

COMPUTE GRADIENT MASK 
USING SOBEL OPERATOR

COMPUTE GRADIENT MASK 
USING SOBEL OPERATOR

COMBINE THE GRADIENT MASKS TO OBTAIN ROBOUST FEATURES 

RANDOM CONCENSUS ALGORITHM FOR CURVE FITTING

CREATE LOOK UP TABLE WITH HORIZONDAL AND VERTICAL COORDINATES OF 
FEATURE POINTS 

SELECT 
RANDOM 
FEATURE 
POINTS

SELECT THE 
FINAL 
CURVE 

WITH THE 
MAXIMUM 
INSIDERS

FIT A 
POLYNOMIAL 

FUNCTION FOR 
FEATURE POINTS 

OF ROAD LANE 
MARKERS ALONG 

ONE SIDE 

FIT A POLYNOMIAL 
FUNCTION FOR FEATURE 

POINTS OF ROAD LANE 
MARKERS ALONG THE 

OTHER SIDE  WITH SAME 
CENTER OF CURVATURE 
OF THE PREVIOUS SIDE

CALCULATE THE LANE OFFSET AND RADUIS OF CURVATURE OF THE ROAD LANE

TRANSFORM FINAL DETECTIONS TO THE ORIGINAL PERSPECTIVE

OUTPUT FRAME WITH FINAL DETECTIONS

 
Fig. 1.  Flow char of the proposed RANSAC lane detection appatroach. 

III. METHOD I: RANSAC 

In this section, a RANSAC approach is proposed to detect 
the lane on the highway. The flow chart of the proposed 
approach is shown in Figure 1.  

For road lane detection, the road lane markers which are 
white or yellow in color are used as reference to obtain the 
boundary of the road lane in which the vehicle is present. Each 
frame from the input video data is extracted and resized. The 
region of interest (ROI) which represents the lane in which the 
vehicle is present is extracted and the inverse perspective 
transform is computed to obtain the top view. Utilizing the 
image obtained in HSL color space and in gray scale image, 
gradient mask to extract the features corresponding to the 
yellow and white road lane markers is computed. The gradient 
mask computed for each color space is combined to obtain 
final feature points corresponding to the road lane markers. A 
look up table is created to record the horizontal and vertical 
coordinates of the feature points extracted. Random sample 
consensus algorithm is used for fitting a curve for the 
extracted feature points. 

The feature points are extracted for road lane markers 
along the right and left side of the vehicle. Primarily, the 
feature points of the road marker along left side is utilized. A 
random set of points are taken and a curve fitting function is 
used to compute the parameters of the polynomial and the 
number of feature points that are well-fitting is computed. 
After iterating over all the subset sets of feature points that are 
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randomly selected, the regression parameters which can fit the 
maximum number of feature points are taken as the final 
parameter. These well-fitting feature points are known as 
insiders. 

For the feature points along the right side, similar process 
is used to obtain the final regression parameters. But, to 
compute the final regression parameter, an additional 
condition is used. The center of curvature of the curve 
obtained through the curve fitting function for the feature 
points on the right side of the lane must be same as that of the 
left side. Hence both the curves obtained are parallel to one 
another. Similar process is done taking the feature points on 
the right side of the lane as reference. From the two results 
obtained, the curve which has the maximum number of 
insiders is taken as the final estimation. 

The radius of curvature of the lane and the lane offset are 
computed. To represent the final prediction, the lane boundary 
prediction is converted to the original perspective and is 
plotted on the original input frame for visualization. 

A. Extraction of Region of Interest (ROI) and Perspective 
Transformation 

The road lane is present in the lower half of the input 
image in Figure 2. The region of interest (ROI) represents the 
road lane in which the vehicle is present. Every frame from the 
input video is extracted and resized to 1280 X 720 resolution. 
This region of interest is a trapezoidal region which is 
extracted from the resized image. Perspective transformation 
for this region of interest (ROI) is computed to obtain the top 
view of the road lane. Perspective transformation or Inverse 
perspective mapping is computed to avoid the perspective 
effect. 

B. Feature Extraction 

To estimate the boundary of the road lane in which the 
vehicle is present, the road lane markers which are either 
yellow and white in color are used as reference. The 
perspective transformed image is converted to gray scale and 
in HSL color space. Using the Sobel operator, gradient mask 
is computed for both gray scale image and for the saturation 
channel of the HSL color space. The Sobel operator uses a 
3X3 kernels which is convolved with the original image to 
calculate approximations of the derivatives. There are two 
different kernels each for computing the approximation of 
derivatives along the horizontal and vertical direction. 

Let I be the original image and Gx and Gy are images 
representing the horizontal and vertical derivative 
approximation. The calculation is represented as (1) – (2), 

 (1) 

 (2) 

Input Image Region of Interest (ROI)

Extracting the Region Of Interest 
(ROI) 

Inverse Perspective 
Transformation

 
Fig. 2.  Region of interest extraction and inverse perspective transform. 

where, *denotes the 2-dimensional signal processing 
convolution operation. 

At each point in the image I, the resulting gradient 
approximations Gx and Gy can be combined to obtain the 
gradient magnitude G as (3); the gradient direction can be 
computed as (4).  

 (3) 

 (4) 

After computing the gradient mask for gray scale and the 
saturation channel of HSL color space, the image is divided 
into two and the feature points corresponding to the road lane 
markers along the left and the right side are detected as shown 
in Figure 3. A look up table is created which contains the x and 
y coordinates of the feature points which represents the road 
lane markers. 

C. RANSAC Based Curve Fitting 

Random sample consensus algorithm (RANSAC) is an 
iterative method to estimate various parameters of a 
mathematical model. This algorithm iterates over a set of data 
which contains data points that can fit well as well as outliers. 
Outliers are data points which are distant from other 
observations. The presence of these outliers do not affect the 
estimates of parameters of the mathematical model. Hence, 
this algorithm can detect outliers from the given data points.  
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Input Image Region of Interest (ROI)

Extracting the Region Of Interest 
(ROI) 

Inverse Perspective 
Transformation

 
Fig. 3.  Feature points extracted from grayscale image and from HLS color 
space. 

Basically, a set of data points can be classified into two 
namely inliers and outliers. Inliers are data points which can 
fit well in a mathematical model whereas outliers are data 
points which are distant from the mathematical model. The 
main advantage of using RANSAC is that the presence of 
outliers in the input data points do not influence the estimation 
of parameters for a mathematical model. The RANSAC 
algorithm consists of two steps which are executed iteratively, 

Step 1:  A subset of data points from the given data set is 
randomly selected. The parameters for the curve 
fitting model is computed using this subset. 

Step 2:   The algorithm checks if the input data point fits the in 
the model with the estimated parameters from the 
first step with other data points in the given data set 
apart from data points which were randomly picked 
in the step 1. Data points which do not fit well in the 
model with estimated parameters within the given 
threshold are called outliers. 

Through the above steps, set of data points which are 
well-fitting with the model is obtained. These data points are 
known as inliers. The RANSAC algorithm iterates over the 
input data points until sufficient amount of inliers are obtained. 
This set of inliers is known as consensus set. 

The input to the RANSAC algorithm are input data points, 
the model for which data points must be fit, maximum number 
of iterations and threshold to determine if the data points can 
be classified as inlier. For road lane detection system, input 
data points are taken from the look up table containing the 
features corresponding to road lane markers. Linear 
regression is used to estimate parameters of the curve fitting 
function. The overall algorithm for RANSAC based curve 
fitting is shown in Table I, and their results are shown in 
Figures 4 - 5. The RANSAC algorithm is shown in Table II. 

Table I Overall algorithm for RANSAC curve fitting 

Algorithm 1 RANSAC curve fitting 
Step 1 
 
 
Step 2 
 
 
Step 3 
 
 
 
Step 4 
 
 
Step 5 
 
 
 
 
Step 6 
 
 
Step 7 
 
 
 
Step 8 
 
 
Step 9 
 
 
 
 
Step 10 

 

Get input feature points of left lane markers (x1, y1) and 
right lane markers (x2, y2) and maximum number of 
iterations. Check for consistency of data points. 
Fit the feature points of left lane markers (x1, y1) using 
RANSAC linear regression for estimation of parameters 
for second degree curve equation.  
Accumulate inliers estimated by for every iteration of 
RANSAC linear regressions and select the best fit based 
on the maximum number of inliers estimated from each 
iteration. 
Fit the feature points of right lane markers (x2, y2) using 
RANSAC linear regression for estimation of parameters 
for second degree curve equation.  
Accumulate inliers estimated by for every iteration of 
RANSAC linear regressions and select the best fit by 
using the curve which has the same center of curvature as 
that of the fit selected for the feature points of left road 
lane markers. 
Similarly, fit the feature points of right lane markers (x2, 
y2) using RANSAC linear regression for estimation of 
parameters for second degree curve equation.  
Accumulate inliers estimated by for every iteration of 
RANSAC linear regressions and select the best fit based 
on the maximum number of inliers estimated from each 
iteration. 
Fit the feature points of left lane markers (x1, y1) using 
RANSAC linear regression for estimation of parameters 
for second degree curve equation.  
Accumulate inliers estimated by for every iteration of 
RANSAC linear regressions and select the best fit by 
using the curve which has the same center of curvature as 
that of the fit selected for the feature points of right road 
lane markers. 
Select the estimated parameters for the pair of fit which 
has the maximum number of feature points are classified 
as inliers. 

Table II Overall algorithm for RANSAC curve fitting 
Algorithm 2 Random sample consensus algorithm 

 Step 1 
 
 
 
 
 
 
 
 
Step 2 

Ransac_function (x, y, maximum_iteration, validity_bounds): 
for (i <= maximum_iteration) 

(a, b) = Randomly select data points from (x, y) to form 
a subset 
Solve linear regression. 
Check for other data points which fit well in the 
mathematical model for the estimated parameters. 
Check for number of inliers obtained for the estimated 
parameters 

Select estimated parameters for which maximum number of 
inliers are obtained as the final fit for the given data points   

(a).Right to Left Curve Fitting (b).Left to Right Curve Fitting

Number of Inliers :
Right Side = 6487
Left Side = 5035

Number of Inliers :
Right Side= 3889
Left Side = 15004  

Fig. 4.  Results of RANSAC curve fitting. 
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(a). Final Curve Fitting Result (b). Inliers present in Finalized Curve 
Fitting Result

 
Fig. 5.  Results of final curve fitting. 

D. Transformation to Original Perspective and Calculation 
of Curvature and Lane Offset 

After estimating the boundary of the road lane in which the 
vehicle is present using the top view image, the final detection 
is transformed back to the original perspective. The curvature 
of the lane and the lane offset are calculated using the linear 
regression parameters of the final detection. For a second 
order polynomial of form as (5), the radius of curvature R can 
be calculated as (6). Where A, B, C are parameters to represent 
the polynomial curve fitting equitation.  The final lane 
detection experiments were done via Taiwan’s No. #1 
highway, and the results are shown in Figures 6 - 7.  

 (5) 

 (6) 

 
Fig. 6.  Transformation to the original perspective and calculation of lane 
curvature and lane offset. 

IV. METHOD II: IMAGE SEGMENTATION 

In addition to RANAC algorithm, this paper also discuss a 
deep learning based image segmentation approach. The 
step-by-step procedure of the proposed method is shown in 
Figure 8. The video of the road scene is taken as input and 
each frame is extracted. SegNet [19] which is a deep learning 
based semantic segmentation algorithm is used to segment the 
pixel corresponding to the road surface marking in the image. 
Afterward, the perspective transformation is computed on the 
extracted feature to obtain the inverse perspective mapping or 
the bird’s eye view. The histogram for the bottom half of the 
image is computed to determine the location of the feature 

corresponding to the road surface marking. Besides, a sliding 
window based search is used across the entire image to detect 
required features. Finally, a polynomial curve fitting function 
is used to fit the feature points. 

 
Fig. 7.  Road lane detection using RANSAC curve fitting. 

Input Image

Deep learning based 
Feature Extraction using 

SegNet architecture 

Sliding Window Search to 
search for coordinates of 
non zero pixels along the 

vertical axis 

Second-order polynomial 
Curve Fitting to estimate 
the curvature of the lane 

Transformation to Original 
Perspective with 

highlighted lane markers

Inverse Perspective 
Mapping 

Stop

Histogram computation to  
determine coordinates of 
non zero pixels along the 

vertical axis 

Extract ROI

 
Fig. 8.  Flowchart of the proposed image segmentation approach.  

A. Deep Learning Based Feature Extraction 

Extracting accurate features of the road marking and signs 
is necessary to build a robust navigation system. In this paper, 
a deep learning based semantic segmentation architecture 
called SegNet is used. The SegNet architecture is shown in 
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Figure 9. It is deep fully convolutional neural network 
architecture to perform pixel-wise semantic segmentation. It 
consists of an encoder network, a decoder network followed 
by a classification layer to enable pixel-wise classification.  

 
Fig. 9.  SegNet: a deep convolutional encoder-decoder architecture for image 
segmentation. 

The encoder network consists of 13 convolutional layers 
similar to VGG16 network [20] architecture. Therefore, 
pre-trained network parameters on large image dataset can be 
used to initialized the weights during training. The main 
purpose of the decoder is to map low-resolution feature maps 
to input resolution feature maps. The decoder uses the pooling 
indices calculated in the max-pooling layer in the encoder to 
perform upsampling thus eliminating learning to upsample 
during training. The upsampling performed by the decoder is 
non-linear by nature. In SegNet unlike the other decoder, the 
output decoder (decoder corresponding to first encoder) 
produces multi-channel feature maps regardless of the fact 
that the input to first encoder is RGB image [11]. The 
classification layer is used to classify every pixel in the image 
into its corresponding class.  

The main advantage of the SegNet architecture is that the 
number of trainable parameters are less compared to other 
semantic segmentation architectures and the network can be 
end to end using stochastic gradient descent. This architecture 
is computation and memory efficient. 

