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 Abstract—This paper presents an EtherCAT-based impedance 
control method and force compliance teaching for a 
6-degrees-of-freedom (DOF) industrial robotic manipulator. 
After describing the system structure of this impedance controller 
using EtherCAT protocol, the forward kinematics of the 
manipulator is then derived with its Denavit-Hartenberg (DH) 
parameters. Based on the geometrical configurations of the 
robotic arm and forward kinematics model, an analytically 
inverse kinematics method is proposed to solve the joint angles of 
the manipulator moving from one pose to another. For impedance 
control, a proportional-integral (PI) impedance controller along 
with a 6-DOF force/torque sensor and six independent 
proportional–integral–derivative (PID) torque controllers are 
proposed to achieve impedance control with satisfying 
performance. For force compliance teaching, a torque generation 
method is presented using gravity and friction compensation, 
forward and inward dynamics of the manipulator. Simulation 
results are conducted to show the effectiveness and merits of the 
proposed inverse kinematics method, impedance controller and 
force compliance teaching. The applicability and practicability of 
the proposed method are also well exemplified by conducting 
experimental results on a 6-DoF industrial manipulator (RA605) 
from HIWIN technologies corp.. 

 Index Terms—impedance control, compliance control, 
compliance teaching, human-robot cooperation 

I. INTRODUCTION 

O date, six DOF robotic manipulators have been widely 
developed not only for industrial automation, but also for 

service robots in our daily life. Many companies, such as Fanuc, 
Mitsubishi, Yaskawa, Kuka and ABB, have already developed 
six-DOF robotic manipulators with advanced functions 
including vision, force control, intelligent gripping and even 
human-robot collaboration. Such advanced 6-DOF robot 
manipulators can be programmable to perform complicated 
tasks for a wide range of applications. For automatic or 
semi-automatic manufacturing of 3C commercial products, 
many advanced 6-DOF robotic manipulators have been utilized 
for welding, digging, cutting, polishing, holding, carrying, 
processing, and assembling, in order not only to reduce labor 
costs but also to accomplish complex work possibly. 
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University, Taichung, 40227, Taiwan. 
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EtherCAT is a kind of industrial Ethernet protocol that has 
recently evolved into numerous solutions and standards for 
industrial automation and real-time control systems for both 
industrial and service robots [1-3]. EtherCAT retains the 
technical merits of Ethernet, such as low cost of infrastructure 
components, variable topologies allowing various distributed 
control schemes, many silicon vendors and, most importantly, 
much higher bandwidth and speed than traditional fieldbus 
solutions. Moreover, EtherCAT network is based on Ethernet, 
industrial field-bus protocol with 100Mbps transfer speed, and 
has short response time and short cycling time in the robot 
environment due to its functional principle processing on the fly. 
Furthermore, EtherCAT allows several hundreds or thousands 
of I/O devices inside one a network. Researchers showed the 
effectiveness of the EtherCAT network for human-robot 
cooperation and collaboration, and real-time control systems 
[1-3]. Inspired by [1-2], EtherCAT can be expected to play an 
important role in position and force control of 6-DOF robotic 
manipulators. 

Historically, force control approaches can be categorized 
into three classes: hybrid position/force control, impedance 
control, and hybrid impedance control (HIC)[4-7].To achieve 
impedance control of robotic manipulator, researchers have 
proposed several control techniques which can be classified into 
two technical categories: position-based [8-11] and 
torque-based [12-15]. Generally speaking, both categories are 
based on dynamic model of robotic manipulator. In particular, 
the authors in [9] proposed a kinematic-based impedance 
control without considering the dynamic behavior of the robotic 
manipulator. This approach would be useful when the dynamic 
model of a robotic manipulator is difficult to establish. However, 
this type of impedance control requires the calculations of the 
forward and inverse kinematics (IK). 

The forward kinematics problem is straightforward to derive 
the equations if all joint angles are known. The conversion of the 
position and orientation of a manipulator end-effector from 
Cartesian space to joint space is called as the IK problem. In 
general, the forward kinematics of a robotic manipulator can be 
easily derived if its DH parameters are determined, while its IK 
problem can be addressed using its physical structure and 
continuous movement in order to avoid multiple solution issues.   
The authors in [16] proposed an analytical IK method using 
field-programmable-gate-array (FPGA) devices. Other 
algorithms, such as Jacobian inversion, genetic programming, 
and biological computational approaches, have also been 
developed to solve IK problems [17-19]; they may be useful in 
some application domains. 

Ching-Chih Tsai, Fellow, IEEE, Chun-Chieh Chan, Chun-An Lin, and Feng-Chun Tai 
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Figure 1. Physical system structure of the proposed impedance control system 
for the HIWIN 6-DOF robotic manipulator. 
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Figure 2. Block diagram of the impedance control system for the HIWIN 
6-DOF robotic manipulator. 

On the other hand, robot teaching can be extensively 
investigated by many approaches, including conventional 
teaching pedant, robotic language [20], learning by 
demonstration [21-24] and force-based teaching [25-30]. Force 
compliance teaching has become increasing important owing to 
its intuitive advantages in recent years [27,30-31]. From 
technical viewpoint, force-based teaching can be roughly 
divided into two groups: direct and indirect. Direct force 
compliance teaching refers to the use of force sensors to 
measure the external applied force and then find the 
corresponding torque values of all the joints, while   indirect 
method uses indirect force sensors, such as current sensing 
devices, to estimate the exerting force and, similarly, obtain the 
joint torque values for movement of the manipulator. Generally 
speaking, the indirect method is much cheaper than the direct 
one due to inexpensive sensing or sensorless technologies. This 
direct approach may be useful when the force sensor of a robotic 
manipulator is available for other force-related applications 
[32]. 

The objectives of this paper are to develop a kinematic 
impedance control method and a force compliance teaching 
method for an EtherCAT-based 6-DOF robotic manipulator 
from HIWIN. The presented contents are written in three 
technical contributions. One is the development of a new IK 
algorithm to find all joint angles of the manipulator. The second 
contribution is design, numerical and experimental verification 
of the position-based impedance control method by utilizing the 
developed forward kinematics and IK algorithms, a PI 
impedance controller and a 6-DOF force/torque sensor together 
with six independent PID torque controllers. The other is the 
system integration of a force-based teaching approach with 
gravity and friction compensation, forward and inward 
dynamics for the manipulator. 

 
Figure 3. Overall structure of the HIWIN 6-DOF robotic manipulator. 

TABLE 1.  
DH PARAMETERS OF THE HIWIN 6-DOF ROBOTIC MANIPULATOR. 

Joint j αj dj (mm) aj (mm) θj,min < θj < θj ,max 

J1 90 375 30 -165° < θ1 < 165° 
J2 0 0 340 -55° < θ2 < 185° 
J3 90 0 40 -55° < θ3 < 185° 
J4 -90 338 0 -190° < θ4 < 190° 
J5 90 0 0 -115° < θ5 < 115° 
J6 0 86 0 -360° < θ6 < 360° 

 

The rest of this paper is organized as follows. The 
impedance control system structure of the 6-DOF robotic 
manipulator is described in Section II, and the forward 
kinematics is introduced in Section III, and Section IV 
investigates the inverse kinematics and of this robot manipulator. 
Section V proposes and the impedance control method. In 
Section VI, force compliance teaching method is proposed using 
gravity compensation, friction compensation, forward dynamics, 
inward dynamics and the torque generation method of this 
robotic manipulator. Simulations are conducted in Section VII 
to show the performance on the proposed impedance control 
method and force compliance teaching method. Experimental 
results are presented in Section VIII. Section IX concludes this 
paper. 

