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Abstract—Composite plates are a structural solution that 

enhances material stiffness and reduces structural weight. For 

instance, the introduction of glass fiber-reinforced materials in 

wind turbine blades improves tensile strength in specific directions, 

thereby reducing system weight and increasing power generation 

efficiency. Additionally, composite plates enhance structural 

rigidity due to the directional nature of the interlayer fibers. 

However, the anisotropic nature of composite materials can lead 

to internal damage when external stresses are not aligned with the 

fiber distribution. In practical systems, forces act in various 

directions, posing fatigue and damage risks to the inner layers of 

composite plates. The objective of this study is to initially assume 

isotropic properties for all plates to simplify the complexity of 

theoretical validation. By applying Kirchhoff's plate theory, 

internal force equilibrium equations are established for intact and 

damaged plates. Subsequently, the force equilibrium equations for 

all plates are summed to derive the governing equation for 

out-of-plane displacements of isotropic plates. Neglecting material 

damping coefficients, the out-of-plane motion of plates is assumed 

to follow harmonic motion, and the resonant frequency of the 

structure is calculated and compared with that of a damaged 

structure. Through this research, a better understanding of the 

impact of structural integrity and internal damage on resonant 

frequency response can be achieved. Further investigations will 

focus on exploring the effects of different stacking sequences and 

proposing methods to calculate the influence of resonance 

frequencies for various plate configurations. This will contribute 

to improving the design and analysis of laminated structures, 

providing more accurate and reliable guidance to ensure 

structural safety and performance. 

I. INTRODUCTION 

In the design of aircraft wings or fan blades, it is crucial to 
avoid the natural frequencies of the structure coinciding with 
the operating frequencies. When the natural frequency of a 
structure matches the operating frequency, resonance 
phenomena can occur, leading to structural damage or failure, 
posing significant safety risks. However, regardless of how 
carefully designed, accurately predicting the damage caused 
by fatigue or external force impact during the initial design 
phase is challenging. This is because fatigue damage is a 
progressive process, while external force impacts can be 
sudden events that are difficult to predict accurately. 
Therefore, laminated plate damage analysis becomes a critical 
approach. Engineers employ the finite element method to 
simulate laminated plates and evaluate the structural strength 
and damage states. The finite element method can provide 
stress distribution, regions of strain concentration, and 
potential crack locations, assisting engineers in understanding 
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the durability and reliability of the structure. However, the 
finite element method also has its limitations. Firstly, 
establishing an accurate finite element model requires 
complex geometric modeling and mesh generation of the 
structure, which can consume significant time and human 
resources. Secondly, the accuracy of the finite element method 
is influenced by model assumptions and input parameters, 
introducing uncertainties in the model. Additionally, the finite 
element method presents challenges when simulating complex 
damage patterns and crack propagation. In conclusion, 
laminated plate damage analysis is a crucial process in the 
design and evaluation of aircraft wings or fan blade structures. 
While the finite element method is a widely used analytical 
tool, engineers should be aware of its limitations and 
complement it with other inspection techniques and 
experimental validations to comprehensively assess the safety 
and reliability of the structure. 

II. THEORETICAL MODEL CONSTRUCTION 

In this section, we will introduce the Kirchhoff plate 
theory model and its application to isotropic laminated plates. 
The utilization of the Kirchhoff plate theory is justified due to 
its close approximation to the stress conditions experienced 
by structures such as wind turbine blades and wings. The 
predominant loading state in wings and blades involves 
external forces perpendicular to the surface of the structure. 
The assumptions of the Kirchhoff plate theory state that the 
stresses in the z-direction (thickness direction) are negligible 
compared to those in the x and y directions (in-plane 
directions), and that there are no transverse shear stresses on 
the plate surface. Therefore, complex three-dimensional 
problems can be simplified into two-dimensional problems. 