B. Inverse Perspective Mapping, Histogram Computation 
and Sliding Window Search 

The feature extracted using SegNet semantic segmentation 
algorithm described above is plotted as a binary image. The 
region of interest (ROI), which span size of a lane, is selected 
to separate the feature representing the lane corresponding to 
the user’s vehicle. This ROI is the constant trapezoidal area. 
Since the lane marker features are captured as oblique lines in 
the front view, the perspective effect must be removed for 
easier computation. To solve this issue, the perspective 
transformation to compute the Bird’s eye view or top view of 
the image is performed as similarly to Figures 2 – 3 that were 
previously stated in Subsection A of Section III.  

This transformed image is converted to gray scale and in 
HSL color space. Using the know Sobel operator, which can 
be a filter learned through CNN, gradient mask is computed 
for both gray scale image and for the saturation channel of the 

HSL color space. 

To obtain the coordinates of the non-zero pixels along the 
horizontal axis, the histogram is drawn for the bottom half of 
the image.  A sliding window search is used to scan along the 
vertical axis to obtain the position of non-zero pixels which 
represent the feature corresponding to the road surface 
marking. The width of the sliding window is set to 40 pixels. 
The centroid of the window can be adjusted to re-center the 
window. 

D. Polynomial Curve Fitting and Transformation to Original 
Perspective 

Transformation back to the original perspective view is 
necessary to compute curvature and lane offset. A 
second-degree polynomial curve fitting function is used to fit 
the coordinates obtained from the previous step. This is used 
to determine the shape of the area in between detected road 
markers and to understand the curvature of the road. Thus, 
after computing the location of the road surface marking, the 
image is transformed back to the original perspective position 
and the detected region is highlighted. 

E. Experiment Results and Discussion 

In this study, the benchmark dataset, CamVid dataset [20] 
is used to validate our lane detection method. The pre-trained 
weights for the deep learning based semantic segmentation 
model are used to initialize parameters at the start of the 
training. This model is trained for 3433 training images 
obtained for a combination of datasets [21] and [22]. The 
SegNet model is trained for 11 classes. On validation, it is 
found that the mIOU is around 60.1 and the global average of 
the model is 90.40 [18]. 

Threshold is set to separate the feature with respect to the 
road lane marker from the segmented image as shown in 
Figure 10. Deep learning based segmentation model is 
observed to be better than color and edge detection method as 
these conventional methods as shown in Figure 10 may not 
perform well under different lighting conditions. The region 
of interest is then separated as shown in Figure 10 and then 
this region is converted to top view or bird’s eye view. 

The histogram of the bottom half of the perspective 
transformed image is computed to locate the position of 
non-zero pixels along the x-axis. A sliding window based 
search is used to extract the coordinates of the non-zero pixels 
along the y-axis as shown in Figure 10. The centroid of the 
window is adjusted automatically to detect the non-zero pixels. 
A second-degree polynomial curve fitting function is used to 
fit the extracted coordinates. The image is then transformed to 
the original perspective and the detected lane is highlighted. 
This image is combined with the original image to provide the 
entire road scene with the detected lane. The entire process 
involves computation time of 0.355 per frame. 
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Fig. 10.  Experimental Results. 
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V. CONCLUSION AND FUTURE WORKS 

In this paper, we have presented a RANSAC and a deep 
learning based lane detection approaches for advanced driver 
assistant system. The RANSAC used the algorithms proposed 
in Tables I and II to perform robust lane detections in the 
highway. In addition, by incorporating deep learning based 
semantic segmentation algorithm for feature extraction, the 
lane detection system is more accurate and robust with 0.355s 
processing time.  

In the future, this work can be extended to improve the 
detection speed to identify the lane and a warning system can 
be designed for the driver during overtaking of the vehicle in a 
freeway environment.  
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Autonomous Navigation of an Indoor Mecanum-
Wheeled Omnidirectional Robot Using SegNet 

 Abstract-This paper proposes an autonomous navigation 
control structure using SegNet for autonomous navigation of 
an indoor Mecanum-wheeled omnidirectional robot (MWOR) 
in an indoor environment. The SegNet is used to achieve 
environment recognition and obstacle avoidance. The 
navigation control architecture is composed of one FastSLAM 
2.0 module, one global path planning module using Dijstra 
algorithm, one obstacle avoidance module by fusing the 
outputs of the existing DWA method and SegNet, and one 
motion control module for the MWOR.  The autonomous 
navigation experimental system is equipped with one Jetson 
TX2 module from Nvidia, one LiDAR, one OpenCR, one Intel 
RealSense D435i, and one MWOR.  Localization and mapping 
of the working environment are done by the known FastSLAM 
2.0 algorithm along  with the MWOR’s odometry and LiDAR 
scanning data, where the LiDAR data are also employed to 
avoid any collisions from any static, or dynamic, or unexpected 
moving objects. Intel RealSense D435i along with SegNet is 
used to detect environmental objects and obstacles in the 
environment.  Experimental results are conducted to show the 
effectiveness  and merits of the proposed autonomous 
navigation method.   

Index Terms—Deep learning, Omnidirectional mobile robot, 
autonomous navigation, SegNet.  

I.  INTRODUCTION 

EEP learning is very popular in recent years. Deep 
learning models have sometimes achieved increasing 

success due to the availability of massive datasets and 
extenting model depth and parameterisation. Nevertheless, 
practical factors licluding  memory and computational time 
during training and testing are important factors to consider 
while choosing a model from a large bank of models. 
Hence,the time of training turns into a major consideration 
particularly while the performance gain is not 
commensurate with increased training time as shown in our 
experiments.Test time memory and computational load are 
important to deploy models on specialised embedded 
devices.From an overall efficiency viewpoint, less attention 
has been paid to smaller and more memory, time efficient 
models for immediate applications such as road scene 
understanding.It was the primary motivation behind the 
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proposal of SegNet, which is significantly than other 
competing architectures. SegNet has been shown efficient 
for tasks such as road scene understanding. 

Autonomous navigation of mobile robots or vehicles is 
expected to provide various services within living 
environments  of humans [1]. Such a robotic technology has 
been ready  to show its practical use in industry, but, so far,  
the robots for industry simply follow a given motion by 
humans.Therefore, we will  conduct as a means to allow 
elderly and physically impaired people to travel to 
destinations within public facilities such as airports. 
Nowadays, image segmentation is more popular such that it 
can be used to identify the regions of interest in a scene or 
annotate the data [2]. In image recognition by deep learning, 
areas within the image are recognized and classified as, for 
example, a person, road, sidewalk, or building. With this 
recognition method, the vehicle can estimate its position and 
direction of travel with great reliability. The authors in [3] 
used deep learning to achieve image recognition and 
extraction of the travelable area by proceessing the images 
acquired from monocular camera images mounted on 
autonomous cars. The authors in [4] showed that an electric 
mobile robot autonomously travels through a passage, and 
its own position and direction were estimated using deep 
learning.In particular, this system in [4] operated by using a  
camera in a smart phone  to obtain an input image in order 
to make it as simple as possible.  

Mecanum-wheeled omnidirectional robots (MWORs) 
have been widely used for our living life and industrial 
material handling, such as omnidirectional wheelchairs,  
automatic guided vehicles, and etc. There are two kinds of 
MWORs built by using 45-degree and 90-degree Mecanum 
wheels.  Unlike conventional differential driving, MWORs 
have the superior flexibility to move towards any position 
and orientation. MWORs can be made using different wheel 
configurations including three wheels, four wheels, car-like 
four wheels, and etc. 

Motivated by [1-4], this paper aims to develop and 
verify an autonmous navigation system for an indoor car-
like MWOR that has varous applications in industry and our 
daliy life. The proposed techniques would provide 
references for professionals working in this area, especially 
for researchers and engineers working for personal care 
robots.   

                                                                                                                                                                                                                                                                                                                                                                                           

Po-An Wei, Ching-Chih Tsai, Fellow, IEEE, and Feng-Chun Tai 
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Figure 1. System structure and configuration of the experimental MWOR. 
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Figure 2. Picture of the experimental MWOR. 

II. SYSTEM DESCRIPTION OF THE EXPERIMENTAL MWOR 

A. System Structure  

Figure 1 shows the system configuration of the 
experimental Mecanum-wheeled omnidirectional mobile 
robot (MWOR). The autonomous navigation system is 
equipped with one Jetson TX2 module from Nvidia, one 
OpenCR, one Laser scanner (LiDAR), one Intel RealSense 
D435i, and one MWOR. The well-known FastSLAM2.0 
method is adopted to address the localization and mapping 
problem by using the MWOR’s odometry and LiDAR 
scanning data. The laser scanner is also employed to avoid 
any collisions from any static, or dynamic, or unexpected 
moving objects. The Intel RealSense D435i uses to 
environment and people recognition and obstacle avodidance 
for the working environment. 

Figure 2 displays the physical configuration of the 
experimental MWOR, and Figure 3 shows the pose 
definitions of the  laboratory-built MWOR. Moreover, 
Figure 4 depicts the four main modules of a general 
navigation control system, whereas Figure 5 illustrates the 
proposed autonomous navigation system of the experimental 
MWOR. As a special case of the general navigation control 
system, the proposed navigation control architecture includes 
the existing FastSLAM2.0 method, global path planning, 
environment and object recognition, 2D and 3D obstacle 
avoidance, and motion control of the  experimental MWOR. 
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Figure 3. Pose definition of the  laboratory-built MWOR. 
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Figure 4. Flowchart of a general navigation control system. 
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Figure 5. Flowchart of the proposed  autonomous navigation system. 

B. Kinematic Model of the Experimental MWOR 

The subsection will briefly describe the kinematic model, 
both forward and inverse kinematic models of the 
experimental MWOR are formulated in the global frame, 
where the pose vector x=[x y θ]T denotes the position and 
orientation of the robot in the world frame as shown in 
Figure 3. The forward kinematics of the experimental mobile 
robot is then described by   

w

w ( ) w

x
y θ
θ

 
  = 
  

J υ






                                 (1) 

where 1w 2w 3w 4w[    ]  T
w υ υ υ υ=υ represents the velocity 

vector of the four wheels and i , 1,..., 4,w iυ = denotes the 
speed of the ith wheel. Moreover,  ( )θJ is given by  
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where 1 / 4θ θ π= + , L and l respectively denote the length 
shown in Figure 3.  By using the pseudo inverse matrix, 

( )θ+J ,  of the matrix ( )θJ where 3( ) ( ) Iθ θ+ =J J , one 
expresses the inverse kinematics model of the robot by  
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The forward model (1) of the experimental MWOR is used 
to accomplish odometry for the  existing FastSLAM2.0 
method, while the inverse kinematic model is exploited to 
achieve motion control.  

C.  Kinematic Motion Control  

This subsection will recall the kinematic control method 
of the MWOR for tracking any smooth differentiable 
trajectory [ ] 1( ) ( ) ( ) T

d d dx t y t t Cθ ∈ . To this end, define 
the following tracking error vector 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

e w d

e w d

e d

x t x t x t
y t y t y t

t t tθ θ θ

     
     = −     
          

                         (4) 

Taking the time derivative of (4) and using (2) yield obtains 
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Hence, the kinematic motion control law is proposed as 
below. 
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where the two gain matrices, PK  and IK , are symmetric and 
positive-definite. Substituting (6) into (5) and using the 
identity JJ+ = I3 leads to the succeeding closed-loop error 
system  
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where the globally asymptotical stability of the closed-loop 
error system can be easily proven by selecting the 
subsequent quadratic Lyapunov function 
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  (8) 

III. FASTSLAM 2.0 
This section briefly recalls how to localize the MWOR 

and construct its 2D map by using FastSLAM2.0 with a 360-
degree Lidar sensor mounted atop the MWOR. This 
approach is used to sample the path via particle filters and 
include the kinematic model of the MWOR. Each particle 
will be attached to its own map, consisting of N extended 
Kalman filters. Figure 6 depicts the working principle of 
FastSLAM 2.0 that uses a particle filter (PF) to sample the 
robot trajectory, and Figure 7 illustrates the basic flowchart 
of FastSLAM algorithm for each particle, where the 
procedure includes the retrieval of a robot pose from the 
previous particle set, new pose prediction, updating of new 
observed features, and calculation of the important weights 
from new particles.  Worthy of mention is that the accuracy 
of the existing FastSLAM2.0 is improved by incorporating 
with the kinematic model of the experimental MWOR with a 
two-dimensional LiDAR (light detection and ranging) and a 
camera. Although there still exist accumulating errors caused 
by the used odometry method even with the MWOR 
kinematic model, pose estimation errors of the FastSLAM 
2.0 algorithm are substantially reduced by fusing the 
readings from the LiDAR.  
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Figure 6. PFs in FastSLAM is used to compute the robot path, where the 
EKF is used to compute mean and covariance of each landmark. 
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Update observed feature 
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Calculate Importance weight 
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Figure7. Flowchart of the used FastSLAM 2.0 algorithm for each particle. 

TABLE I  
THE PSEUDO CODE OF DIJKSTRA’S ALGORITHM. 

1. Function Dijkstra (Graph, source): 
2.     for each vertex in Graph: 
3.         dist[v] := infinity; 
4.         previous[v] := undefined 
5.     end for 
6.     dist[source] := 0; 
7.     Q:=the set of all nodes in Graph 
8.     while Q is not empty: 
9.         u := vertex in Q with smallest distance in dist[]; 
10.        remove u from Q; 
11.        if dist[u]=infinity; 
12.            Break 
13.        end if 
14.        for each neighbor v of u 
15.            alt := dist[u]+dist_between (u,v); 
16.            if alt < dist[v]: 
17.                dist[v] := alt; 
18.                previous[v] := u; 
19.                decrease-key v in Q; 
20.            end if 
21.        end for 
22.    end while 
23.    return dist 
24. End Function 

Goal Global 
Planner

Global map

Goal Path Local 
Planner

Local map

Sensor 
DataMap

Trajectory

 
Figure 8. Flowchart of the proposed path planning method. 