II.  IMPEDANCE CONTROL ARCHITECTURE 

This section is devoted to introducing the physical control 
system and impedance control architecture of the six 
degrees-of-freedom (DOFs) robotic manipulator from HIWIN. 
Figure 1 shows the overall physical structure of the HIWIN 
6-DOF robotic manipulator using the well-known EtherCAT 
network. EtherCAT network with 100Mbps is used for real-time 
communication which enables to realize both position and 
impedance control. Via EtherCAT network, the measured force 
signals from the a six-DOF force and moment sensor are 
transmitted to the IPC-based controller with a real-time 
operation system, called RTX, and the generated impedance 
control commands are then sent to the EtherCAT-based motor 
control drives, thereby carrying out desired motion control tasks 
in real time.  Both impedance and force control laws are realized 
by the control rate within the range of 500-1000μs, which is the 
main domain for most EtherCAT applications. 
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Figure 2 depicts the block diagram of the impedance control 
system for the HIWIN 6-DOF robotic manipulator, where the 
environment around the robot is modeled as a high stiffness 
spring expressed by fe = Ke (x - xe) where Ke represents the 
stiffness of an object located at xe. This linear relationship 
between force and deformation represents a simple 

robot-environment modeling. In Figure 2, ξ  represents the 

auxiliary impedance error which will be shown to be zero at the 
steady-state condition, and the IK solver is proposed in Section 
IV, in order to find the corresponding six joint angles. The joint 
angle tracking modules are done by six PID regulators which 
respectively generate the torque control commands for the 
motor drivers in the presence of the constraint forces from the 
robot-environment model. 

III. FORWARD KINEMATICS 

A.  Denavit-Hartenberg (DH) Parameters 

This section is devoted to describing the forward kinematics 
of the robot, as shown in Figure 3. The forward kinematics 
method is aimed to obtain the mathematical relationships 
between the given joint angles,the position and posture of the 
end-effector. It is usual that DH parameters are employed to 
obtain the forward kinematics equation of the manipulator. DH 
parameters are standard descriptions of the geometric positions/ 
pose of joints and links in the three-dimensional Cartesian 
coordinates. In doing so, The N links of the manipulator are 
numbered from 1 to N. Let θj, aj, dj and αj be the four key 
parameters of link j and joint j individually; θj denotes the joint 
angle, aj the link offset, dj the link length, αj represents the link 
twist. Table I lists all the DH parameters of the robotic 
manipulator. 

In deriving the forward kinematics of the manipulator, the 
homogeneous transformation matrix is defined in the following 
equation based on the jth link parameters of the manipulator. 

1
1 1( ) ( ) ( ) ( )

c s c s s c

s c c c s s

0 s c

0 0 0 1 0 0 0 1

n
n zn n zn n xn n n

n n n n n n n

n n n n n n n

n n n

T Trans d Rot Trans a Rot

a

R Ta

d

θ α

θ θ α θ α θ
θ θ α θ α θ

α α

−
− −= ⋅

 − 
  −   = =   
  
    

   (1) 

where  sθn = sinθn , cθn = cosθn . 

B. Forward Kinematics 

This subsection is dedicated to find the forward kinematics 
of the 6-DOF manipulator, which adopts the rotation R of the 
rigid body and uses the triple of angles (α, β, γ) to represent the 
rotation. Note that α, β, and γ are the Euler angles of the end 
effector in the world coordinates. 

The transformation matrix of the manipulator can be 
expressed by the product of the following homogeneous 
transformation matrices. 

6 1 2 3 4 5 6
0 0 1 2 3 4 5

0 0 0 1

x x x x

y y y y

z z z z

n o a p

n o a p
T T T T T T T

n o a p

 
 
 = × × × × × =
 
 
 

   (2) 

Equation (2) defines the transformation matrix of the 
end-effector from its coordinate frame to the base coordinate 
frame. Note that n, o, x respectively represent the posture 
vectors, and p denotes the position of the end-effector. The 
position and posture of the manipulator is expressed by 

[ ]
[ ]

1 2 3 4 5 6 7

1 1 2 7 6 1 2 7

( , , , , , , )

          ( , , , ) ( , , , )

T

T

x y z

h h

α β γ θ θ θ θ θ θ θ

θ θ θ θ θ θ

=

=

h
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     (3) 

where  

1 2 3

2 2

1 1 1
4 5 6tan tan tan

x y z

x yx z

y z z

h p h p h p

a aa n
h h h

a a o
− − −

= = =

 +    = − = =           

 

Furthermore, x, y and z represent the position of the end 
effector with respect to the world coordinates.   

The physical meaning of the triple of angles (α, β, γ) is 
interpreted by using the two frames: A and B. First, rotate the 
frame B about the z- axis of frame B by an angle α, then rotate 
about the x- axis by an angle β, and finally rotate about the z- 
axis angle by an angle γ, thereby gives the frame A . This yields 
a pure rotation R of the rigid body with the triple of angles 
(α, β, γ) between both frames. 

( ) ( ) ( ) 3

x x x

AB z x z y y y

z z z

n o a

R R R R n o a SO

n o a

c c s s c c s c c s s s

c s s c s c c c s s s c

s s c s c

α β γ

γ α γ α β γ α β α γ β α
γ α γ α β γ α β α γ β α

β γ γ β β

 
 = = ∈ 
  

− − − 
 = + − − 
  

     (4) 

IV. INVERSE KINEMATICS 

This section is aimed to solve for the inverse kinematics 
problem of the 6-DOF manipulator. Given the position and the 
Euler posture angles, the inverse kinematic problem is to solve 
for a set of six joint angles using (5) which is employed to find 
the end rotation matrix R, and (1) which is utilized to deduce 6

0T . 

Once the homogeneous matrix 6
0T  has been given, one can 

solve for the angles of the joints in the following six steps.  

Step 1: In Figure 3, it is obvious that the rotations of the links 4, 
5 and 6 do not change the position of the fifth joint. This implies 
the following equation: 

6 6 1 5 1 1 2 3 4
0 5 4 0 1 2 3

11 12 13

21 22 23

31 32 33

11 12 13 14

( ) ( )

a1*c1 + d4*c1*s23 + a2*c1*c2 + a3*c1*c23

a1*s1 + d4*s1*s23 + a2*c2*s1 + a3*s1*c23

d1 + a2*s2 - d4*c23 + a3*s23

0 0 0 1

 t

T T T T T T T

r r r

r r r

r r r

r r r

− − = × × ×

 
 
 =
 
 
 

=

13

21 22 23 24 23

31 32 33 34 33

 - d6*t

t  - d6*t

t  - d6*t

0 0 0 1

r r r

r r r

 
 
 
 
 
 

(5) 

 From the (1,4), (2,4) and (3,4)entries in (5), it follows that  

x 14 13c1(a1+a2c2+a3c23+d4s23)=J5 = t  - d6*t       (6) 

y 24 23s1(a1+a2c2+a3c23+d4s23)=J5 = t  - d6*t       (7) 

z 34 33d1 + a2s2 - d4c23 + a3s23 =J5 =t  - d6*t        (8) 



Tsai et. al.      
EtherCAT-based Impedance Control and Force Compliance Teaching of a 6-DOF Industrial Robotic Manipulator 

4 

Dividing (7) by (8), one finds that the first joint angle is  

1 124 23 24 23
1

14 13 14 13

t  - d6*t t  - d6*t
tan tan

t  - d6*t t  - d6*t
orθ π− −   

= +   
   

 (9) 

Worthy of mention is that if J5x=J5y=0, then 
a1+a2c2+a3c23+d4s23 must be equal to 0 and this results in a 
singular point, thereby providing infinitely many solutions.  