A.  Kirchhoff Plate Theory 

In this study, the Kirchhoff plate theory is employed to 

describe the out-of-plane displacement equations for each 

layer of the laminate. The displacement fields in the 

x-direction, denoted as u, in the y-direction as v, and in the 

z-direction as w, are considered. The Kirchhoff plate theory 

assumes that the stresses in the z-direction are negligibly small 

compared to those in the x and y directions. This assumption 

allows for the simplification of the three-dimensional problem 

into a two-dimensional problem. The displacement fields are 

defined as shown in equation (1). 
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The relationship between strain and displacement fields is 
described by equation (2). 
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In Kirchhoff's plate theory, the surface strain is the sum of the 

mid-plane strain and the product of the mid-plane to surface 

thickness and the tangent gradient. This allows us to express 

the strain in terms of the displacement field as shown in 

equation (3). 
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The conversion between two-dimensional strain and stress 

needs to consider the Poisson's ratio, which can be expressed 

by equation (4). 
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By integrating the stress along the thickness direction, the 

stress field can be obtained. By multiplying the stress by the 

thickness and integrating it along the thickness direction, the 

bending moment field can be obtained. The stress field, 

denoted as Nij, is given by equation (5), and the bending 

moment field, denoted as Mij, is given by equation (6). 
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Although the Kirchhoff thin plate theory assumes that the 

stress in the z-axis direction is much smaller than the stresses 

in the other axial directions, the transverse shear stress cannot 

be neglected in the equilibrium equations. The transverse 

s h e a r  s t r e s s  f i e l d  i s  d e f i n e d  b y  e q u a t i o n  ( 7 ) . 
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The equilibrium equations for the bending moment field and 

the transverse shear force are given by equation (8). 
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If external forces are present on the thin plate, the sum of the 

partial derivatives of the transverse shear force with respect to 

x and y will be equal to the external force. This relationship 

can be used as an equilibrium equation with external forces, as 

shown in equation (9). 
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By considering the kinetic energy resulting from the mass of 

the thin plate, the equilibrium equation mentioned above can 

be rearranged to obtain the governing equation for the 

out-of-plane displacement of the thin plate. This equation is 

represented by equation (10). 
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B.  Classical Laminate Plate Theory 

The governing equation for the displacement of a laminated 

composite plate is constructed based on the Kirchhoff plate 

theory. Unlike a single-layer plate, the orientation of the 

laminated materials in the composite plate affects the 

calculation results. In this section, we will introduce the strain 

transformation relationships for materials with different 

orientations. By summing up the stress field and bending 

moment field of each thin layer, the stress field and bending 

moment field of the laminated composite plate are obtained. 

Here, 'k' represents the number of layers. The relationships are 

shown in equations (11) and (12). 
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The material coefficients and stress-strain relationships for 

each layer are given by equations (13) and (14). 
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The Q matrix, which is the inverse of the material coefficient 

matrix, is given by equation (15). 
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The stress transformation relationship for anisotropic 

materials is expressed by equation (16). 
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Substituting the stress transformation relationship given by 

equation (17) into the strain, the strain transformation 

relationship is obtained as shown in equation (18). 
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The Q matrix is a constant matrix constructed from the 

material coefficients and the material orientation angles. Its 

relationship is given by equations (19) and (20). 
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By substituting all the aforementioned equations into the thin 

plate strain field equation, which includes the mid-plane strain 

and the product of mid-plane to surface thickness and the 

tangent slope (referred to as curvature strain), we obtain 

equations (21) and (22). 
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Since the Q matrix is constant, the integral terms of the stress 

field and the bending moment field can be grouped into 

constant matrices A, B, and D, as shown in equations (23) and 

(24). 
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The matrix A represents the tensile stiffness, the matrix B 

represents the coupling between bending and tension, and the 

matrix D represents the bending stiffness. Expanding these 

matrices yields equation (25). 
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This study aims to investigate the variations in the resonance 

frequencies of internal damage in symmetric laminated plates 

composed of identical isotropic materials. Therefore, the 

coupling stiffness matrix, which represents the 

bending-stretching coupling effect, can be neglected. By 

rearranging the equilibrium equations based on Kirchhoff's 

plate theory, a governing equation similar to that of a 

single-layer plate can be derived. Equation (26) represents this 

governing equation, with the main difference lying in the 

integration thickness for the bending moment field and stress 

field. 
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C.  Resonance frequencies of a damaged single-layer plate. 