IV. GLOBAL PATH PLANNING 

A. Dijkstra Algorithm 

Using Dijkstra algorithm as a global path planning 
method will enable the MWOR to carry out global path 
planning easily. Once the map of the working space around 
the MWOR has been obtained, the map can be utilized to 
search for the best optimal path. Table 1 illustrates the 
pseudocode of the existing Dijkstra algorithm. When the 
goal is commanded, the global planner based on the Dijkstra 
algorithm will be used to produce a global path trajectory 
which will not hit any obstacles in the global cost map based 
on the shortest path. Furthermore, Figure 8 shows the 
flowchart of the proposed path planning method. As can be 
seen in Figure 8, once the global path has been found, the 
local path will be done by the local path planner as discussed 
in the sequel.   

V.  ENVIRONMENT RECOGNITION AND OBSTALE AVOIDANCE  
USING DYNAMIC WINDOW APPROACH AND SEGNET 

A. Introduction to SegNet  

SegNet has an encoder network and also has a 
corresponding decoder network, followed by a final 
pixelwise classification layer. The architecture is illustrated 
in Figure 9 The encoder network makes up of 13 
convolutional layers which correspond to the first 13 
convolutional layers in the VGG16 [5] network designed for 
object classification.Therefore, we can initialize the training 
process fromweights trained for classification on large 
datasets. Also we can discard the entirly connected layers in 
favour of retaining higher resolution feature maps at the 
deepest encoder output. This also reduces the number of 
parameters in the SegNet encoder network significantly as 
compared to other recent architectures [6]. Every encoder 
layer has a corresponding decoder layer. Hence, the decoder 
network has 13 layers. The last decoder output is fed to a 
multi-class soft-max classifier in order to produce class 
probabilities for every pixel independently. 

Every encoder in each encoder network shows 
convolution with a filter bank to produce a set of feature 
maps. These are then batch normalized [7-8].Then an 
element-wise rectifiedlinear non-linearity (ReLU) max is 
applied. Following that, max-pooling with a 2 ×  2 window 
and stride 2 is performed and the resulting output is sub-
sampled by a factor of 2. Max-pooling is used to achieve 
translation invariance over small spatial shifts in the input 
image. Sub-sampling results in a large input image context 
for each pixel in the feature map. While several layers of 
max-pooling and  

Input RBG 
image

Output 
Segmentation

Convolutional Encoder-Decoder

Poloing Indices

 
Figure 9. Architecture of SegNet. 



Tsai et. al. 
Autonomous Navigation of an Indoor Mecanum-Wheeled Omnidirectional Robot Using SegNet 

14 

 
Figure 10. Decoders of the SegNet.  

 
Mecanum-wheeled omnidirectional mobile robot Webcam image 

 

          Extraction of travelable area by              Center line extraction 
deep learning 

Figure 11. Flowchart of the image recognition. 

sub-sampling can achieve more translation invariance for 
robust classification correspondingly. There is a loss of 
spatial resolution of the feature maps. This  increasingly 
lossy image representation is not beneficial for segmentation 
where boundary delineation is vital. Hence, it is necessary to 
catch and store boundary information in the encoder feature 
maps before sub-sampling is expressed. If memory during 
inference is not constrained, all the encoder feature maps 
can be stored well-done. The map is sometime not the case 
in practical applications.  Hence, we propose a efficient way 
to store this information. It involves storing only the max-
pooling indices,i.e, the locations of the maximum feature 
value in each pooling window is memorized for each 
encoder feature map. In principle,the map can be done using 
2 bits for each 2 × 2 pooling window.Therefore, it is more 
efficient to store as compared to memorizing feature maps 
in float precision. This can  lower memory storage results in 
a slight loss of accuracy.However, it is still suitable for 
practical applications.  

This appropriate decoder in the decoder network 
upsamples its input feature maps using the memorized max-
pooling indices from the corresponding encoder feature 
maps. The step produces sparse feature maps [9]. The 
SegNet decoding technique is illustrated in Figure 10. These 
feature maps are then convolved with a trainable decoder 
filter bank to produce dense feature maps.A batch 
normalization step is then applied to each of these 
maps.Note that the decoder corresponding to the first 
encoder  produces a multi-channel feature map, although its 

encoder input has 3 channels (RGB). It is not like the other 
decoders in the network which produce feature maps with 
the same number of size and channels as their encoder 
inputs.The huge dimensional feature representation at the 
output of the final decoder is fed to a trainable soft-max 
classifier. The soft-max classifies every pixel independently. 
The output of the soft-max classifier is a K channel image of 
probabilities where K is the number of classes. The 
predicted segmentation corresponds to the class with 
maximum probability at every pixel [10]. 

B. Environment Recognition   

Semantic segmentation is based on image recognition, 
except the classifications occur at the pixel level as opposed 
to classifying entire images as with image recognition. This 
is accomplished by convolutionalizing a pre-trained image 
recognition model (like Alexnet), which turns it into a fully-
convolutional segmentation model capable of per-pixel 
labelling. Useful for environmental sensing and collision 
avoidance, segmentation yields dense per-pixel 
classification of many different potential objects per scene, 
including scene foregrounds and backgrounds. 

C. Obtacle Avoidance Using Dynamic Window Approach 

After the global path has been planned by the global 
planner, the local planner will start up obstacle avoidance at 
any time based on the sensing data. The DWA (Dynamic 
Window Approach) method based on the LiDAR data is 
used for the local planner. The basic idea of DWA is 
delineated in the following steps. 

1. Discretely sample robot's control space (dx,dy,dtheta). 
2. For each sampled velocity, perform forward simulation 

for the robot to see the result of the sampled velocity 
applied for a period of time. 

3. Evaluate each trajectory from the result of forward 
simulation, using a metric that includes properties such 
as: proximity to obstacles, proximity to goal, and 
proximity to the global path and discard those collide 
with obstacles. The cost function is defined as follows: 

( )
cost = path distance bias * 
           distance to path from the endpoint of  the trajectory
          + goal distance bias * 
             (distance to local goal from the endpoint of  hte trajectory)
          + occdist scale * 
              (The closer to the obstacle the higher of  this cost)

  

4. Pick the highest-score velocity and send it to the robot. 
5. Rinse and repeat. 

Input RGB image Convolution Encoder-
Decoder Output Segmentation

Con+Batch 
Normalisation+ReLU

Pooling
Upsampling

Softmax 
 

Figure 12. Image segmentation process of SegNet. 
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Figure 13. Centerline calculation.  

 
(a)                                               (b)  

 
(c) 

Figure 14. Segmentation results using SegNet and centerline detection.  (a) 
An original picture. (b) Segmentation results using SegNet. (c) Detected the 
centerline of travelling area.  

D. Obstacle Avoidance Using SegNet 

This subsection will briefly describe the approach to 
avoiding any static and dynamic obstacles by using SegNet. 
The self-driving procedure to prevent any collisions from 
obstacles is described in the following six steps. First, the 
image recognition is done by using the flowchart shown in 
Figure11. As depicted in Figure 12, the webcam images are 
processed and extracted by SegNet via the Jetson TX2 board, 
in order to find a travelable area. Second, calculate the 
determined centerline. Figure13 shows how to find the 
centerline (locations represented as a “1” in Figure 13). The 
centerline is extracted from the travelable area using the least 
squares method by finding the centers of the widths of the 
travelable area; afterwards, a straight line is then obtained 
along these centers with the least error, as shown in Figure 
14(c). Third, calculate the orientation deviation between the 
centerline and the current orientation of the mobile robot. 
Forth, generate the motion commands. After the positions of 
the tip of the centerline and the front of the MWOR are 
mapped to two-dimensional space, the deviation between the 
centerline and the direction in which the mobile robot is 
facing is calculated by the Jetson TX2 board, and send the 
feedback commands to mobile robot so as to reduce the 
deviation from the centerline. Fifth, calculates the current 
position of the robot via the Intel RealSense D435i camera 
and location system and LiDAR. Sixth, generates motion 
control commands to activate the four servomotors for 
autonomous navigation. 

MWOR 
Sensors

3D information 2D information

Fuse both maps to 
obtain a new 2D map

Use the DWA to achieve 
obstacle avoidance

 
Figure 15. Flowchart of the fused obstacle avoidance. 

E. Fused Obstacle Avoidance 

Since the MWOR uses both on-board sensors to create 
2D and 3D map, both 2D and 3D environmental mapping 
can be combined together to acquire a new 2D map. Based 
on the newly modified map, the DWA approach is exploited 
to achieve obstacle avoidance. Figure 15 shows the 
conceptual idea of the fused obstacle avoidance scheme. 

VI. EXPERIMENTAL RESULTS AND DISCUSSION 
This section will show experimental results to show the 

effectiveness of the proposed navigation method. The first 
experiment is aimed to test the experimental MWOR under 
ROS 1.0. Figure 16 displays the experimental environment, 
and    Figure17 shows the environmental map created by 
using the FastSLAM 2.0 algorithm, showing the success of 
the system integration for the experimental MWOR.  

The second experiment is performed to examine the 
effectiveness of the proposed autonomous navigation method.  
Figure 18 depicts the experimental results of the proposed 
navigation method without any unexpected obstacles, 
showing the feasibility of the proposed method. Figure 19 
shows the experimental results of the steering MWOR using 
DWA and SegNet avoidance in the environment, where an 
unexpected people was regarded as a static obstacle. The 
result in Figure 10 indicated that the fused obstacle 
avoidance method worked well.  Figure 20 displays the 
experimental results of the environmental objects by using 
SegNet.  The results in Figure 20 reveals that the SegNet 
successfully recognized different objects of the working 
space. Worthy of mention is that the SegNet has to work in 
an environment with good illumination. 

(1) Find the center point in 
the width direction in the 
travelable area 

(2) Find a straight line with 
the least error from the 
center point. (Least 
squares method) 
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Figure 16.  Experimental environment. 

 
Figure 17. Map created by Using the FastSLAM 2.0 algorithm. 
 

 
Figure 18. Experimental pictures of the autonomous navigation methods 
when   the MWOR encountered with static obstacles. 
 

 
Figure 19. Experimental pictures of the autonomous navigation methods 
when the MWOR encountered with a moving people. 
 

 
Figure 20. Experimental pictures of the used SegNet that recognized some 
objects in the environment. 
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VII. CONCLUSIONS AND FUTURE WORK 
The paper has presented an autonomous navigation 

method using SegNet to steer the WMOR from one starting 
place to another in an indoor environment. The built map and 
SegNet have been systematically used to find the shortest 
global and local paths.  During the autonomous navigation 
stage, the FastSLAM 2.0 algorithm under ROS has been 
implemented to find the poses of the MWOR. The SegNet 
has been utilized to carry out objects recognition in the 
environment. The dynamic window approach (DWA) and 
SegNet have been combined together to find a safe local path 
for obstacle avoidance. Through experimental results, the 
proposed approach has been shown capable of enabling the 
MWOR to carry out autonomous navigation usefully and 
efficiently.  An interesting research topic for future work 
would be to install an onboard 3D RGBD camera on the 
MWOR, in order to obtain useful external environment 
information.  
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Self-Piloting of an Indoor Quadrotor Using Deep 
Reinforcement Learning 

Abstract-This paper presents a self-piloting method using 
deep reinforcement learning (DRL) for an indoor quadrotor 
flying from one place to another.  The self-piloting system is 
equipped with one ultrasonic sensor, one Intel RealSense depth 
camera, one Jetson TX2 computing module (Nvidia), and a 
quadrotor with two cameras. The ultrasonic sensor together 
with the look-down camera is used to accomplish constant 
height flight. A deep Q-network (DQN) is employed to proceed 
with images acquired from the quadrotor and learn motion 
control commands from these images using end-to-end 
reinforcement learning, in order to generate motion commands 
to fly the quadrotor autonomously. The Jetson TX2 module is 
then utilized to implement the improved DQN network. 
Simulations and experimental results are conducted to show 
the effectiveness and merit of the proposed self-piloting method. 

Index Terms—Deep Q-network (DQN), deep reinforcement 
learning (DRL), quadrotor, self-piloting 

I. INTRODUCTION 

Nowadays, self-piloting is an important issue for flying 
mobile robots including UAVs. There are various topics 
related to this issue, such as robot control for UAVs or 
vehicles with applications to forests, deserts, streets or indoor 
environments, and etc. There are a lot of problems needed to 
be solved in each type of environment. Among many deep 
learning methods, deep reinforcement learning algorithms, 
such as DNN, DRL and/or DQN, have been shown to 
provide outstanding solutions for self-piloting of autonomous 
UAVs flying in unknown or complicated environments.  

Several past research results with different settings have 
obtained distinct technical contributions for autonomous 
navigation or self-piloting of UAVs. For example, Giusti et 
al. [1] studied the problem of perceiving forest or mountain 
trails from a single monocular image acquired from the 
viewpoint of a robot traveling on the trail itself, and Wang et 
al. [2] modeled autonomous navigation of an UAV in a 
large-scale unknown complex environment as a discrete-time 
continuous control problem and solved it using deep 
reinforcement learning. Moreover, Mnih et al. [3] used deep 
reinforcement learning with Q learning, called deep Q-
network or DQN, successfully in achieving outstanding 
human-level operations on the Atari games. About 
localization and navigation in GPS-denied environment, 
Zhang et al. [4] proposed a vision-based localization method 
for an indoor, small-size quadrotor that using parallel 
tracking and mapping algorithm (PTAM algorithm) with the 
onboard camera. Furthermore, Mirowski et al. [5] created a 
reinforcement learning method for learning to navigate from 
raw sensory input in complicated 3D mazes, approaching 

human-level performance even under conditions where the 
goal location changes frequently. 

As authors’ best understanding, there are no studies of 
using DRL and DQN for indoor self-piloting. This motivates 
us to apply the DQN algorithm to address the problem that 
the quadrotor can autonomously navigate any indoor GPS-
denied environment. 