Step 2: Summing the squares of (6) and (8) obtains 

( )
2 2 2

2
2x
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2 3 4
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a a d

a d c s s c a d
c

a a c c s s

+ +
 + − = − + − 
 + −

 (10) 

( )( ) ( )2 2

x z

2 2 2

2 2 3 3 2 3 4 3= J5 1 1 J5 1

                                            2 3 4

a a c a d s c a d

a a d

+ − + −

− − −
 (11) 

which leads to  
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From (12), one solve for the angle of joint 3 as 
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42 3 4cos tan
3
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  (13) 

Step 3: Since both 1θ  and 3θ  has been obtained, 2θ  can be 
found by summing the squares of (6) and (8) as:  
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which leads to  
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c a a a c d s

d d c a s

− − − + +

+ − + +

= − −

         (15) 

and then  

( )( )( )
( )( )

( ) ( )

x

z

2 2

J5 1 1 2 3 3 4 3

          J5 1 4 3 3 3
2

2 3 3 4 3 3 3 4 3

c a a a c d s

d d c a s
c

a a c d s a s d c

 − + +
 

− − −  =
+ + + −

         (16) 

Therefore, θ2 is computed as follows: 

( )

( )( )

( ) ( )

14 13

1
2

34 33

2 2

t d6 t
1 2 3 3 4 3

1
cos t d6 t 1 4 3 3 3

2 3 3 4 3 3 3 4 3

a a a c d s
c

d d c a s

a a c d s a s d c

θ −

  − × − + +      =   − − × − −  
 + + + − 

  (17) 

Step 4: With the three found joint angles, 1θ , 2θ  and 3θ  all 

elements of matrices 1 1 2 1 3 1
0 1 2T T T− − −  are known and they can be 

used to solve for other remaining angles. Thus, it follows that 
3 1 2 1 1 1 6 4 5 6
2 1 0 0 3 4 5T T T T T T T− − − =                       (18) 

backτ

q

qdqrx

rx x

dx

ef

x efrx τ u

q

q

ξ

ef

12
r d d ex x D DB K fξ

−
 = − − + + 

( ) 11 2
d r d d e Pq K x D DB K f K ξ

−−  = − + + +  


0
( )

t

p pK K dξ ξ τ τ+  

 
Figure 4. System configuration of the proposed PI kinematic impedance control 
system for the HIWIN 6-DOF robotic manipulator. 

which results in   

( )

c4c5c6 s4s6 c6s4 c4c5s6 c4s5 c4*d6*s5

c4s6 + c5c6s4 c4c6 c5s4s6 s4s5 d6*s4*s5

c6s5  s5s6 c5 d4 + c5*d6

0 0 0 1

s23 + s1c23
0
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s1s23 c23 s1s23 c23

+c1 s23 +c1

z y
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x y

y z y z

x
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a a

n n o o

n
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 −
 
 

 
× ×   

 
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=
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  
 
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0
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y z

x x

a a

o a

 
 
 
 
 
 −               
  

 (19) 

From the element (3, 3) in (19), the joint angle θ5 is computed by 

( )1
5 cos 1 23 23 1 23y z xa s s a c c a sθ −= ± − +             (20) 

Step 5: The joint angle θ4 is solved from both elements (1, 3) 
and (2, 3) in (19) by 

( )
( )

1
4

s1 - c1 5
tan

s23 + s1c23 + c1 c23 5

x y

z y x

a a s

a a a s
θ −

 
 =
 
 

       (21) 

Step 6: Finally, the joint angle θ6 is obtained from both 
elements (3, 1) and (3, 2) in (19)  

( )
( )

1
6

s1s23 c23+c1 s23 5
tan

s1s23 c23+c1 s23 5

y z x

y z x

o o o s

n n n s
θ −

 −
 =
 − − 

        (22) 

V. PI KINEMATICS IMPEDANCE CONTROL 

A. PI Kinematic Impedance Control 

This section is devoted to developing the kinematic 
impedance control in presence of innegligible interaction force 
due to the constraints within its environment. Similar to [9], the 
proposed PI kinematic impedance control is aimed to control not 
only the dynamic behavior of the manipulator, but also its 
position or velocity. Figure 4 depicts the more detailed system 
configuration of the proposed PI kinematic impedance control 
system, which intends to maintain the following dynamic 
relationship expressed by 

( )r ex x F D f− =                               (23) 

where xr stands for the point-to-point reference trajectory; x 
denotes the current position of the end-effector in operational 
space;  F(D) is a stable, second-order linear filter described by 

( ) 12 ,   d d d d

d
F D K D M DB K D

dt

−
 = + + =         (24) 
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whose stiffness, damping, and inertia matrices, 
Kd=diag{kd,…,kd}, Bd=diag{bd,…,bd}, Md=diag{md,…,md}, are 
of m-order, diagonal and positive-definite, and with the same 
diagonal entries. Hence, with the dynamic relationship in (*), 
the impedance error is defined by 

( )r ex x F D fξ = − −                           (25) 

Theoretically, the goal of the proposed impedance control 
method is to make the impedance error convergent to zero after 
a long time, i.e., lim 0t ξ→∞ = . It is worthwhile to note that the 
impedance control become position control if the constraint 
force fe is zero. Therefore, the proposed impedance control 
scheme can be regarded as a position-control approach 
allowing a tolerant error in the reference trajectory tracking in 
the presence of innegligible interaction forces. To show the 
boundedness and elimination of the steady-state impedance 
error in Figure 4, one obtains 

( )
0

( )
t

d r e p ix x F D f K K dξ ξ τ τ= − + +          (26) 

Via the IK solver, the desired joint angles qd is given by 

( )
( )

1

1

0
( )

d d

t

r e p i

q K x

K x F D f K K dξ ξ τ τ

−

−

=

 = − + +        (27) 

where Kp and Ki are diagonal and positive-definite. By defining 
the joint angle error as dq q q= −  , we have   dq q q= −  , and 
then use the nonlinear forward kinematic mapping and Taylor 
series expansion to attain 

( ) ( )

( )

( )

1

0

0

( )

( )

d

t

r e p i

t

r e p i

x K q K q q

K K x F D f K K d x

x F D f K K d x

ξ ξ τ τ

ξ ξ τ τ

−

= = −

  = − + + −    

= − + + −







  

  

   (28) 

where x  denotes the position error in operational space. Thus, it 
is easy to show that the position error is bounded and even zero 
since from (28) we have 

0
( ) ( )

t

p ix I K K dξ ξ τ τ= + +                        (29) 

which leads to 1( )pI K xξ −= +  and 
1

pI K x xξ
−

 ≤ + < 
    if 

only the proportional gain is used. Obviously, the steady-state 
impedance error will be eliminated by the integrator if the 
closed-loop system is still maintained stable. 