To simplify the problem, two assumptions are made in the 

preliminary construction of the displacement equation for the 

damaged thin plate. First, the damaged region of the plate is 

assumed to have a closed and simple geometric shape, which 

is defined in this study as a rectangle. Second, there are no 

residual stresses at the boundary between the damaged and 

undamaged regions. 

 

The assumption of no residual stresses is made because 

residual stresses can alter the local material properties and 

their distribution is nonlinear, which would complicate the 

analysis. Therefore, this factor is not considered at this stage. 

Since the damaged thin plate is discontinuous in its 

coordinates, it is not possible to construct a global equation of 

motion using thin plate theory. In this study, the differential 

energy method is employed, treating the damaged and 

undamaged regions as separate and independent systems. The 

kinetic and strain energies of these two independent systems 

are obtained using the Lagrangian equations of motion, and 

their relationship is given by Equation (27). 
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Please note that Equation (27) represents the relationship 

between kinetic and strain energies derived from the 

differential energy method, considering the assumptions of a 

closed and simple geometric shape for the damaged region 

and the absence of residual stresses at the boundary. 

By subtracting the difference in kinetic energies and potential 

energies of the two systems, the minimum potential energy of 

the overall system is obtained. This means that the total kinetic 

energy is equal to the total strain energy, as shown in Equation 

(28). 
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Please note that Equation (28) represents the equality between 

the total kinetic energy and total strain energy, derived from 

the differential energy method and the assumption of no 

residual stresses. 

By doing so, the issue of geometric discontinuity can be 

resolved. The total potential energy function can then be used 

in conjunction with the analytical thin plate motion equation 

to obtain the governing equations of motion for the damaged 

plate. 

Please note that the use of the analytical thin plate motion 

equation allows for the determination of the motion equation 

for the damaged plate based on the obtained total potential 

energy function. 

D.  Resonance frequencies of damaged laminated composite 

plates. 

By substituting the differential equations obtained from 

equation (28) into equations (5) and (6), the governing 

equations of motion for the damaged plate can be derived, as 

shown in equations (29) and (30). 
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Equations (29) and (30) represent the shear stress field and 

bending moment field of the damaged plate, while equations 

(5) and (6) represent the undamaged plates in the upper and 

lower layers. By substituting equations (5), (6), (29), and (30) 

into equations (23) and (24), the stiffness matrices and 

bending moment matrices of the laminated plate with internal 

damage and without residual stress can be constructed. Since 

this study focuses on identical and isotropic materials in each 

layer, the coupling matrix in equation (25) can be neglected. 

After rearranging the equations, taking partial derivatives with 

respect to the x and y axes for both fields yields the shear 

stress field, as shown in equation (9). Using these 

relationships, the governing equations for the laminated plate 

with internal damage in the middle layer can be obtained. 

III. RESULTS AND DISCUSSION 

Use the finite element analysis software ANSYS to compare 

with the theory of this study. Figure 1 is a schematic diagram 

of a simulated laminated board. Boundary conditions include 

a fully fixed support on one side and free boundaries on the 

other three sides. There are no external loads applied, and the 

hole edges have no residual stress. The laminated plate is 

modeled using the fitting constraint option in ANSYS. Each 

layer of the laminated plate is made of 6061 aluminum alloy 
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with a Poisson's ratio of 0.33, Young's modulus of 69 GPa, 

and density of 2713 kg/m3. 

 

Figure 1: Schematic Diagram of the Laminated Plate 

 

  
The first resonance mode The second resonance mode 

  
The third resonance mode The fourth resonance mode 

  
The fifth resonance mode The sixth resonance mode 

Figure 2: ANSYS simulation of undamaged laminated 

composite plate 

 

  
The first resonance mode The second resonance mode 

  
The third resonance mode The fourth resonance mode 

  
The fifth resonance mode The sixth resonance mode 

Figure 3: ANSYS simulation of damaged laminated 

composite plate 

 

The upper and lower surface layers (transparent region) have 

dimensions of 90 mm in length, 60 mm in width, and 0.5 mm 

in thickness. The middle layer (blue region) has dimensions of 

90 mm in length, 60 mm in width, and 1 mm in thickness. The 

damaged area in the middle layer (red region) has dimensions 

of 20 mm in length, 20 mm in width, with a y-axis 

displacement of 19 mm. The angle α of the damaged region is 

90°. Finite element analysis software ANSYS is utilized to 

analyze the difference in resonance frequencies between the 

undamaged laminated cantilever plate and the damaged 

laminated cantilever plate. 