The objectives of the paper are to propose a self-piloting 
method using the improved DQN algorithm for a quadrotor 
flying from one place to another in a GPS-denied and 
unknown indoor environment, and to verify the applicability 
of the improved DQN algorithm by conducting simulations 
and one experiment. The improved DQN algorithm will be 
implemented on a real quadrotor to process the images 
acquired from the front camera of the quadrotor and then 
generate motion control commands to fly autonomously.  
The presented contents are written in two principal 
contributions. One is the proposal of the self-piloting method 
using the improved DQN algorithm, and the other is 
effectiveness verification of the proposed method using three 
simulations in a powerful computer with one 1080-TI GPU, 
and one real experimental testing via a real quadrotor with 
one on-board NVIDIA Jetson TX2 AI computing module. 
The constructed techniques would provide useful references 
for professionals working for unmanned aerial vehicles 
and/or quadrotors.    

The rest of this paper is organized as follows. Section II 
briefly describes the system architecture of the self-piloting 
indoor quadrotor. Section III details the improved DQN 
structure and algorithm for the self-piloting quadrotor. In 
Section IV, three simulations are conducted for illustration of 
the effectiveness and superiority of the proposed approach in 
Section IV. Section V presents and discusses the 
experimental results to show the applicability of the 
proposed method. Section VI concludes the paper.  

II. SYSTEM STRUCTURE AND DESCRIPTION OF 
AUTONOMOUS INDOOR QUADROTOR 

This section is aimed to describe the system structure of 
the proposed system by including the system configuration 
of the experimental indoor quadrotor under the ROS 
environment. The ROS will be used as a software framework 
for the system, where each sensor or module will be 
registered as a node and communicate with each other via the 
master of the ROS. The autonomous driving of the quadrotor 
will be implemented in the ROS environment. 

Hsiu-Chen Tsai and Ching-Chih Tsai, Fellow, IEEE 
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Figure 1. System Structure of the autonomous indoor quadrotor. 
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Figure 2. Flowchart of the proposed self-piloting system. 

   
Figure 3. Physical picture of the experimental autonomous quadrotor: (a) 
top view of the complete experimental set-up; (b) exploded illustration of 
NVIDIA Jetson TX2 and Intel RealSense depth camera. 

2.1 System Structure  

Self-piloting in real indoor environments is a challenging 
problem without the help of GPS. Figure 1 shows the system 
structure of the autonomous indoor quadrotor, which is 
Bebop2 from Parrot. In Figure 1, the front camera and 
installed Intel RealSense depth camera device are used to 
acquire environmental images in front of the quadrotor, and 
measure the distances from the quadrotor to its surrounding 
walls and/or obstacles, respectively. All the readings from 
both sensors will be passed on to the main controller, which 
is made by NVIDIA Jetson TX2 AI computing board. The 
computing board is exploited to execute an improved DQN 
algorithm with the previous input data, in order to generate 
flight control commands. The flight controller of the 
quadrotor receives these commands to carry out required 
flight motions.   Worthy of mention is that the improved 
DQN method is employed to offline train the quadrotor to fly 
from one place to another with its environmental perception 
and the front image camera and on-board Intel RealSense in 
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Figure 4. Block diagram of the flight control system. 
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Figure 5. Improved DQN-based control architecture for the autonomous 
indoor quadrotor. 

an unknown indoor environment. Figure 2 shows the 
flowchart of the general navigation control and obstacle 
avoidance system. 

Figure 3 shows the physical picture of the experimental 
autonomous quadrotor, Bebop2 from Parrot, with the on-
board front camera, AI computing module, light-weight 
NVIDIA Jetson TX2 board-ACE-N510, and Intel RealSense, 
model D435i. Inside this type of TX2 board, there exist an 
integrated 256-core NVIDIA Pascal GPU, a hex-core 
ARMv8 64-bit CPU complex, and 8GB of LPDDR4 
memory with a 128-bit interface, and one dual-core NVIDIA 
Denver 2 alongside a quad-core ARM Cortex-A57. Worthy 
of mention is that this TX2 board is particularly useful in 
accelerating cutting-edge deep neural-network (DNN) 
architectures using the cuDNN and ensorRT libraries, which 
support for recurrent neural networks (RNNs), long-short-
term-memory networks (LSTMs), and online reinforcement 
learning. On the other hand, being a depth camera, the Intel 
RealSense obtains 85° sensing data around the quadrotor and 
also supports the USB interface for the use of ROS. 

2.2 Flight Control of the Experimental Quadrotor  

This subsection is devoted to briefly describing the flight 
control system of the experimental quadrotor. Figure 3 
depicts the block diagram of the quadrotor flight control 
system, whose working principle is explained as follows. 
First of all, the pose tracking error [    ]

Yawx y ze e e eϕ  is found by 
computing the desired and current trajectories of the 
quadrotor. Afterwards, the pose error vector, [   ]T

x y ze e e , is 
then transformed via the following inverse coordinate  
transformation in (1), in which the resultant Euler error angle 
vector , [   ]Te e eφ θ ϕ  is then computed. 
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TABLE I  
 CNN STRUCTURE WITHOUT POOLING LAYER [3]. 

 

 
Figure 6. Fixed Q-target structure. 
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                      (1) 

where ϕ is the pitch angle, θ  the roll angle, and ϕ  the yaw 
angle; Sϕ=sin(ϕ); Cϕ=cos(ϕ); Cθ=cos(θ); Tθ=tan(θ). Finally, 
once the Euler error angles of the quadrotor have been 
calculated, the control command signals are obtained from 
the four proportional altitude and attitude controllers, thus 
achieving closed-loop flight control. To achieve 
autonomous navigation, it is necessary to find the current 
position of the quadrotor by using a new Oriented Fast and 
Rotated BRIEF-Simultaneous Location and Mapping (ORB-
SLAM2) algorithm. 

The quadrotor is controlled to fly at a fixed speed and 
height, and move along the yaw direction, x and y frames. 
Note that one ultrasonic sensor and one overlook camera are 
used by the quadrotor to accomplish the fixed altitude 
control. Since action commands will be generated by the 
DQN algorithm, we provide six commands with their 
trajectory generators, which are “go forward for one meter”, 
“go right for one meter”, “go left for one meter”, “stop”, 
“turn left”, and “turn 

III. IMPROVED DQN CONTROLLER 

This section will describe the improved deep Q-network 
(DQN) controller, which generates the six commands. With 
the ORB-SLAM2, six commands can be done by the flight 
control system as shown in Figure 4. The aforementioned six 
commands are then generated according to the incoming data 
from all the on-board sensors. Figure 5 shows the schematics 
of the improved DQN-based control architecture for the self-
piloting indoor quadrotor, where the DQN consists of two-
layer convolutional neural networks with the rectified linear 
activation functions (ReLUs) and two-layer fully connected 
neural networks for generating these six flight commands.  In 
what follows begins with a brief introduction to DQN and 
then proposes the improved DQN with new rewards settings. 

3.1 Brief Introduction to DQN  

Q Learning is indeed a model-free reinforcement learning 
technique, which find the action-value function Q through 
experiences with the working environment. Once the Q value 
has been obtained, the Q learning method will select desired 
action that gives the biggest expected reward, thereby 
achieving the optimal policy specified by designers. It is 
worthwhile to note that the deep Q learning is about using 
deep learning techniques to represent the Q table.  

Table I shows the CNN structure with pooling layer in 
the DQN. The CNN structure is composed of three 
convolutional layers and two fully connected NNs with their 
input sizes, filter sizes, strides, and numbers of used filters, 
activation functions and output sizes. To match the input 
sizes of the CNN structure, all the incoming images have to 
be scaled down to the sizes of 84×84 and then converted into 
8-bit grayscale ones at the outset. Next, those found 84×84×4 
tensors are inputted to the CNN, which will have one output 
for each action, namely that a corresponding Q value will be 
generated by the CNN for each possible action. Afterwards, 
the real Q values will be iteratively obtained by continuously 
proceeding with the CNN. Learning the parameter vector, θ, 
which presents all the weights of the Q network, is the goal 
of the DQN. Having learned vector θ, the network will 
approximate the optimal value function Q*, as shown in (2). 

*( , , ) ( , )Q s a Q s aθ ≈                             (2) 

where S is the current state, a is a possible action to take at 
the current state. With the Bellman equation, (3) is given.  

* *( , , ) max ( , ) ( , )aQ s a r Q s a Q s aθ γ ′ ′ ′= + ≈        (3) 

where r is the reward, γ is the discount factor, s´ and a´ are 
respectively the expected state and action. Now, the goal is 
to find the optimization on minimizing the mean-squared 
error loss, which is the loss function. 

Due to the CNN being a regression model, the loss 
function is chosen as the following squared error loss 
function,  

* 2 2( ( , ) ( , , )) ( max ( , , ) ( , , ))aL Q s a Q s a r Q s a Q s aθ γ θ θ′ ′= − ≈ + −  (4) 

where max ( , , )ar Q s aγ θ′ ′+ is the target to be maximized, 
and ( , ; )Q s a θ is the current Q value. The Q function, 

( , )Q s a , is defined as maximum expected discounted reward 
of future that will take an action a  on state s , and choose 
actions by the policy derived from Q. Usually the Q function 
can be obtained by using the following iterative Bellman 
equation. 

( , ) ( , ) [ max ( ( , )) ( , )]aQ s a Q s a Q s a Q s aα γ ′ ′ ′← + −     (5) 

where α  denote the learning rate. In (5), the estimated Q 
value is usually wrong in the beginning, but after a period of 
time, if the experience from the environment will give a 
correct reward r, then the Q value will iteratively turn out to 
become correct one. 
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TABLE II. PSEUDOCODE OF ALGORITHM 1. 

 
3.2 DQN with Fixed Q-target and Experience Replay 

This subsection is aimed to delineate the DQN with fixed 
Q-target and prioritized experience replay (PER). Figure 6 
shows the system structure of the DQN with fixed Q-target. 
The concept of the fixed Q-target was introduced by Google 
DeepMind team, who desired to estimate the real temporal 
difference (TD) target. Via the Bellman equation, the team 
found that the TD target is the reward after taking the action 
at the state plus the discounted highest Q value for the next 
state. ( , )Q s a  is the Q target to be computed in (6)  

( , ) ( , ) ax ( , )aQ s a r s a m Q s aγ ′= +                (6) 

where ( , )r s a  is the reward of taking that action at that state 
and m ax ( , )a Q s aγ ′  is the discounted maximized Q value 
among all possible actions from the next state. To this end, 
the TD error, ˆax ( , , )) ( , , )aR m Q s a Q s aγ θ θ′+ − , is calculated 
by finding the difference between the Q-target and estimated 
Q̂ . Afterwards, the change in parameter, θ∆ , is obtained 
from (7)  

ˆ ˆ[( ax ( , , )) ( , , )] ( , , )aR m Q s a Q s a Q s aθθ α γ θ θ θ′∆ = + − ∇  (7) 

where is gradient of the current predicted Q-value. As in (6), 
the same weights are used to estimate the target and Q value 
such that the changing TD target and weights are related. 
Hence, below are two ideas for the fixed Q-target: 

1. Use a separate network with a fixed weight to 
estimate the TD target. 

2. After several (T) steps, the weights are copied from 
DQN network to update the target network. 

After several (T) steps, the fixed parameters, θ − ,will be 
updated with θ from the main network in (8)  

ˆ ˆ[( ax ( , , )) ( , , )] ( , , )aR m Q s a Q s a Q s aθθ α γ θ θ θ−′∆ = + − ∇  (8) 

Thus, the fixed Q-target makes learning more stable due to 
the target function staying fixed for a while. 

Q-learning with experience replay is an off-policy offline 
learning method that can be learned using the previous 
experience. During offline training, some experiences may 
be more important than others, but occur less frequently. 
Therefore, the PER method [5] aims to take in priority 
experience which has the big difference between the 
prediction and TD target. The actions, rewards and states of 
the PER will be stored into its memories and then some of 
them will randomly be joined to the q-target network. The 
advantages of experience replay hinges on the fact of 
reducing the relevance between experiences.  

Another important issue is to define rewards. Depending 
on the situations, the quadrotor will receive different rewards 
and penalties to learn more its correct behavior. For example, 
crashed penalty, obstacle penalty, time penalty, direction 
reward, pixel reward, arrived reward, and so on.  Each 
reward or penalty has its own way of calculation, and some 
may be constant values, and some may vary from state to 
state. The proposed DQN algorithm with experience replay, 
called Algorithm 1, is shown in Table 2.   

IV. SIMULATIONS AND DISCUSSION  

This section will conduct three simulations to show the 
effectiveness of the proposed improved DQN algorithm with 
experience replay using Unreal Engine and AirSim. Unreal 
Engine, which has been widely used for computer games or 
scenario creations, is utilized to build the three simulation 
environments. AirSim [5], developed by Microsoft,  is here 
exploited to provide application programming interfaces to 
interact with the unmanned quadrotor, in order to retrieve 
images, get current states, control the vehicles or robots and 
so on. The AirSim modules for these simulations were coded 
by using well-known Python and C++ programming 
languages. The improved DQN algorithm was also 
implemented using Python.  Figure 6 depicts the indoor three 
simulation environments and DQN-controlled quadrotor 
constructed by employing the Unreal Engine and AirSim.  

The first simulation is performed to examine the 
effectiveness of the proposed improved DQN algorithm to 
fly the indoor quadrotor from its starting point to a desired 
ending location in a simple indoor environment as Figure 7(a) 
shows. Figure 7(a) displays the simulation results and motion 
pictures during the simulation. The results in Figure 7(a) 
reveal that the DQN-controlled quadrotor flies autonomously 
from the beginning point to the desired position. 

Algorithm 1: DQN with experience replay. 
1. Initialize replay memory M to capacity C 
2. Initialize acwtion-value function Q  with random 

weights vector θ   
3. Initialize target action-value function *Q with weights 

θ θ− ←  
4. For episode = 1, E do 
5. Initialize sequence 1 1{ }s x=  and 

preprocessed sequence 1 1( )sφ φ=   
6. For t=1,T do 
7. With probability ε  select a random action ta   
8. Otherwise select arg max ( ( ), ; )t a ta Q s aφ θ=  
9. Execute action ta  in emulator and observe 

reward tr and image tx′  
10. Set , ,t t t ts s a x′ ′= and preprocess ( )t tsφ φ′ ′=  
11. Store transition ( , , , )t t t ta rφ φ′  in M 
12. Set 

1

    if episode terminates at step 1
 ˆmax ( , ; )   otherwise

j

t
j a j

r j
y

r Q aγ φ θ −
′ +

+= 
′+

 

13. Perform a gradient descent step on 
2( ( , ; ))j j jy Q aφ θ−   with respect to the 

network parameters θ   
14. Every N steps rest Q̂ Q=  . 
15. End For 
16.  End For 
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(a) 

  

 
(b) 

  
(c) 

Figure 7. Simulation indoor environments constructed by using Unreal 
Engine. 