B. PID Torque Control 

This subsection is devoted to developing six independent 
PID controllers for the inner position control loops, as shown in 
Figure 4. Since a motor driver with the torque control mode is 
used for each joint motor control, the mathematical model of 
each joint under torque-based position control is modeled by the 
following second-order system model 

( ) ( )
1

i
i i

G s
s J s B

=
+

                          (30) 

where Ji and Bi are respectively the moment inertial and viscous 
parameter of the ith joint. To achieve the position control for the 
model in (30), it is effective to propose a PI controller with a 
desired second-order characteristic equation, 

2 22 0i ni nis ζ ω ω+ + =  , where   iζ  and niω   are respectively the 
desired damping ratio and natural frequency for each joint 
control system. The PD parameters of each controller are found 

by 2
Pi i niK J ω=  and 2Di i i ni iK J Bζ ω= −  for i=1,…,6. Since the 

only one undesired zero will cause the desired transient 
response for each joint angle control, a prefilter with the 
transfer function 

( ) ( )
/

/ /
pi i

pi
Di i Pi i

K J
G s

K J s K J
=

+
                 (31) 

is designed to eliminate such an unwanted zero response. 
Worthy of mention is that the PD controller for each joint will 
also eliminate the effect of the constraint force from the 
environment interaction, thus providing consistent control 
performance for each joint angle control loop. 

VI. FORCE-BASED TEACHING  

This section is devoted to describe the force-based 
teaching method by finding the torque components respectively 
for forward dynamics due to motion and gravity, friction torque 
due to static friction and inward kinematics due to the input 
force, and.  To this end, each link of a manipulator is regarded 
as a rigid body. Once the locations of the center of mass and the 
inertia tensor of the link have been known, its mass distribution 
will be completely characterized. In order to move these links, 
one has to accelerate and decelerate them. The forces required 
for such motion are functions of the desired accelerations as 
well as the mass distributions of the links. In doing so, 
Newton’s equation, along with its rotational analogue, Euler’s 
equation, is employed to describe how forces, inertias, and 
accelerations are related to joint torques in all the six joints. 
Notice that torque components calculated from the forward 
dynamics will become the gravity compensation quantity if all 
the speed and acceleration information is set by zero.  

A. Forward Dynamics 

In the subsection, the forward kinematics is computed by an 
iterative Newton-Euler algorithm.  By assuming that there is a 
rigid body rotating with angular velocity ω  and angular 

acceleration ω , this algorithm is interpreted in the following.  
Under this situation, the moment N , which must be acting on 
the body to cause this motion, is given by Euler’s equation 

C CN= I + Iωω ω ×                            (32) 

where C I  is the inertia tensor of the body with respect to a 
fixed frame, { }C , where origin is located at the center of mass. 

 We now consider the problem of computing the torque 
vector that corresponds to a given trajectory of a manipulator. 
We assume that the position, velocity, and acceleration vectors 

of the joint angles, ( ), ,θ θ θ  , are given, where 

1 2 3 4 5 6[ , , , , , ]Tθ θ θ θ θ θ=θ . With this knowledge, and with 

knowledge of the kinematics and the mass-distribution 
information of the manipulator, one calculates the joint torque 
values for desired motion.  

In order to compute inertial forces exerting on the links, it 
is necessary to compute the rotational velocity and linear and 
rotational acceleration of the center of mass of each link of the 
manipulator at any given instant. These computations will be 
done in an iterative way, starting with link 1 and moving 
successively, link by link, outward to link n. 
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1 1 1
1 1 1

ˆi i i i
i i i i iR Zω ω θ+ + +
+ + += +                         (33) 

From (9), one obtains the equation for transforming angular 
acceleration from one link to another: 

1 1 1 1 1
1 1 1 1 1

ˆ ˆi i i i i i i
i i i i i i i i iR R Z Zω ω ω θ θ+ + + + +
+ + + + += + × +       (34) 

The linear acceleration of each link-frame origin is obtained by 

( )1 1
1 1 1

i i i i i i i i
i i i i i i i iv R P P vω ω ω+ +
+ + +

 = × + × × +         (35) 

Here, we imagine the frame, {C1}, attached to each link, having 
its origin located at the center of mass of the link and having the 
same orientation as the link frame, {i}. Since equation (7) 
doesn't involve the joint motion at all and so is valid for joint 
(i+1), regardless of whether it is revolute or prismatic. 

Having computed the linear and angular accelerations of the 
mass center of each link, we apply the Newton-Euler equations 
to compute the inertial force and torque acting at the center of 
mass of each link. Thus we have 

i

i i

i C

C C
i i i i

F mv

N I Iω ω ω

=

= + ×




                        (36) 

Note that the torque is reduced to the gravity compensation one 
in the static case where all the joints are stopped at some fixed 
position and posture.  

B.  Friction Compensation  

Static friction in each joint can be directly estimated by 
maintaining the manipulator at its vertical condition. Under 
such a condition, gravity effect on each joint can be neglected. 
Therefore, the static friction in each joint is straightforward 
measured by increasing the applied torque from zero with a 
small step size, for example 0.1% of full-scale torque input. 
Since the static friction is assumed to be independent of any 
position and posture, the estimated friction torque is effective in 
compensating for the actual frictions. 

C. Inward Dynamics  

The inward dynamics is to compute the resultant torque 
for each joint if the input force at the end effector is measured 
by the 6-DOF force/torque sensor. Once the forces and torques 
acting on each link have been computed, we now need to 
calculate the joint torques that result in these net forces and 
torques being applied to each link. This can be done by writing 
a force-balance and moment-balance equation based on a 
free-body diagram of a typical link. Each link has forces and 
torques exerted on it by its neighbors and in addition 
experiences an inertial force and torque. To attain the goal, we 
define special symbols for the force and torque exerted by a 
neighbor link, which we repeat here: 

if  = force exerted on link i  by link 1i −  , 

in  = torque exerted on link i  by link 1i − . 

By summing the forces acting on link i , we arrive at the 
force-balance relationship: 

1
1 1

i i i
i i i iF f R f+

+ += −                               (37) 
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Figure 5. Block diagram of the force compliance teaching in the easy and 
versatile manipulation system. 

By summing torques about the center of mass and setting them 
equal to zero, we obtain the torque-balance equation: 

( ) ( )1 1 1i i

i i i i i i i i
i i i C i i C iN n n P f P P f+ + += − + − × − − ×        (38) 

Finally, we rearrange the force and torque equations so that 
they appear as iterative relationships from higher numbered 
neighbor to lower numbered neighbor: 

1
1 1

11
1 1 1 1 1i

i i i
i i i i

ii i i i i i i i i
i i i i C i i i i

f R f F

n N R n P F P R f

+
+ +

++
+ + + + +

= +

= + + × + ×
     (39) 

These equations are evaluated link by link, starting from link i 
and working inward toward the base of the robot. As in the 
static case, the required joint torque values are found by taking 
the Z component of the torque applied by one link on its 
neighbor: 

ˆi T i
i i in Zτ =                                    (40) 

If the robot is in contact with the environment, the forces and 
torques due to this contact can be included in the force balance 

by having nonzero input force 1
1

N
Nf+

+  and the input torque 
1

1
N

Nn+
+ . 