Table 1 presents the comparison of the presence or absence of 

damage in the laminated plate has an impact on the natural 

frequencies, particularly at specific frequencies where the 

differences are more pronounced. The influence of damaged 

laminated plate's natural frequencies is a critical factor in 

structural integrity. When unexpected impacts or fatigue 

occur, the natural frequencies of the structure can change, 

approaching or coinciding with the operating frequencies, 

leading to resonance phenomena. Resonance can cause an 

increase in stress and deformation within the structure. The 

simulation results indicate that the presence of damage in the 

laminated plate has an impact on the resonant frequencies. 
Table 1: Differences of resonant frequency based on Finite Element Analysis  

(Laminated plate; Damage Location: y-axis displacement) 

undamaged specimen

（Hz） 

damaged specimen 

(Hz) 

errors 

(%) 

208.64 209.56 -0.4 

687.23 696.40 -1.3 

1291.30 1331.40 -3.1 

2321.60 2408.60 -3.7 

3195.10 3175.20 0.6 

3708.60 3605.60 2.8 

 

  
damaged laminated 

composite plate 

undamaged laminated 

composite plate 

Figure 4: Comparison of the third mode 

Comparing the displacements in the damaged and undamaged 

regions, it can be observed from Figure 4 that the 

displacement at the edges of the damaged area is greater than 

that in the undamaged laminated plate. 

 

  
damaged laminated 

composite plate 

undamaged laminated 

composite plate 

Figure 5: Comparison of the fourth mode 

By comparing the displacements in the damaged and 

undamaged regions, it can be observed from Figure 5 that the 

displacement at the edges of the damaged region is greater 

than that in the undamaged laminated plate. 
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damaged laminated composite 

plate 

undamaged laminated 

composite plate 

Figure 6: Comparison of the sixth mode 

From Figure 6, it can be observed that the differences in nodal 

lines are more pronounced near the characteristic region. 

 

From Table 1, it can be observed that the differences in 

resonant frequencies are more significant for the third, fourth, 

and fifth modes. Figures 4 and 5 show that the amplitudes near 

the y-axis boundary are larger in the undamaged laminated 

plate. Figure 6 reveals an asymmetry in the resonant modes. 

The internal defects accelerate damage propagation and 

ultimately jeopardize its safety. However, the effects of 

internal damage on natural frequencies in laminated plates are 

not always apparent and easy to predict. 

 

 
Table 2: Differences of resonant frequency based on Finite Element Analysis  

(Single layer; Damage Location: y-axis displacement) 

undamaged specimen

（Hz） 

damaged specimen 

(Hz) 

errors 

(%) 

105.04 100.36 4.5 

349.11 329.06 5.8 

653.45 628.78 3.8 

1186.40 1219.20 -2.8 

1619.30 1544.10 4.6 

1893.10 1747.10 7.7 

 

When the laminated plate is observed separately, a more 

pronounced difference in resonance frequency and mode 

shapes can be observed between the damaged and undamaged 

plate compared to the laminated structure as a whole. The 

difference in resonance frequency originates from equations 

(27) and (28), where the overall energy difference is due to the 

expansion of total kinetic energy and total strain energy with 

decreasing volume. Therefore, it can be inferred that the 

resonance frequency of a single-layer plate is inversely 

proportional to the extent of damage, meaning that a greater 

degree of damage results in a lower resonance frequency. This 

inference is further supported by the observed resonance 

frequency differences between the undamaged and damaged 

plate in Table 2. 

IV. CONCLUSION 

The location and shape of the damage can result in different 

influences on the natural frequencies. In real engineering 

applications, there are various methods of fixing the layers, 

and different boundary conditions at layer interfaces pose a 

challenging problem. The method proposed in this study can 

only calculate for continuous materials, treating the laminated 

structure as a whole. In the future, further investigation will be 

conducted to explore different lamination methods and 

develop an approach to calculate the influence of resonance 

frequencies for different lamination configurations. 
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