The second simulation is conducted to validate the 
proposed improved DQN algorithm in a slightly complicated 
environment as drawn in Figure 6 (b) by comparing to the 
first simulation. Figure 6(b) illustrates the simulation settings, 
in which the total length of the flight routine is 3000 meters, 
its width is 2050 meters and height is 2.7 meters. The bottom 
picture in Figure 7(b) illustrates one glimpse of the 
simulation done for the environment, showing that the self-
piloting system works as predicted.   

Unlike the previous two simulations, the third one is 
particularly carried out to verify the proposed algorithm in a 
maze environment as displayed in Figure 7(c).  Figure 7(c) 
describes the simulation results, thus ensuring the merit of 
the proposed method in this more complex maze 
environment. As can be observed in Figure 7(c), the results 
confirm the capability of the proposed algorithm, where the 
gray points denote the trajectories of the quadrotor during 
iterations, and the red points represent the quadrotor’s 
trajectories in the last three iterations. 

 

    
(a)                                                         (b) 

  
(c)                                                         (d) 

   

   
(e) 

      
(f) 

 
(g) 

Figure  8. Experimental results: (a) flight path. (b) Flight environment. (c) 
Key features using ORB-SLAM2.0. (d) 3D cloud-point map and actual 
flight trajectories. (e) OctoMap construction process. (f) Experimental 
pictures during self-piloting. (g) Destination marked by a mat. 
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V. EXPERIMNETAL RESULTS AND DISCUSSION 

This section is aimed to present and discuss the 
experimental results of the experimental quadrotor using the 
improved DQN algorithm by conducting one experiment in a 
GPS-denied indoor environment. The experimental 
environment is almost identical to the second simulation 
environment. Figure 8(a) depicts the experimental 
environment and the expected flight path, which is 
highlighted by the orange line. During the motion, the image 
from the front camera of the quadrotor is displayed in Figure 
8(b). Figs. 8(c) and (d) show the ORB-SLAM 2.0. Figure 8(e) 
shows the construction process of the OctoMap experimental 
results obtained from the on-board TX2 AI computing 
module, thereby showing the implementation success of the 
overall system integration. As shown in Figure 8(f), the 
quadrotor flied with all the previous described devices. 
Through the results in Figs. 8(f) and (g), the proposed DQN 
controller was shown to autonomously fly online the 
quadrotor from the starting point to the destination position 
marked with the special mat.  

VI. CONCLUSIONS AND FUTURE WORK 

This paper has presented a self-piloting method using an 
improved DQN algorithm for an indoor quadrotor flying 
from one place to another. The experimental quadrotor has 
been equipped with its on-board front camera, Intel 
RealSense depth camera and NVIDIA Jetson TX2 AI 
computing board. The improved DQN algorithm has been 
proposed by including designated rewards and penalties, and 
then implemented and executed in order to process the 
images acquired from the front camera of the quadrotor and 
then generate motion control commands to fly autonomously. 
Simulations via AirSim and Unreal Engine have been 
conducted to show the feasibility and effectiveness of the 
proposed DQN-based autonomous driving method.  Through 
the experimental results, proposed DQN-based autonomous 
driving method has been shown capable of navigating the 
quadrotor to reach its destination in one floor of a building in 
real time. An interesting future work world be to control the 
quadrotor to fly from one floor to another by passing through 
staircases.  
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Abstract—Visual tracking has been one of the main topics in 

computer vision for decades, and it is still a challenging topic. 
The goal of visual tracking is to continuously locate a specific 
target in a predefined bounding box throughout an incoming 
video stream or a sequence of images. Typically, this issue 
requires tracking algorithms to recognize and locate the target 
with robustness against a variety of uncertainties such as 
appearance changes, illuminance changes, and image blurring, 
etc. This requirement produces some unique challenges 
especially for some tracking algorithms based on deep learning 
techniques that require online learning during the tracking 
process. Although deep learning methods provide really strong 
and robust feature representation, they are easy to be 
over-fitted if given a really small set of training data and thus 
making the overall performance throughout tracking poorly. To 
deal with this issue, this paper presents a novel deep-learning 
based meta-tracker, which adopts a first-order meta-learning 
technique so that during online initialization, the visual tracker 
only requires few training samples and a few steps of 
optimization to perform well in online tracking. Experiment 
results show that the proposed method outperforms eight 
state-of-the-art deep visual trackers and achieves up to 66.4% of 
average success rate on OTB2015 dataset using one-pass 
evaluation. 

Index Terms—Deep learning, deep visual tracking, Reptile 
meta-learning, few-shot learning, single-domain neural 
network. 

I. INTRODUCTION 

ESPITE visual tracking has been one of the main topics in 
computer vision for decades, it is still a very challenging 

topic. When a visual tracker receives an initial location of the 
target in the first frame of a video sequence, its main objective 
is to locate the location of the target in all the remaining 
frames of the video sequence. This goal creates a unique 
challenge for visual tracking algorithms because they have to 
perform online learning to adapt to target changes such as 
appearance changes, illuminance changes, motion blurring, 
and partial/full occlusion, etc. In recent years, deep learning 
methods become urgency due to their great capacity in 
applications of object classification [1-3], image 
segmentation [4-5], and image recognition [6], etc. So far, 
there have been several visual tracking algorithms that 
incorporate the deep learning technique to improve tracking 
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robustness and tracking accuracy. In this paper, we focus our 
attention on the current deep learning based visual tracking 
algorithms, in which we examine them into two categories 
according to their online tracking strategies. 

The first category of the convolutional neural network 
(CNN) trackers needs to fine-tune the neural network or to 
update the target classifier in the tracking stage. For instance, 
Wang et al. proposed a fully convolutional network based 
tracker (FCNT) [7], which consists of a general network 
(GNet) and a specific network (SNet). The GNet captures the 
category information of the target using feature maps from 
top CNN layers, while the SNet discriminates the target from 
the background with similar appearance using feature maps 
from lower ones. To avoid the background noise introduced 
during tracking the target, they fixed GNet and only updated 
SNet after the initialization in the first frame. In [8], Hong et 
al. proposed an online visual tracking method, which trains a 
CNN to produce a discriminative saliency map and uses a 
support vector machine (SVM) to perform online learning of 
discriminative target appearance models. In [9], Danelljan et 
al. investigated the impact of convolutional features for visual 
tracking problem, and they found that the convolutional 
features provide improved results compared to standard 
handcrafted features. Based on this observation, they 
proposed to use activations from the CNN layer in the 
discriminative correlation filter (DCF) framework [10], 
which updates the correlation filter based on a linear 
interpolation rule. In [11], Nam and Han proposed a 
multi-domain neural network (MDNet) learning method, 
which trains a general CNN model during offline learning 
while using binary regularization heavily during online 
learning. However, the processing speed of the MDNet is 
very slow because it uses three CNN layers to produce 512 
feature maps for each selected image patch. 

On the other hand, the second category of the CNN trackers 
ignores fine-tuning the neural network in the tracking stage 
by using the Siamese neural network (SNN), which is a 
two-input and multiple-output neural network architecture 
that inputs two images individually into two CNNs shared 
with the same weights to extract feature maps of both images. 
The main advantage of using the SNN is that the trained SNN 
does not need online fine-tuning at test time, making its 
processing speed very fast. Several studies already use 
large-scale datasets to train the SNN model for object 
tracking applications [12-14]. In [12], Held et al. proposed a 
generic object tracking using regression networks (GOTURN) 
based on the SNN architecture. The GOTURN tracker 
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produces target bounding box simply by regression and is the 
first neural network based generic object tracker achieving 
real-time performance about 100 frames per second (fps). In 
[13], Bertinetto et al. proposed a fully-convolutional SNN 
with a cross-correlation layer without online learning 
operation. The cross-correlation layer uses convolution 
operators to compute cross-correlation between feature maps 
of the reference image and of the query image. The position 
of tracking target is then determined by the position of the 
maximum score relative to the center of the output score map. 
In [14], Tao et al. proposed a Siamese instance search tracker 
(SINT), which uses SNN to learn a robust and generic feature 
embedding network for object tracking, aiming to be 
invariant to all appearance variations in the robust tracking 
scenarios. Although the SNN can work well with high 
processing speed, its tracking performance is still worse than 
the MDNet because it is without fine-tuning during the 
tracking process. 

Although the deep CNN model provides really strong and 
robust feature representation for visual tracking, it is easy to 
be over-fitted since only a single training data from the first 
frame of the video sequence can be used in the online learning 
process. To deal with this issue, choosing small network 
architecture is more suitable for fine-tuning and 
online-updating the CNN tracker during the online tracking 
process in order to keep the robustness of the tracker. For 
instance, the MDNet only uses a small CNN model composed 
of three CNN layers and three fully connected (FC) layers to 
deal with the multi-domain visual tracking problem. The 
MDNet produces state of the art performance; however, the 
initial online learning process at the first frame of the 
sequence costs significantly more time than other deep visual 
tracking methods. In [15], Park and Berg proposed another 
solution, which combines the model-agnostic meta-learning 
(MAML) technique [16] and a variety of existing methods to 
obtain a competitive tracking performance but with less 
initialization time at the beginning of the sequence. However, 
the MAML technique requires second-order derivative 
operations, which greatly increase the computational cost of 
the offline training process. This issue motivates us to 
develop a computational efficient meta-tracking architecture 
based on [11] and [15] while providing robust tracking 
performance. To achieve this, this paper presents a novel 
deep-learning based meta-tracker, which adopts a first-order 
meta-learning technique [17] so that during online 
initialization, the visual tracker only requires few training 
samples and a few steps of optimization to perform well in 
online tracking. Experiment results show that the proposed 
method outperforms eight state-of-the-art deep visual trackers 
and achieves up to 66.4% of average success rate on 
OTB2015 dataset using one-pass evaluation. 

The remainder of this paper is organized as follows. 
Section II introduces the related few-shot meta-learning 
algorithms. The proposed Reptile meta-tracking algorithm is 
introduced in Section III. Section IV reports experimental 

results to evaluate the tracking robustness and tracking 
accuracy of the proposed algorithm compared to four 
state-of-the-art deep visual trackers. Section V concludes 
with the contributions of this paper. 

II. FEW-SHOT META-LEARNING 

One of the most struggling problems of the current deep 
neural nets is the ability to learn different tasks quickly with 
little data. The main reason behind this problem is that the 
deep neural net itself and the traditional gradient-based 
learning process are not designed to reuse precious 
knowledge learned from other tasks. On the other hand, a 
human can easily adapt to a wide variety of new and 
previously unseen tasks with little supervision, this kind of 
fast adapting ability is now considered the key to achieving 
the ultimate goal of AI: human level intelligence [18]. 
Meta-learning, also known as learning to learn, is one way to 
achieve such a fast adapting ability, which can leverage past 
experiences to learn faster when presenting a new task, like 
the goal of generic object tracking. Generally, a meta-learning 
algorithm has to learn rapidly within each task while 
accumulating knowledge across different tasks. In order to 
perform meta-learning, a training dataset needs to be exposed 
to a large number of tasks. 

In few-shot meta-learning problems, a dataset is first 
separated as a meta-training and a meta-testing set as shown 
in Figure 1. Each set has a unique collection of classes and no 
repeated examples between two sets. During meta-learning, 
the model is trained to learn tasks in the meta-training set. For 
example, in the context of five-way one-shot learning, every 
single task contains five training examples, one example for 
each class, and some test examples to test how well it learned 
from that five training examples. Hence, the goal of few-shot 
meta-learning is to train a model that can be adapted to new 
tasks or new environments fast with little among of data. To 
solve this problem, the model is first trained in a 
meta-learning phase on a wide variety of tasks, but each task 
only contains a few training examples. There are several 
meta-learning methods proposed in recent years, below are 
two of the methods related to this work. 

A. Model-Agnostic Meta-Learning (MAML) 

Considering a meta-learning model f for mapping an input 
x to an output y, the model is trained to be capable of adapting 
to huge among of tasks quickly during the training phase of 
meta-learning. In the K-shot learning problem, each new task 
Ti is drawn from a distribution over tasks p(T) with only K 
examples per class drawn from a distribution over initial 
observations. Then, the model is trained on the task with a 
loss 

iTL
 
generated from the training data in the task Ti. After 

training, the model is tested on the test data in the task Ti to 
improve the model f based on the feedback test error. At the 
meta-testing phase, new tasks are drawn from p(T), which are 
used to measure how well the model performs after training 
from K samples per class. 
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Figure 1. Data setup of few-shot meta-learning. 

 

The purpose of the MAML method is to learn the parameters 
of any model through meta-learning for capable of fast 
adapting. Its main idea is to find internal feature 
representations that are more transferrable to wide arrange of 
tasks. Unlike previous works, the MAML does not put any 
constraint on the model architecture itself; instead, the model 
only needs few update steps to perform well on a new dataset. 
To find this general purpose feature representations for the 
model of choice, the MAML method directly optimizes the 
model on a completely new task using traditional 
gradient-based learning rules without overfitting. 