D. Torque-Based Motor Driving  

This subsection is dedicated to develop six independent PID 
torque controllers for the force compliance teaching loops, as 
shown in Figure 5. Since a motor driver with the torque control 
mode is used for each joint motor control, the mathematical 
model of each joint under torque-based position control is 
modeled by the following two-order system model 

( ) 1

( )
=

+i
i i

G s
s J s B

                             (41) 

where iJ  and iB  are respectively the moment inertial and 
viscous parameter of the ith joint. To achieve the force 
compliance teaching for the model in (41), it is reasonable to 
assume that the torque control loop using the PID controller has 
a relative short time constant I comparison with the mechanical 
time constant. Hence, the dynamic behavior of the PID torque 
control loop can be ignored, and equation (41) is directly applied 
to attain the time response of each motor, thereby gives the time 
evolutions of all the six joint angles. As a result, the position and 
posture of the manipulator can be obtained due to its forward 
kinematics. 
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(a)                                                           (b) 
Figure 6. (a) Selection of testing poses; (b) Errors between the true and resultant 
poses. 

 
Figure 7. (a) Simulation of the circular trajectory tracking with the proposed P 
impedance controller; (b) Position tracking error while using the PI impedance 
controller. 

VII. SIMULATION AND DISCUSSION 

This section will conduct three simulations to examine the 
feasibility and effectiveness of the proposed inverse and forward 
kinematics, PI kinematic impedance methods and force-based 
teaching. Given the target positions and orientations, the first 
simulation is aimed to find all the six joint angles according to 
the algorithm in Section IV, and then apply the forward 
kinematics described in Section III to find all the positions of the 
six links and plot these positions for inspection purpose. The 
second simulation is devoted to verifying the performance and 
merit of the proposed PI kinematic impedance control method 
based on the aforementioned forward and inverse kinematics 
equations. The third simulation is aimed to find the torque 
outputs of all the six joints according to the methods in Section 
VI. Four simulations are done using Matlab/Simulink, and the 
DH parameters listed in Table 1 and the following mass 
parameters: m1=20 kgw; m2=6.485 kgw; m3=15.4175 kgw; 
m4=4.1522 kgw; m5=3.9558 kgw; m6=1.4285 kgw. Besides, all 
the friction torques are assumed constant and equal to 0.3 N-m. 

A. Verification the proposed forward and inverse kinematics 
equation 

The first simulation is conducted to validate both proposed 
analytical inverse and forward kinematics methods for the 
working space of the HIWIN robotic manipulator except 
singular points. Figure 6(a) depicts a set of testing poses of the 
manipulator. During the simulation, all the six joint angles are 
solved by the proposed inverse kinematics equation, the  

 

Figure 8. Testing continuous trajectories of the manipulator for force 
compliance teaching .and  

 

corresponding resultant poses are found by using the forward 
kinematics equations, and, finally, the average error between the 
desired and resultant poses is computed. Consequently, as 
shown in Figure 6(b), the average error is less than 1.4×10-12mm 
and the average error is less than 0.2×10-12mm, which is less 
than the accuracy or repeatability of the manipulator. 

B. Verification of the proposed PI kinematic impedance 
control method 

The second simulation is carried out to examine the 
effectiveness of the proposed PI kinematic impedance control 
method. In doing this simulation, the environment stiffness is 
Ke=diag{0.5,0.5,0.5} (N/m), the diagonal entries of the 
second-order linear filter are given by Kd=100, bd=100 and 
md=100 for the resultant damping ratio 0.5, and the simulation 
time is 3 seconds. Figure 7(b) shows the position errors in the 
circular trajectory tracking simulation when the only PI 
impedance control gain is set by KP=diag{0.75,0.75,0.75} and 
KI=diag{0.01,0.01,0.01}. The results in Figure6 reveal that the 
position errors were small and the manipulator moved along the 
environment while touching it, and the impedance errors were 
smaller than the position errors. This result confirms the 
effectiveness of the proposed control method. 

C. Verification of the proposed the proposed force -based 
teaching. 

The third simulation is conducted to validate the proposed 
torque generation method for force compliance teaching of the 
HIWIN robotic manipulator. Figure 8 depicts the testing 
continuous trajectories of the manipulator. During the 
simulation, the input force is assumed to be [0,0,0]T (unit: N-m), 
all the velocities and accelerations of all the six joints are set by 
zero. Thus, the torque outputs of the six joints are iteratively 
calculated via the Newton-Euler forward dynamic equations 
along with the inward equations. This result confirms the 
feasibility of the proposed force compliant teaching method. 

VIII. EXPERIMENTAL RESULTS AND DISCUSSION 

This section aims to examine the effectiveness of the 
proposed PI kinematic impedance control method and 
force-based teaching which were implemented with the real 
industrial robotic manipulator.  

A. Verification of the proposed kinematics-based impedance 
control method 

Figure 9(a) shows the experimental equipment and 
environment, and Figure 9(b) shows the test results of the 

1.4 x 10-12 

Angle 
(rad) 

Angle 
(rad) 

Distance 
(mm) 
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proposed impedance control where the target force was 19.61N 
(2kgw) and average force readings equaled 20.74N 
(2.1162kgw). This experiment was conducted by moving the 
end-effector (equipped with the 6-axis force/torque sensor) 
along the Z-axis to reach a fixed goal, force it to press the 
electronic load-cell scale at a desired force and then observing 
and taking the force measurements. The experimental data show 
that the average force readings are very close to the desired force 
imposed on the electronic load-cell scale, namely that the 
proposed method is capable of achieving impedance control so 
as to keep target force and target position (keep contact) as 
predicted simultaneously. 

B. Experimental verification of the proposed force -based 
teaching.  

The following two experiments are conducted to examine 
the effectiveness of the proposed method with the friction 
compensation, gravity compensation and inward dynamics 
using the easy and versatile manipulation system where the 
robotic manipulator is operated using the torque control mode. 
In the first experiment, the inward dynamics is not used. In 
order to achieve the friction compensation and gravity 
compensation, the actual position from EtherCAT driver is used 
to determine the size of the compensated friction in each joint. 
With friction and gravity compensations, the user pushed the 
manipulator by one finger easily as Figure 10 shows. The 
experimental results show the effectiveness of both friction and 
gravity compensations at two different postures. The second 
experiment was performed to show the merit of the proposed 
teaching method with both friction compensation and gravity 
compensations, and the inward dynamics in which the input 
force comes from the 6-DOF force/torque sensor. Figure 11 
displays two still pictures which illustrate how the user easily 
moves the manipulator by hand with very light force. 