Algorithm 1 shows the pseudo code of the MAML. 
Considering a model fθ that is parameterized by parameters θ. 
When the model is trained on a new task Ti using gradient 

descent, the i-th adapted parameters iθ~  is computed using the 

loss from the task Ti as follows: 

)(
~

θθαθθ fL
iTi ∇−= ,          (1) 

where α is the step size, )( θfL
iT  is the loss function 

associated with the model fθ given the task Ti that only 

contains few examples per class, and )( θθ fL
iT∇  is the 

corresponding gradient vector with respect to (w.r.t.) the 
current parameters θ. When computed the adapted parameters 
of all tasks, the model parameters are then trained using a 
total loss function 


i

T
ii

fL )( ~θ
,                     (2) 

which measures how well the updated model 
i

fθ~
 performs on 

the test data in tasks sampled from p(T). The goal is to 
minimize the total loss function w.r.t. θ such that with a small 
number of update step (1) the model is able to achieve 
maximum effectiveness on the task. According to the total 
loss function (2), the meta-learning update rule to improve the 
model’s fast adapting ability can be written as: 

∇−←
i

T
ii

fL )( ~θθβθθ ,                 (3) 

where β is the step size, and ∇
i

T
ii

fL )( ~θθ  is the gradient 

vector of the total loss function w.r.t. to θ through stochastic 
gradient descent (SGD). 

B. Reptile 

The main drawback of the MAML algorithm is that the 
optimization process involves second-order derivatives. 
Specifically, when calculating the derivatives of (2), the 

derivatives of )( θθ fL
iT∇  w.r.t. θ will also need to be 

calculated. This operation not only consumes a lot of 
additional memory but also slows down the overall 
optimization speed. To address this issue, Alex Nichol et al. 
proposed Reptile algorithm [17], which simplifies the MAML 
to improve computational efficiency. Similar to MAML, the 
Reptile also aims to train a network initialization that can be 
adapted to new tasks quickly using only little training data 
and a small number of gradient steps. At each meta-training 
iteration, it first samples a task from the training dataset, 
trains on it using mini-batch gradient descent for few steps, 
and moves the initialization towards the trained weights on 
that task using a simple update method. After training on 
many meta-training iterations, it is able to obtain a general 

Algorithm 1. Pseudo Code of the Model-Agnostic 
Meta-Learning (MAML) [16] 
Require : p(T): distribution over tasks 
Require : α, β: step size hyperparameters 
Randomly initialize θ, the initial parameters of the model 
while not done do 
    Sample batch of tasks Ti ~ p(T) 
    for all Ti do 
        Evaluate )( θθ fL

iT∇  with respect to K examples 

        Compute adapted parameters with gradient descent : 

)(
~

θθαθθ fL
iTi ∇−=   

    end for 
    Update ∇−←

i
T

ii
fL )( ~θθβθθ  

end while 
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weight initialization that is close to the optimal weights for many tasks. 

 
Figure 2. Neural network architecture of the proposed CNN tracker. 

 

Algorithm 2 shows the pseudo code of the serial version of 
Reptile, which also aims to learn a general initialization for 
parameters of a neural network model to make the model 
having the ability to generalize quickly from the new task. Let 

)(θk
TU  denote the operator that updates θ k times using 

gradient descent or Adam [19] on batches of data sampled 
from T. At the i-th iteration, the task-adaptation parameters 

iθ~  defined in Eq. (1) can then be computed using the update 

operator such that  

)
~

( θθεθθ −+← i ,          (5) 

where ε is a real number. However, the Reptile can be 
extended into a parallel or batch version. Instead of only 
sampling a single task at each iteration, we can evaluate n 
tasks at each iteration to update the model parameters θ using 

 −+←
n

i
in

)
~

(
1 θθεθθ ,                    (6) 

where n is a nonzero positive number. 

III. THE PROPOSED REPTILE META-TRACKING 

In this section, we introduce the proposed meta-tracking 

algorithm, which is developed based on the MDNet method 
but with different offline learning and online learning process 
inspired by the Reptile meta-learning algorithm. 

A. The Proposed Neural Network Architecture 

Figure 2 illustrates the neural network architecture of the 
proposed CNN tracker, which has a total of seven layers, 
including six CNN layers (Conv1-Conv6) and one 
fully-connected (FC) layer at the last layer. The proposed 
network receives a 107×107 RGB image patch as input. The 
first four layers are identical to the first four layers of VGG11 
[6] with pre-trained parameters on ImageNet dataset [20]. 
The following two layers are CNN layers, each of them with 
128 filters, batch normalization, and ReLU activation 
function. The 6th convolutional layer has a max-pooling 
operation, and the last layer is an FC layer with two output 
units that classify the input image patch belonging to the 
target or the background class. We trained the proposed CNN 
tracker using cross-entropy loss. Unlike the network 
architecture in MDNet, it does not have multi-domain 
branches in the last layer. Therefore, the proposed 
architecture is a single-domain network. 

B. Parameters Update during Offline Reptile 
Meta-Learning 

The goal of offline meta-learning is to learn a generic 
feature representation of targets that can be easily adapted to a 
new task or domain with only a few updates and few training 
examples. During training, the parameters of the first four 
CNN layers (Conv1-Conv4) remain fixed while the 
parameters of the last two CNN layers (Conv5-Conv6) and 
the FC layer are meta-trained. 

Denote wj as the parameters of the model in the j-th layer. 
We first randomly initialize the parameters w5 to w7. The 
parameters w1 to w4 are pre-trained on the ImageNet dataset 
and remain fixed throughout the offline meta-training as well  

Algorithm 2. Pseudo Code of the Reptile in Serial Version 

Require : p(T): distribution over tasks 
Require : ε: step size hyperparameter 
Require : k: iteration number of gradient descent  
Randomly initialize θ, the initial parameters of the model 
for iteration i = 1,2,3,… do 
    Sample a task Ti ~ p(T) 

    Compute )(
~ θθ k

Ti i
U= , denoting k steps of SGD or Adam 

    Update )
~

( θθεθθ −+← i , ε is a real number 

end for  
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as online tracking. We denote the trainable parameters w5 to 
w7 as the symbol θ. At the i-th iteration, we sample a video 
sequence from the training dataset ΩD and randomly sample a 
total of 64 positive sample regions and 192 negative sample 
regions to form a training task Ti. The positive samples have 
an intersection of union (IoU) overlap ratio with ground truth 
bounding boxes equal to or greater than 0.7, while the 
negative samples have the IoU overlap ratio with the ground 
truth bounding boxes equal to or less than 0.5. After the i-th 
training task Ti is sampled, we perform k steps of SGD on the 
parameters θ with the training task Ti as input, resulting in 
new parameters 

iθ  according to Eq. (4), then we update θ 

using Eq. (5). We repeat this training procedure until a 
predefined iteration is reached. After the offline meta-training, 
we obtain general model parameters θ* that can be used 
during online tracking. The pseudo-code of the proposed 
Reptile meta-learning algorithm is shown in Algorithm 3. 

C. Parameters Update during Online Reptile Meta-Tracking 

1) Target estimation 

In the online tracking procedure, the general model 
parameters θ* is updated using the new video sequence. 
Similar to MDNet, the tracker estimates the target at frame t by 
first sampling N target candidates {xt

1,xt
2,…,xt

N} around the 
estimated target location from the previous frame t−1, then 
evaluates them using the fine-tuned model fθ to obtain positive 
score ( )n

tfθ
+ x  and negative score ( )n

tfϕ
− x  for n=1~N. The 

optimal target state xt
* at frame t is estimated by finding the 

candidate with the maximum positive score such that 

* arg max ( )
n
t

n
t tfθ

+=
x

x x ,           (7) 

where the target candidates ( , , )n n n n
t t t tu v s=x  for n=1~N at 

frame t are sampled in the translation of (u,v) coordinates and 
scale dimension s of the n-th sample in Gaussian distribution. 
The standard deviation of the translation dimension (u,v) is 
0.3r and the standard deviation of the scale dimension s is 0.5, 
where r is the mean of width and height of the *

1−tx  in 

previous frame t−1. The total number of target candidates for 
every frame is N=256. 

2) Parameters update 

There are three types of parameters update during online 
tracking. The first one is the initial update, which samples 32 
positive examples with IoU overlap 7.0≥ and 96 negative 
examples with IoU overlap 5.0≤  as training data, and 
performs three steps of SGD on the parameters θ* using the 
sampled training data. The second one is the short-term 
update, which is performed using the positive and negative 
samples collected for a short period of time when the 
estimated optimal target state is considered unreliable 
( *( ) 0.0fθ

+ ≤x ). The third one is the long-term update, 

which is performed every ten frames using positive samples 
collected for a long period of time and negative samples 

collected for a short period of time. 

For long-term and short-term update, the tracker holds two 
frame index sets Tl and Ts, which respectively store 100 and 
20 most recent frame indexes of reliable estimated target state 
( *( ) 0.0fθ

+ >x ). When the frame index t is multiple of ten, 

we perform a few steps of SGD on θ to compute θ  using Eq. 
(4) with positive samples collected in long-term and negative 
samples collected in short-term, then update θ using Eq. (5). 
If *( ) 0.0fθ

+ ≤x , then we perform a few steps of SGD on θ to 

compute θ  using positive samples and negative samples 

collected in short-term, then overwrite θ directly using θ . 

3) The proposed tracking procedure 

The full tracking procedure is described as follows. At the 
start of the sequence, the tracker draws positive samples 

0t
S +  

and negative samples 
0t

S −  from the first frame and update θ* 

using 3 steps of SGD to result in the initialized parameters θ. 
Then it trains a bounding box regression model [2] using the 
target bounding box of the first frame. After the initialization, 
the tracker draws target candidates n

tx  and estimates the 

optimal target state *
tx  using Eq. (7) at frame t. If 

*( ) 0.0tfθ
+ >x , the tracker draws positive samples +

tS  and 

negative samples −
tS  for the online learning and adjusts the 

bounding box of *
tx  using bounding box regression. Next, we 

store the frame index t into the frame index sets Tl and Ts, if 
the number of indexes in Tl and Ts is greater than 100 and 20, 
respectively, then delete the smallest index in the set. 

When the frame index t is multiple of ten, we perform a few 
steps of SGD on θ using positive samples collected in 
long-term and negative samples collected in short-term, 

resulting θ , then update θ using Eq. (5). If *( ) 0.0tfθ
+ ≤x , we 

perform a few steps of SGD on θ using positive samples and 

negative samples collected in short-term, resulting θ , then 

overwrite θ directly using θ . The proposed Reptile 
meta-tracking algorithm is shown in Algorithm 4. 

Algorithm 3. Pseudo Code of the Proposed Reptile 
Meta-Learning 
Require : ΩD: training dataset 
Require : ε: step size hyperparameter 
Require : k: iteration number of gradient descent  
Import w1 to w4 from pre-trained model 
Randomly initialize the parameters w5 to w7 as the symbol θ 
for iteration i = 1,2,3,… do 
    Randomly sample a task Ti from the training dataset ΩD 

    Compute ( )
i

k
i TUθ θ= , denoting k steps of SGD 

    Update ( )iθ θ ε θ θ← + −  

end for  
Output the general model θ* for online meta-tracking 
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IV. EXPERIMENTAL RESULTS 

This section shows the experiment results of the proposed 
method compared to other state-of-the-art methods using the 
OTB2015 dataset for visual tracking benchmark. 

A. Detail Settings 

We implemented the proposed algorithm in Ubuntu 16.04 
using Python 3.5 as the programming language and Pytorch 
0.3.0 as the deep learning framework. For SGD optimization, 
we used Adam optimizer with learning rate 0.001, the first 
order momentum β1=0, and the second-order momentum 
β2=0.999. During the initialization in online learning, the 
tracker samples 32 positive samples with IoU overlap 

7.0≥ and 96 negative samples with IoU overlap 5.0≤ . The 
last three layers of the model are trained for three steps of 
Adam optimization.  

After the initialization, the tracker draws 256 samples 
around the previous target at each frame and estimates the 
target bounding box by the bounding box with a maximum 
positive score. During the short-term update, the algorithm 
trains the last three layers of the model for five steps using 
Adam optimization. For the long-term update, the tracker first 
trains the parameters of last three layers θ of the model for 
five steps using Adam optimization, resulting in new 

parameters for the last three layers θ , and then updates θ 
using Eq.(5) with ε=0.1. 

For the OTB2015 experiment, we used a large scale 
ImageNet detection dataset [20] and VOT dataset [21] as the 
training dataset. For the VOT dataset, we used the sequences 
in VOT2013, VOT 2014 and VOT 2015, excluding the video 
sequences that are also in OTB2015. 

B. Performance Evaluation 

The dataset used for performance evaluation is OTB2015, 
also known as OTB100 or TB-100. It is a data set with a total of 
100 video sequences. Each image in every sequence is annotated 
with the ground truth of the target bounding box. Each ground 
truth bounding box includes four values, the top left corner of the 
bounding box (x, y) as well as its width and height (w, h). 

There are two types of evaluation criteria used in 
OTB2015. The first one is the precision plot, which is defined 
as the average Euclidean distance between the center location 
of the estimated targets and ground truth over all the frames in 
one or multiple sequences. The second one is success plot, 
which measures the overlap score in each frame using the 
following equation: 

t g

t g

r r
Score

r r
=




,        (8) 

where rt and rg denote the estimated bonding box and ground 
truth bounding box in each frame, respectively. To measure 
the success rate (SR) on multiple sequences, the success plot 
counts the number of frames that have overlap scores higher 
than certain thresholds, and then divides the number with the 
total number of frames. This work uses one-pass evaluation 
(OPE) on the success plots and the precision plots to evaluate 
the tracking performance. 

For the result comparison, we select eight state-of-the-art visual 
tracking algorithms including DeepSRDCF[9], MDNet[11], 
SiamFC[13], SINT[14], Meta-SDNet[15], Meta-CREST[15], 
CREST[22] and PTAV[23]. Figure 3 shows the OTB2015 
precision and success plot of the proposed method as well as the 
other compared methods mentioned above. Both plots in Figure 3 
show that the proposed Reptile meta-tracker achieves competitive 
performance on OTB2015 in terms of tracking precision and 
tracking success rate. Figure 3(b) show that the proposed Reptile 
meta-tracker obtains an average SR of 66.4%, outperforming the 
existing meta-SDNet and meta-CREST tracker by 0.2% and 0.7%, 
respectively. The proposed method also outperforms the other 
deep visual trackers. 

Algorithm 4. Pseudo Code of the Proposed Reptile 
Meta-Tracking 
Require : θ*: general model parameters 
Require : ε: step size hyperparameter 
Require : k: iteration number of gradient descent  
Import model fθ with trainable parameters θ* from the 
offline meta-learning 
Draws positive and negative samples 

0t
S + and 

0t
S −  from the 

first frame t0 
Train a bounding box regression model using the target 
bounding box of the first frame 
Update θ* using three steps of SGD to θ 
Store the first frame index t0 into both frame index sets Tl 
and Ts 
for frame t = 1,2,3,… do 

Draw target candidate samples n
tx  for n=1~N with 

frame t  

Estimate * arg max ( )
n
t

n
t tfθ

+=
x

x x  

if *( ) 0.0tfθ
+ ≤x  

Short-Term Update 
Perform k steps of SGD on θ using candidate samples

sTS +  and 
sTS −  to compute θ  

Update θ θ←    
     else 

Draw training candidate samples 
tS + and 

tS −  

Adjust *
tx  using bounding box regression 

Update the frame index t into both frame index 
sets Tl and Ts 

if t mod 10 = 0 
Long-Term Update 
Perform k steps of SGD on θ using candidate 

samples 
lTS +  and 

sTS −  to compute θ  

Update ( )θ θ ε θ θ← + −   
end for 
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(a)                            (b) 

Figure 3. Result comparison: (a) Precision plots and (b) Success plots on OTB2015 using OPE.  
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Figure 4. Tracking result for sequence Basketball (Row1), Board (Row2), and ClifBar (Row3). 

C. Tracking Results 

This section presents some of the most challenge 
sequences in OTB2015 and compares the tracking results of 
the proposed method against four state-of-the-art deep visual 
trackers: DeepSRDCF[9], MDNet[11], SiamFC[13], and 
Meta-SDNet[15]. Figure 4 shows tracking results of three 
challenge sequences in background clutter: Basketball 
(Row1), Board (Row2), and ClifBar (Row3). In the 

Basketball sequence, the target is one of the basketball 
players wearing the green shirt. During the sequence, there 
are multiple occasions where the target is running fast, 
resulting in motion blur effect. There are also several objects 
in the background that are very similar to the target, which 
causes some tracking algorithms (e.g., MDNet and SiamFC) 
to track the wrong object toward the end of the sequence. In 
the Board sequence, the target is a  
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SiamFcMDNetOurs DeepSRDCFMeta-SDNet  
Figure 5. Tracking result for sequence DragonBaby (Row1), Bird1 (Row2), MotorRolling (Row3), and Skiing (Row4). 

motherboard moving around in a cluttered background. During 
the sequence, the target is rotated for several times or even 
flipped to the opposite side. This out-of-view issue causes the 
SiamFC tracker to lose the target while the other compared 
trackers may not produce an accurate bounding box of the 
target. In the ClifBar sequence, the target is a card with a 
special texture on it. During the sequence, the target is moved 
around and rotated by a person’s hand. The scale of the target 
changes dramatically in some parts of the sequence. Moreover, 
the target is out-of-view for a short time. These issues cause 
some trackers like SiamFC and MDNet to lose the target. By 
contrast, the proposed meta-tracker can track and redetect the 
target successfully. 

Figure 5 shows tracking results of four challenge sequences 
in fast motion and scale variation: DragonBaby (Row1), Bird1 
(Row2), MotorRolling (Row3), and Skiing (Row4). The target 
of the DragonBaby sequence is the head of the baby. During the 
sequence, the target constantly moves very fast while rotating, 
causing the SiamFC tracker to lose the target. The target of the 
Bird1 sequence is one of the birds in the scene. This sequence is 
very challenging because the target is occluded for a long time 

toward the middle of the sequence, causing the search area of 
all compared trackers to drift away and never recover. On the 
contrary, the proposed meta-tracker is able to stay in the 
position until the target re-appears and then tracks the correct 
target toward the end of the sequence. 

The target of the MotorRolling sequence is a rolling 
motorcycle, which constantly rotates in some occasions with a 
cluttered background. This type of target causes some trackers 
to either have bad bounding boxes or completely lose the target. 
However, the proposed meta-tracker is able to track the target 
accurately throughout the sequence. Next, the target in the 
Skiing sequence is a person skiing down the hill very fast with a 
large scale variation. During this challenging sequence, the 
proposed meta-tracker still can track the target throughout the 
sequence. In contrast, the SiamFC and DeepSRDCF trackers 
lose the target when it passes through the tree in the 
background. 

Figure 6 shows tracking results of two challenge sequences 
in fast motion with illumination variation and occlusion: 
Ironman (Row1) and Matrix (Row2). The target of the Ironman  
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Figure 6. Tracking result for sequence Ironman (Row1) and Matrix (Row2). 

 

 
Figure 7. Tracking result for sequence Football (Row1) and Freeman4 (Row2). 

sequence is head of the ironman. This sequence is very 
challenging because the target not only suffers from very poor 
lighting conditions, but also constantly moves very fast while 
rotating. In addition, the target is also occluded in some 
occasions. This causes most of the trackers to finally lose the 
target including the proposed one. Next, the target of the 
Matrix sequence is the head of a person. During the sequence, 
the target moves very fast while in a dark lighting condition. 
The proposed meta-tracker and MDNet are able to track the 
target most of the time while the other trackers drift away 
from the target toward the end of the sequence. 

Figure 7 shows tracking results of two challenge sequences 
in rotation and occlusion: Football (Row1) and Freeman4 
(Row2). The target in the Football sequence is one of the 
football payers’ head. The biggest challenge is that there are 
many similar objects in the background and very close to the 
target most of the time. This issue causes some trackers to 
drift away such as SiamFC and MDNet. By contrast, the 
proposed meta-tracker can track the target throughout the 
whole sequence. Finally, the target in the Freeman4 sequence 

is the head of a walking person. The other people in the 
background are waving books while the person is slowly 
walking through them, causing the target to be partially or 
completely occluded several times. The proposed 
meta-tracker is able to track the target without drifting to 
background throughout the sequence. Therefore, the above 
experimental results validate the tracking performance and 
robustness of the proposed meta-tracking method. More 
experimental results can refer to online web-page [24]. 

V. CONCLUSIONS AND FUTURE WORK 

The proposed meta-tracking method combines a first order 
meta-learning technique called Reptile into general 
initialization of a deep visual tracker. Moreover, a novel CNN 
architecture is also proposed to implement a single-domain 
CNN tracker. The proposed single-domain meta-tracker 
performs well on the OTB2015 dataset, which includes many 
challenging conditions such as occlusion, motion blur, fast 
motion, rotation, deformation, and background clutters, etc. 
The proposed meta-tracking method achieves average SR up 
to 66.4% across all sequence. Compared to eight 
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state-of-the-art methods, the proposed meta-tracking method 
can achieve comparable or even better performance in term of 
tracking precision and average SR given less training data and 
fewer update steps during online tracking. Experimental 
results not only validate the tracking performance and 
robustness of the proposed Reptile meta-tracker, but also 
show that meta-learning has a great potential to be used in the 
field of generic object tracking. In the future, the combination 
of Reptile meta-learning with other deep visual trackers will 
be further investigated. 
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Abstract—In this paper, a simulation system of a spherical 

robot is designed and implemented. The Gazebo, a physics 

simulation engine of Robot Operating System (ROS), is used to 

implement the simulation system to simulate and analyze the 

spherical robot. The spherical robot can move freely on the field. 

The outside of the spherical robot is a hollow spherical shell. 

There is a two-wheeled car driven by motors on the inside of the 

spherical robot. When the motor of the two-wheeled car rotates, 

the driving wheels drive the two-wheeled car. Then the spherical 

robot changes the posture in the hollow spherical shell to change 

the center of gravity of the spherical robot so that the spherical 

robot moves on the field. Then, the spherical robot is used as a 

carrier. A fan is mounted above the sphere and the spherical 

robot still can move on the field. After installing the fan device 

above the spherical robot, some results show that the 

implemented motion controller and balance controller are 

effective. 

Keywords—Spherical Robot, Physics Simulation Engine, Fuzzy 

System, Motion Control, Balance Control 

I. INTRODUCTION 

In 1996, Halme et al. [1] proposed a mobile robot ball, a 
spherical surface omni-directional mobile robot driven by an 
inside drive unit, and analyzed the uphill movement and 
obstacles crossing. Bicchi et al. [2] designed a two-wheeler 
into a hollow ball and described its kinematics, dynamics, and 
motion planning. The device is an unrestricted spherical 
vehicle that automatically rolls on the floor and can be moved 
anywhere in the environment. Bhattacharya and Agrawal [3] 
designed a spherical robot based on the principle of 
conservation of angular momentum, placing two motors 
vertically inside, and using the angular momentum generated 
by the high-speed rotation of the motor to move the robot in 
the opposite direction. Mukherjee et al. [4] proposed a 
spherical robot and used the center of gravity displacement to 
move the robot. The telescopic limbs and cameras are added to 
the sphere to facilitate unmanned missions such as battlefield 
reconnaissance and environmental detection. Javadi and 

Mojabi [5] proposed a new prototype of an omnidirectional 
robot system and analytical studied this spherical rolling robot. 
Sun et al. [6] proposed a double-driven moving sphere robot by 
changing its center of gravity and orthogonal crossing 
mechanism. Xiao et al. [7] designed a type of spherical mobile 
robot to serve as a platform for carrying sensing devices or 
actuators in environments where demanding conditions and 
stability of mechanical platforms are critical. The moving 
sphere robot BHQ-1 was designed by Zhan et al. [8] and the 
prototype BHQ-1 robot was designed to improve the structure 
of the BHQ-1G spherical mobile robot. Zhan et al. [9] 
developed a spherical mobile robot BHQ-1 for environmental 
detection. The spherical mobile robot has a radius of 200mm 
and has a camera and an infrared sensor mounted on one side 
of the robot spindle. Liu et al. [10] designed an 
environmentally-detected spherical mobile robot BHQ-2 with 
two cameras, which is a non-holonomic constraint system. 
Based on the spin theory, the velocity Jacobian matrix of the 
spherical mobile robot is derived. Q-Taro ball-type robot 
developed by SONY [11] and the test machine exhibited in 
2002. It has dozens of sensors and basic single-word speech 
recognition that can be moved away from obstacles, interact 
with the user, or automatically return to the base. GroundBot 
mobile monitoring ball robots developed by Rotundus [12]. 
The ball has a height of 60cm, a width of 80cm and a weight of 
25kg. It can work in -30°C~40°C environment such as snow, 
sand, mud, and other roads. 

This paper intends to develop a simulation system specially 
designed for a spherical robot with Gazebo, a physics 
simulation engine of Robot Operating System (ROS) [13]. In 
the future, virtual scene testing of the venue or workplace can 
be linked to the robot-related technologies to verify and 
confirm some functions of the spherical robot. The rest of the 
paper is organized as follows: Design of the mobile spherical 
robot is described in Section II. Motion control of the spherical 
robot is described in Section III. Some straight-line simulation 
results are presented in Section IV. Two-dimensional balance 
control of the spherical robot is described in Section V. Some 
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two-dimensional simulation results are presented in Section VI. 
Finally, some conclusions are made in Section VII. 

II. DESIGN OF MOBILE SPHERICAL ROBOT

In the design of the spherical robot, it mainly referenced to 
two related products: (1) Sphero SPRK plus [14] and (2) 
Sphero Star War BB-9E [15]. The entity of Sphero SPRK plus 
is shown in Fig. 1, where a two-wheeled car is in the inside of 
the robot ball and a metal object is placed at the bottom of the 
two-wheeled car. The object lowers the center of gravity of the 
moving sphere. The center of gravity needs to be kept as low as 
possible to improve the stability of movement. The entity of 
Sphero SPRK plus is shown in Fig. 2, where the upper object is 
fixed above the robot with magnetic force and two small 
contact rollers are arranged on the contact surface to facilitate 
the movement on the spherical surface. 

Design of bottom 

weighted metal block

(a) (b) 

Fig. 1. Entity of Sphero SPRK plus [14]. 

Magnetic 

Adsorption

(a) 

Design of small roller 

convenient in spherical 

surface movement.

(b) 

Fig. 2. Entity of Sphero Star War BB-9E [15]. 

The mathematical model of the spherical robot is obtained 
from the two-wheeled car and the schematic diagram of the 
two-wheeled car is shown in Fig. 3, where L is the distance 
between the wheel and center of the two-wheeled car and α is 
the angle between the direction of the spherical robot and the 
field coordinates. When the forward speeds of the two wheels 

are equal, the spherical robot will roll forward. When forward 
speeds of the two wheels are not equal, the spherical robot will 
change its rolling direction. In this paper, a fuzzy controller is 
proposed to control the spherical robot to achieve the desired 
motion trajectory. 

Fig. 3. Schematic diagram of the two-wheeled car. 

The moving speed and the angular velocity of the two-
wheeled car can be respectively described as 

 2 2
x yv v v   

and 

    

Its double wheels conversion matrix can be described as 

 1

1

L

R

v L v

v L 

     
     
    

 

In the straight-line simulation experiment, the bottom of the 
two-wheeled car is provided with an object, which lowers the 
center of gravity of the moving sphere. When the two-wheeled 
car moving inside the spherical shell, the center of gravity of 
the spherical robot is changed and the spherical robot moves. 
The diameter and weight of the sphere are 40 cm and 0.5 kg, 
respectively. The weight of the body of the two-wheeled car 
inside the sphere is 1 kg. In order to make the sphere move 
more easily, an additional object of 4 kg is added under the 
main body of the two-wheeled car to lower the center of 
gravity of the entire sphere. Simulation of a straight-line 
moving sphere is shown in Fig. 4. Detailed specifications of 
the two-wheeled car, spherical shell, and wheel are listed in 
Table I, Table II, and Table III, respectively. 