IX. CONCLUSIONS AND FUTURE WORK 

This paper has presented an EtherCAT-based impedance 
control method and a force compliance teaching for a 6-DOF 
industrial robotic manipulator. In order to achieve the 
impedance control and force compliance teaching goals, this 
paper introduced the overall system structure of this impedance 
controller using EtherCAT protocol. The forward kinematics of 
the manipulator has been established using its DH parameters, 
and the analytical inverse kinematics method has also been 
proposed to solve the joint angles of the manipulator for any 
pose except singular points. The proportional-integral (PI) 
impedance controller along with a 6-DOF force/torque sensor 
and six independent proportional–integral–derivative (PID) 
torque controllers have been presented to achieve impedance 
control with satisfying performance. The torque generation 
method based on the Newton-Euler forward dynamics and 
inward dynamics has been proposed to obtain the required 
torque for each joint if the applied force in each joint is 
measured by the 6-DOF force/torque employing the 
experimental method, and the torque with the computed torque 
is shown effective in moving 

the manipulator along the direction of the applied force. The 
overall force compliance teaching method with the PID  

 

Figure 9. Experimental Set-up: (a) the experimental electronic load-cell scale 
for the proposed system; (b) experimental result of the proposed system. 

  

Figure 10. Two still pictures of the HIWIN manipulator moved by using only 
one finger when only both friction compensation and gravity compensation 
methods are used. 

   
Figure 11. Two still pictures of the HIWIN manipulator moved by using the 
proposed torque generation method with the inward dynamics and the 6-DOF 
force/torque sensor. 

 
torque-based motor driving schemes has also been shown 
useful in achieving force compliance teaching. Through the 
simulation results on a 6-DoF industrial manipulator HIWIN 
RA605, the effectiveness and merits of the proposed inverse 
kinematics method, impedance controller and force compliance 
teaching method have been confirmed in achieving position 
and impedance control. An interesting topic for future work 
would to seek for real applications by using the proposed 
PI-based impedance control for the manipulator. 
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Mobile Robot Localization in Outdoor 
Environments by the Integration of GPS, IMU and 

Visual Odometry 
Guo-Sheng Cai1, Shih-Fen Kao1, and Huei-Yung Lin2 

 
 Abstract—In this work we present the localization and 

navigation for a mobile robot in the outdoor environment. It    is 
based on fusing the data from IMU, differential GPS and visual 
odometry using the extended Kalman filter framework. First, the 
IMU provides the heading angle information from the 
magnetometer and angular velocity, and GPS provides the 
absolute position information of the mobile robot. The image-
based visual odometry is adopted to derive the moving distance 
and additional localization information. Finally, the mobile robot 
position is further refined using the extended Kalman filter. The 
experiments are carried out in the outdoor environment. We 
compare the results with the original GPS raw data, and the 
performance of the presented method is evaluated. 

Index Terms— 

I. INTRODUCTION 
NE of the primary technology for outdoor localization    
is using GPS. Although the location information can be 

obtained through GPS all year round, the signal transmission 
process is susceptible to interference [1]. This might be caused 
by several different reasons. Some common factors are the 
signals blocked by high-rise buildings, tunnels, elevated roads. 
Other obstacles in many areas can hinder the reception of GPS 
devices, and result in weak or no signals. In addition to the 
influence of the surrounding environment, the signals in the 
troposphere can also have some delays. Consequently, the 
signal generated error causes the time out of synchronization 
between the GPS receiver and the satellite, which leads to the 
decrease of the positioning accuracy [11]. 

To improve the accuracy of GPS for civilian users, the 
technology of Differential Global Positioning System (DGPS) 
has been developed [18]. With the positioning accuracy of 
about 3 meters, the reliability of GPS position   is greatly 
enhanced. On the other hand, the development of autonomous 
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driving has been a trend in recent years. Therefore, the 
research of robot navigation systems becomes an important 
topic, and the core technology is about the localization of 
mobile robots. Since the navigation system with multi-sensor 
integration has pros and cons, it is an interesting and 
challenging research direction. We can roughly know the 
location from the outdoor global positioning system (GPS), 
and the angular acceleration velocity and the direction 
information from the inertial navigation system (INS). The 
wheel encoder system and visual odometer, on the other hand, 
can provide the direction and distance of the movement to 
refine the position information. Thus, some common 
integration systems include VINS, INS/GPS [13], VO/GPS, 
odometry/GPS [10], odometry/INS [4], [21], which provide 
more reliable and accurate navigation information than a 
single sensor. 

To improve the localization accuracy for mobile robot 
navigation, this paper presents a positioning method based on 
the Extended Kalman Filter (EKF) and implement on Robot 
Operating System (ROS). In the prediction step, the state    of 
the robot is estimated by the optical sensor and the IMU. The 
predicted state is then corrected by a GPS measurement. To 
achieve a complementary relationship, on one hand we obtain 
more accurate position information, and on the other hand the 
cumulative error of visual odometry and IMU in a large-scale 
environment is improved. 

II. RELATED WORK 
The visual odometry (VO) is to derive the 6-DOF camera 

pose using algorithms and the information collected by optical 
sensors [5]. It can be used for robot navigation, and the 
techniques are divided into monocular, stereo, and RGB-D 
approaches depending on what kind of sensor is adopted [8]. 
The main algorithm of VO framework usually includes feature 
point extraction, feature point matching, and feature point 
tracking. Two common types of motion models are used to 
estimate the camera pose. The first type is the sparse visual 
odometry, in which only a few feature points in the image are 
extracted, matched and tracked. The other technique is the 
dense visual odometry. Compared to the sparse approaches, it 
spends much more time due to the extraction of all feature 
points from the images. Nevertheless, it provides more reliable 
and accurate camera pose than the sparse visual odometry 
algorithms. 

O
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Figure 1. The system architecture for the proposed technique. The data are first collected from the sensors to derive the current approximate position and 
orientation. The robot pose is then estimated by the extended Kalman filter, and finally displayed on the map. 

In addition to the classification by the amount of features 
for processing, VO techniques can also be divided into 
filtering based and graph optimization according to the multi- 
sensor fusion back-end approaches. The current pose of the 
filtering based methods is only related to the pose of the 
previous time frame, but it is related to all previous poses for 
the graph optimization methods. Based on the order of data 
integration among the sensors, the system flow can be either 
tightly coupled or loosely coupled. The advantage of loosely 
coupled is that the integration is simple, while the relatively 
complicated fusion method with tightly coupled can provide 
more accurate pose. 

One of the sparse visual odometry is the feature-based 
method. It can be realized by low-cost hardware because    of 
the low computation time requirement, and has been widely 
adopted in robots [9], self-driving vehicles [19] and UAVs 
[14]. The algorithms generally consist of the following steps: 
First, the effective feature points are extracted from the 
images. Second, the common feature points between the 
images are matched. Finally, the feature points are tracked by 
searching the image sequence to estimate the camera pose. 
The feature-based approaches only utilize part of the image, 
and the traditional methods for feature extraction including 
SIFT, SURF, ORB [3], [20]. Dryanovski et al. propose a real- 
time VO method which aligns 3D points against a consistent 
global model [6]. The camera pose is obtained by Kalman 
filter with dynamically updated observation information. 

RGBD-SLAM is a feature-based (indirect) mapping 
system [7]. Qian and Jian use an environmental measurement 
model to verify the transformations estimated by feature 
correspondences and the ICP algorithm [17]. The pose map 
optimization and closed loop detection are also performed to 
improve the trajectory estimation. Recently, ORB-SLAM2 
was released [15]. It is an open source SLAM system that uses 
ORB functionality for tracking, mapping and close-loop 
detection while running on a single CPU. Some outdoor 

navigation systems uses Kalman filter models to fusion GPS 
information and 6-axis inertial measurement data [16]. 

III. EXPLORATION STRATEGY 
When we refer to the outdoor positioning system, GPS is 

widely known to the public. The positioning accuracy of the 
civilian GPS is about 3 meters, which not is enough for the 
robot navigation purpose. For the current high-precision GPS, 
it is still too expensive to for most applications. In addition, 
GPS signals are susceptible in the outdoor environment, so 
there is a need to refer to other information sources. This 
paper presents a positioning system that fuses multiple sensor 
inputs. The system architecture is shown in Fig. 1. First, the 
data are collected from the sensors to derive the current 
approximate position and orientation. Next, the robot pose is 
estimated by the extended Kalman filter, and finally displayed 
on the map. 

A. Robot Localization System 
In recent years, SLAM research mostly adopts low-cost 

monocular cameras or stereo cameras with high precision 
measurement. A well-known example is the ZED stereo 
camera used for the outdoor environment. For the algorithms, 
ORB-SLAM2 is a feature-based SLAM system. It can be used 
with monocular, stereo and RGB-D cameras with high- 
precision positioning capability. For the development of RGB-
D cameras, the depth measurement methods have been 
improved, from the early light coding to the recent time-of- 
flight (TOF) techniques. Thus, this work adopts the RGB-D 
camera as the front end of ORB-SLAM2, to provide the visual 
odometry information. 

In ORB-SLAM2, the front end contains two threads, 
tracking and local mapping. The main tasks of the tracking 
thread include feature point extraction, camera pose 
estimation, tracking, and optimization, as well as the keyframe 
generation. On the other hand, the main job of the local  
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Figure 2.   The flowchart with three sensor inputs (GPS, IMU, and camera) of 
the positioning system. 

mapping thread is to calculate the descriptor of the new 
keyframe, insert the new keyframe to the map, delete the 
redundant points and key frames in the map, and finally obtain 
an optimized pose by bundle adjustment. 

The positioning system flowchart is shown in Fig. 2. The 
GPS mainly provides the coordinates of absolute positions and 
the heading angles of the robot in the real world. The visual 
odometer extracts the feature points from the images, and then 
matches and tracks among frames to obtain the relative 
distance of the movement. The IMU sensor gives the 
acceleration and orientation of the robot. By processing the 
sensor inputs, the resulting information is converted to the 
same coordinate system. Finally, all of the data from different 
sensors are fused through the EKF to calculate a new position 
for the robot. 

B. Extended Kalman Filter 
The EKF algorithm adopted in this work is referenced 

from [12]. According to the statistical data processing and 
principles of modern control theory, estimating the system 
state vector from the measurement signal contains noise by 
data iteration [2]. Thus, the main algorithm is to estimate the 
optimal value of the current system state by the one estimated 
at the previous time instant and the current measurement. The 
state equation of a system can be expressed by 

  (1) 

where  is the robot’s system state at time t, g is a nonlinear 
state transition function,  is a speed control function, and 
ωt−1 is the process noise. Our objective is to estimate the robot 
location in a 2-D environment, and move the robot to a goal 
position. Thus, the system is assumed to be normally 
distributed, and the 6-D state vector, x, consisting of the 
robot’s position, 2-D orientation, and the velocities, or 

TABLE I 
THE EKF ALGORITHM FLOW. 

Extended Kalman filter (  
Prediction step: 
1.  
2.  

3.  

Update step: 
4.  
5.  
6.  
7.  

 

   (2) 

  (3) 

                                 (4) 

                                          (5) 

                                          (6) 

                                               (7) 

where ,  indicate the position at time t,  is the 
orientation angle,  is the angular velocity, and  to 

 denote the state noise. Additionally, we define the 
measurement model with 

                                      (8) 

where  is the measurement at time t,  is the measurement 
noise with a normal distribution, and h is a nonlinear function 
transforming the state to the measurement space. 

In the algorithm, the current state vector and the prediction 
error covariance matrix are calculated by 

                                      (9) 

                              (10) 

where  is a basic kinematic model derived from Newtonian 
mechanics. The estimate error covariances  projected by the 
function , the Jacobian of , and influenced by R, the 
covariance with additive white Gaussian noise to process 
noise. 

Next, a correction step is given by 

                 (11) 

                  (12) 

                                 (13) 

where K is a matrix called the Kalman gain. It is calculated by  
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Figure 3. The equipment used in the experiments. It includes a laptop 
computer, a mobile platform, a GPS receiver, an IMU, an RGB-D camera, 
and an external power source. 

TABLE II 
LATITUDE AND LONGITUDE OF LANDMARK POINTS A TO H 

 

landmark Ground Truth X-Y 
A 120.481276, 23.55854 197045.24, 2606229.92 
B 120.481362, 23.558432 197053.97, 2606217.92 
C 120.481258, 23.558173 197043.25, 2606189.28 
D 120.481144, 23.55791 197031.51, 2606160.2 
E 120.480932, 23.557887 197009.86, 2606157.73 
F 120.480851, 23.558014 197001.64, 2606171.83 
G 120.480938,23.558243 197010.61,2606197.15 
H 120.481073,23.558502 197024.5,2606225.79 

 
the observation matrix, , the measurement covariance, Q, 
and   in Eq. (10). The matrix Q is also additive white 
Gaussian noise and given by 

                               (14) 

The gain is then used to update the state vector and the 
covariance matrix. Finally,  is the new best estimate, and 
this process can go on and feed  and  back to another 
round of prediction or update. However, when the number of 
iterations increases, it needs to spend more time to calculate. 

The entire EKF algorithm flow is shown in Table I. 

IV. EXPERIMENTAL RESULTS 
Two experiments are carried out to evaluate the 

performance of the localization system. The software 
development environment is Ubuntu 16.04 and ROS. Pioneer-
3DX is used as the mobile robot platform. The sensors 
adopted in this work including a 3DM-GX5-25 IMU, an 
RGB-D camera Microsoft Kinect V2, and a GPS receiver 
Holux M-241. As shown in Fig. 3, the sensors are mounted on 
a custom shelf to avoid magnetic interference for the IMU, 
reduce shaking for the camera, and increase signal quality for  

  
(a) Path segment 1. (b)  Path segment 2. 

  
(c)  Path segment 3.  (d)  Path segment 4. 

Figure 4.  Ground truth data collected for the experiments. The path consists 
of four segments for data collection. 

the GPS receiver. We use a laptop computer with an Intel Core 
i5-3230M CPU with 4GB memory to collect and process the 
sensor data. 

A. Ground Truth 
Because the visual odometry has higher precision in short 

moving distances, in the experiments we divide the path into 
four parts, and collect the information for this four path 
segments with ORB-SLAM2. The results are shown in Fig. 4 
using mapviz, a 2D visualization tool. Next, the complete 
route for ground truth consists of the four segments as the 
actual trajectory in the experiment. It is used to compare with 
the EKF positioning results. For comparison, we mark eight 
landmark points from A to H on the real track, and the latitude 
and longitude are shown in Table II. 

B. Fusion GPS Data 
In the experimental results shown in Figs. 5 and 6, the 

green curves represent the raw GPS data, the yellow curves 
represent the visual odometry measurements, the red curves 
represent the EKF results, and the real track is shown in    the 
black curve. In the figures, we can easily observe the 
differences of the GPS measurements. The GPS signals in 
Scene 1 (see Fig. 5) has a higher accuracy. On the other hand, 
the GPS signals in Scene 2 (see Fig. 6) are occluded by 
buildings. The localization is not only caused the inaccurate 
GPS signal positioning, but also affected the visual odometry. 
The visual odometry is prone to provide the error information 
and loose track when the orientation is changed. However, it 
can still provide a reliable relative distance. 