Fig. 4. Simulation of spherical robot. 
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TABLE I.  SPECIFICATIONS OF TWO-WHEELED CAR 

Description Value 

Length (cm) 22.5 

Width (cm) 20 

Height (cm) 32.1 

Body weight (kg) 1 

Attachment height (cm) 2.5 

Attachment weight (kg) 4 

TABLE II.  SPECIFICATIONS OF SPHERICAL SHELL 

Description Value 

Diameter (cm) 40 

Thickness (cm) 0.8 

Weight (kg) 0.5 

TABLE III.  SPECIFICATIONS OF WHEEL 

Description Value 

Diameter (cm) 20 

Thickness (cm) 2.5 

Weight (kg) 0.2 

Distance between two wheels (cm) 20 

III. MOTION CONTROL OF SPHERICAL ROBOT

An straight-line moving simulation of the spherical robot is 
designed and described in Fig. 5. There is a motor-driven two-
wheeled car inside and it can move freely on the field. When 
two motors drive the two-wheeled car to move inside the 
hollow spherical shell, the center of gravity of the spherical 
robot is shifted at the same time so that the spherical robot 
rotates and moves on the field. Its system diagram is described 
in Fig. 6. The trajectory planning, motion control, and 
simulation are respectively described as follows: 

Fig. 5. Straight-line moving simulation of the spherical robot. 

Trajectory Planning

Motion Controller

Motion Equation Spherical Robot

Gazebo

– 

+

ROS

e


b

yv

,L Rv v

Fig. 6. System diagram of straight-line moving simulation of the spherical 

robot. 

A. Trajectory Planning 

The spherical robot is set to go forward from left to right, 
that is, the moving target direction θ of the spherical robot is 0, 
the forward speed vx is a constant and the side moving speed vy 
is 0. 

B. Motion Controller 

The fuzzy theory is used to design the motion controller. 
This controller is to calculate the compensation amount of the 
side movement speed based on the front angle when the sphere 
robot moves so that the robot can maintain the forward 
direction in the desired trajectory. The motion controller is a 
single-input-and-single-output system, where the input variable 

e  is the difference between the moving target direction   of

the robot and the actual forward direction 
b , and the output

variable 
yv  is the compensation speed of the lateral 

movement direction of the robot. The input variable e  is can

be described as 


be     

The ranges of the input variable e  and the output variable 
yv

are defined respectively as 

 [ 90,90]e    

 [ 3,3]yv    

The following term sets are used to describe the fuzzy sets of 
each input and output fuzzy variables: 


1 2 3( ) {P,Z,N} { , , }T e A A A    


1 2 3( ) {P,Z,N} { , , }yT v B B B    

where the following linguistic terms (Positive (P), Zero (Z), 
and negative (N)) are considered to describe the input and 
output variables of the fuzzy system. In the definition of the 
fuzzy set, as shown in Fig. 7, the fuzzy set of input variables 

e  are described by the triangle membership function and the

trapezoidal membership function, where ( )Ai
e  represents the 

attribution of the input variable. On the definition of the fuzzy 

set of output variables 
yv , as shown in Fig. 8, the singleton 

membership functions are used to describe the fuzzy set, where 

( )B yi
v   is its degree of attribution. 

e

( )Ai
e

Z

2
A3A 1A

N P

−30 300

Fig. 7. Membership functions of input variable e . 
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−3 0 3

( )B yi
v 

PZN

3B 2B 1B

yv

Fig. 8. Membership functions of Output variable 
yv . 

The proposed rule bases for the motion controller are 
described in Table IV. The proposed fuzzy rules of motion 
controller can be described as follows: 

Rule
1( )iR j ：

 If e  is
1j

A  THEN 
yv  is 

2j
B  

where
1

( )jA T e ,
2

( )j yB T v  , 
1j {1,2,3} and 

2j {1,2,3}.

TABLE IV.  FUZZY RULE BASE OF MOTION CONTROLLER 

e

N Z P 

yv N(
3B ) Z(

2B ) P(
1B ) 

Based on the weighted average defuzzifier,  
yv  is taken as 

the output of this fuzzy control system, so the output of the 
motion controller can be expressed as 



3 3

1 2 2
1 1

3 3

1
1 1

( ) ( ) ( ) ( )

( ) ( )

j A ji
i i

y

Ai
i i

w j c B e c B

v

w j e









 

 

 

  

 

 

 

where 
1( )w j  is the appropriate degree to which the 

1( )iR j  rule

is touched, and 
2

( )jc B  is the crisp value represented by the

singleton membership function. 

C. Simulation Environment 

In the simulation environment, a physics engine simulator 
Gazebo is used to build related virtual scenes. Gazebo is an 
open-source 3D robotics simulator. The structural parts of the 
designed spherical robot can be imported into Gazebo to build 
a virtual robot. Gazebo can be used to control the robot motion 
and verify the algorithm by the simulation results. One 
environment for the designed spherical robot is shown in Fig. 9. 

Fig. 9. One simulation environment for the designed spherical robot. 

IV. STRAIGHT-LINE SIMULATIONS OF MOTION CONTROL

In order to effectively test the effect of the motion 
controller, the simulator Gazebo is used to build an 
experimental field to compare the control results without and 
with the motion controller. As shown in Fig. 9, the leftmost 
position and the rightmost position in the experimental field are 
the initial position and the end position of the spherical robot, 
respectively. When the simulation starts, the spherical robot 
rolls in a straight line to the right side of the experimental field 
until it rolls to the far right of the experimental field. The 
movement trajectory is the center horizontal line of the site. 

Some simulation results of the moving process of the 
spherical robot without the motion controller are shown in Fig. 
10 and the trajectory errors are shown in Fig. 11. The initial 
position of the spherical robot is at the center of the leftmost 
position of the field. At the starting time, the error is 0. When 
the spherical robot rolls to the right side, an error occurs. The 
spherical robot gradually moves away from the straight 
trajectory of the center horizontal line and the trajectory error 
gradually becomes larger.  

(a) 

(b) 

(c) 

(d) 

Fig. 10. Simulation results of the moving process of the robot without the 

motion controller (Depart from the center of the far left of the field). 
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Fig. 11. Trajectory error without the motion controller (Depart from the 

center of the far left of the field). 
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In Fig. 12, the initial position of the spherical robot is at 
0.5m above the center of the leftmost position of the field, so 
there is an initial error. When the spherical robot is in the 
rolling, the error gradually becomes larger, making the 
spherical robot more offset from the linear line of the center 
horizontal line. These trajectory errors are shown in Fig. 13. 

(a) 

(b) 

(c) 

(d) 

Fig. 12. Simulation results of the moving process of the robot without the 

motion controller (Depart from the top 0.5m of the center of the leftmost 
position of the field). 
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Fig. 13. Trajectory error without the motion controller (Depart from the top 

0.5m of the center of the leftmost position of the field) 

Another moving process of the spherical robot with the 
motion controller is described in Fig. 14. The initial position of 
the spherical robot is at the center of the leftmost position of 
the field. At the starting time, the error is 0. When the spherical 
robot rolls to the right side, an error occurs. The spherical robot 
is kept near the straight trajectory of the center horizontal line 
and the trajectory error is kept within a certain range. These 
trajectory errors are shown in Fig. 15. 

In Fig. 16, the initial position of the spherical robot is at 0.5 
above the center of the leftmost position of the field, so there is 
an initial error. The motion controller performs the control 
compensation and the spherical robot still moves near the 
straight track close to the center horizontal line. These 
trajectory error are shown in Fig. 17. 

(a) 

(b) 

(c) 

(d) 

Fig. 14. Simulation results of the moving process of the robot with the motion 

controller (Depart from the center of the far left of the field). 
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Fig. 15. Trajectory error with motion controller (Depart from the center of the 

far left of the field). 

(a) 

(b) 

(c) 

(d) 

Fig. 16. Simulation results of the moving process of the robot with motion 

controller (Depart from the top 0.5m of the center of the leftmost 
position of the field). 
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Fig. 17. Trajectory error with motion controller (Depart from the top 0.5 of 

the center of the leftmost position of the field). 

The spherical robot rolls by the center of gravity offset. 
When the spherical robot is rolling, the direction error of 
traveling is likely to occur at this time. The two-wheeled car 
inside the robot continues to have errors in the direction of 
travel and the error will continue to expand. The experimental 
results represent the proposed motion controller can effectively 
control the spherical robot and let the trajectory error within a 
certain range. 

V. TWO-DIMENSIONAL SIMULATION OF MOTION CONTROL OF 

SPHERICAL ROBOT 

In the two-dimensional simulation, a fan is fixed above the 
vertical axis of the center of the spherical robot, and the 
distance is from the vertical axis of the center of the two-
wheeled car to the distance between the spherical shells. The 
size of the fan has no effect on the simulation. The main effect 
is the weight of the fan. The weight of the fan mechanism, 
circuit and battery needs to be concentrated on the bottom of 
the fan. It is assumed that the fan can be completely adsorbed 
on the spherical robot by the magnetic force and the relative 
position of the fan and the spherical robot is fixed. This 
problem does not calculate the problem of magnetic attraction, 
but in the future, the magnetic force problem needs to be 
considered in the actual production. The two-dimensional 
simulation of the spherical robot is shown in Fig. 18 and the 
detailed specifications of the fan are shown in Table V. The 
system diagram of the two-dimensional simulation of the 
spherical robot is shown in Fig. 19. A balance controller is 
added in this system diagram and described as follows:. 

18cm

18cm

20cm

20cm
40cm

0.8kg

1kg

4kg

7.62cm

5cm

Fig. 18. Two-dimensional simulations of the spherical robot. 

TABLE V.  DETAILED SPECIFICATIONS OF FAN 

Description Value 

Length (cm) 18 

Width (cm) 7.62 

Height (cm) 18 

Weight (kg) 0.5 
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Fig. 19. System diagram of two-dimensional simulation of the spherical robot. 

The fuzzy theory is used to design the balance controller. 
When the spherical robot moves, this controller observes the 
fan tilt angle and determines a compensation amount for the 
forward movement acceleration and deceleration so that the fan 
is maintained above the robot. The balance controller is a 
single-input-and-single-output system, where the input variable 

e  is the difference between the moving target direction   of

the robot and the actual forward direction 
b , and the output 

variable 
xv  is the compensation speed of the lateral 

movement direction of the robot. The input variable e  is can

be described as 


be     

The ranges of the input variable e  and the output variable 
xv

are defined respectively as 

 [ 180,180]e    

 [ 1,1]xv    

The following term sets are used to describe the fuzzy sets of 
each input and output fuzzy variables: 


1 2 3( ) { ,M,L} { , , }T e S C C C    


1 2 3( ) {P,Z,N} { , , }xT v D D D    

where the linguistic terms (Small (S), Middle (M), and Large 
(L)) and (Positive (P), Zero (Z), and Negative (N)) are 
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considered to describe the input and output variables of the 
fuzzy system. As shown in Fig. 20, the triangle membership 
function and the trapezoidal membership function are used to 

describe the fuzzy sets of the input variable e . On the

definition of the fuzzy set of the output variables 
xv , as

shown in Fig. 21, the singleton membership functions are used 
to describe the fuzzy set. 

e

( )Ci
e

M

2C3C 1C
L S

-50 0-25

Fig. 20. Membership functions of input variable e
. 

-1 0 1

( )D xi
v 

PZN

3D 2D 1D

xv

Fig. 21. Membership functions of output variable 
xv . 

The proposed rule base for the motion controller is 
described in Table VI. The proposed fuzzy rules of the motion 
controller can be described as follows: 

Rule
3( )iR j ：

 If e  is 
3j

C  THEN 
xv  is 

4j
D  

where
3

( )j pC T e , 
4

( )j xD T v  , 
3j {1, 2, 3} and 

4j {1, 2,

3}. 

TABLE VI.  FUZZY RULE BASE OF BALANCE CONTROLLER 

e

N Z P 

xv N(
3D ) Z(

2D ) P(
1D ) 

Based on the weighted average defuzzifier, 
xv  is taken as 

the output of this fuzzy control system, so the output of the 
balance controller can be expressed as follows: 



3 3

3 4 4
1 1

3 3

3
1 1

( ) ( ) ( ) ( )

( ) ( )

j C ji
i i

x

Ci
i i

w j c D e c D

v

w j e









 

 

 

  

 

 

 

where 
3( )w j  is the appropriate degree to which the 

3( )iR j  rule

is touched, and 
4

( )jc D  is the crisp value represented by the

singleton membership function. 

VI. TWO-DIMENSIONAL SIMULATIONS OF BALANCE CONTROL

When the spherical robot follows a curved trajectory in a
two-dimensional space, some simulation results of the balance 
controller are shown in Fig. 22. It illustrates the spherical robot 
can actually follow the desired curved trajectory. The tilt angle 
of the fan can be kept within a certain range. The trajectory 
error of the robot and the tilt angle of the fan are respectively 
shown in Fig. 23 and Fig. 24. These results show that the 
designed motion controller can effectively control the motion 
of the spherical robot and limit the trajectory error within a 
certain range. However, after adding the fan in the top of the 
spherical robot, the weight of the fan tilts the spherical robot 
backwards, increasing the difficulty of balancing for the 
spherical robot. But the balance controller can limit the tilt 
angle of the fan within a certain range. 

(a) 

(b) 

(c) 

(d) 

Fig. 22. Simulation results of the two-dimensional moving process of the 

spherical robot with the motion controller and balance control. 
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Fig. 23. Moving trajectory errors of the spherical robot follows a curved 

trajectory in a two-dimensional space. 
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Fig. 24. Fan tilt angle of spherical robot when it follows a curved trajectory in 

a two-dimensional space. 

VII. CONCLUSION

In this paper, a simulation system of a spherical robot is 
designed and implemented. A 3D physics engine simulator 
Gazebo is used to build a simulation environment and a 
spherical robot is designed in the Gazebo to test the designed 
functions. Through the simulation environment, the situation of 
the viewing motion mode can be presented. Before the 
completion of the spherical robot, the simulation environment 
can be used to verify the posture control and movement of the 
spherical robot. First, the spherical robot model and its related 
parameter are established. Then, a motion controller and a 
balance controller based on the fuzzy theory are designed for 
the spherical robot. Some simulation results are presented to 

illustrate the efficiency of the proposed method. We can see 
that the dedicated simulation environment makes the 
development of the control strategy for the spherical robot is 
quite convenient.  
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