The reliable visual odometry in short distance not only 
helps to remove the GPS drift values for the EKF positioning 
algorithm, but also improves the estimation of the starting  
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(a) Scene 1, the first experiment. 

 
(b) Scene 1, the second experiment. 

Figure 5. The experiments on Scene 1 with EKF: VO+IMU+GPS. Two 
experiments are carried out with the ground truth for comparison. 

point. While the IMU can provides more accurate heading 
information for the robot. As for the GPS, it can maintain the 
consistency of the global map when the robot is moving in a 
large scale map. 

The localization results are in general not good enough as 
illustrated. First, we collect all data and transform the GPS 
data to the Cartesian coordinate system. Next, we take the 
EKF results and raw GPS data to compare with the real 
trajectories, respectively. It is seen that the error rate is 
reduced from 79 to 6.6 meters (Table III) and from 4.48 to 
3.7 meters (Table IV). In addition, we also use other methods 
for integration, such as IMU (see Fig. 7), VO and IMU (see 
Fig. 8). Due to the sensitivity and cumulative errors of the 
IMU, the results are not correct. Although the visual odometry 
can provide non-segment information, it is easily affected by 
the complex environment. Thus, it is difficult to be used for a 
long-term movement. 

 
(a) Many obstructions in the environment. 

 
(b) Partial zoom-in of the red rectangle in Fig. 6(a). 

Figure 6. The experiments on Scene 2 with EKF: VO+IMU+GPS. Two 
experiments are carried out with the ground truth for comparison. 

 
Figure 7. The trajectory from EKF with IMU. The result shows that IMU is 

not able to provide a reasonable trajectory. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we present a real-time positioning system for 

an outdoor mobile robot. The system is tested in two outdoor 
scenarios. We use the absolute positions by GPS, the visual 
odometry information from the front-end of the ORB-SLAM2 
algorithm, and the IMU to provide reliable direction  
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Figure 8. The trajectory from EKF with VO and IMU. It shows the results 
can be restricted locally. 

TABLE III 
THE RMS ERROR IN FIG. 5(A). 

Error(m) GPS EKF 
X direction 4.833333333 2.558333333 
Y direction 77.27333333 1.973333333 

ALL 79.68780111 3.745540089 
 

TABLE IV 
THE RMS ERROR IN FIG. 5(B). 

Error(m) GPS EKF 
start and end 4.223079445 1.893911296 
X direction 4.48 3.805 
Y direction 4.26875 1.88625 

 
estimations to known the orientation of the robot movement. 
The sensor data are then fused by the EKF algorithm to obtain 
more accurate robot positions. The visual odometer gives a 
reliable message at the beginning, but as the moving distance 
increases, the error accumulation is caused by environment 
factors. AS a result, the distance and direction information 
becomes unreliable. Since the use of GPS information can 
limit the distance error to the range for keeping the trajectory 
consistent on the map, and the IMU can give the reliable 
direction information, we have fused the complementary 
information which improve the positioning accuracy 
accordingly. 
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Abstract—For a social robot to reach high autonomy, it should 

make its own decisions without users’ command. Therefore, 
homeostatic drive theory and Maslow’s hierarchy of needs have 
been adopted to model the robot, and we build the autonomous 
decision making system for robot to know what to do at every time 
moment. In order to pursue a better interaction between robot 
and human, it might be better for robot to possess personality and 
moods to some extent while interacting with human. Meanwhile, 
not only basic Question-Answering abilities but also abilities for 
Chit-Chatting should be considered crucial for the next level 
interactions. Therefore, in this research work, we build up a 
dialogue system for improving the relationship between robot and 
human. What’s more, we develop a text style translation model to 
translate the style of the output sentence from chit-chat bot based 
on robot’s moods. It is quite worthy to mention curiosity, which is 
important characteristic of human, and thus we develop visual 
question generation capability such that robot knows how to 
propose diverse questions to human for what it has observed. 
Finally, we evaluate our system separately for the three proposed 
modules, such as the autonomous system, text style translation 
module, and the visual question generation module.  

Results show that the autonomous system can make the robot 
satisfy the internal needs well and reach 99.98% in RSR index. In 
text style translation, the transferred sentiment accuracy in the 
Yelp dataset can reach 84.65%, which is an improvement. With 
the proposed evaluation metrics, which is designed for the visual 
question generation of our robot, we can say that robot will have a 
certain quality for this interaction. 

Index Terms—Social Robot, Homeostasis Theory, Maslow’s 
Hierarchy of Needs, Autonomous System for robot, Text Style 
Translation, Visual Question Generation 

I. INTRODUCTION 
ITH the gradually aging society and lack of labor, the 
awareness of social robots accompanying elders and 

children rises. It is a very challenging problem, since the elders 
and children might prefer having a more humanlike robot rather 
than having a cold bloodless robot as friends. There are more 
and more social robots have been released, such as Jibo [1], 
Zenbo [2], Pepper [3], home service robots [4], etc. However, 
those robots are unlike task-specific robot, Roomba [5], which 
has specific goal for it to decide what to do at each moment. 
Therefore, in order to make the social robot not always wait for 
commands from human, we investigate homeostatic drive 
theory [6], which is the dominant method for social robots 

 
. 

maintaining in a steady state, to improve the autonomy of it. 
Homeostatic drive theory produces drive to compensate the 
imbalanced internal needs of the agent. Maslow [7] extended 
the internal need of physiology to safety, love and belonging, 
esteem, and self-actualization for human. Therefore, inspired 
by Maslow, we designed our homeostatic model for social 
robots to make it more humanlike. After that, we adopt deep 
reinforcement algorithm for the autonomous decision making 
system to decide the action to balance the internal needs. The 
deep reinforcement learning takes advantage of making social 
robots possible to consider more complex situations and choose 
the actions more comprehensively. 

In addition, the mechanism of moods of social robots is 
designed not only for more interesting and long-term 
interactions with humans [8], but also for showing its empathy 
while humans are in negative mood [9]. To express moods of 
robot, a text style translation model is deployed after getting the 
answering sentence from sequence to sequence chit-chat bot 
model, and it will translate the mood of the answering sentence. 
The question-answering abilities is also built for social robots 
being a good assistance to provide helps. 

Moreover, if robot has its own curiosity after observing the 
environment and initiate the interaction by asking some 
questions related to what it observed, it can increase the 
connections and social interactions between the robot and 
human. In the field of human-robot interaction, researchers 
believe that taking initiative in interaction for robot can perform 
more fluent interactions [10][11]. Hence, a deep learning based 
visual question generation model is developed for proposing 
diverse questions with what the visual perception system of 
social robot has observed.  

II. RELATED WORKS  
There are three main parts that are presented in this paper, 

and therefore we will conduct the literature review separately 
for homeostatic model and decision making system, text style 
translation, and visual question generation. 

A. Homeostatic Model and Decision Making System 
There are many robots utilizing the concept of homeostasis 

to decide the action of robot, such as Sony’s Aibo [12], MIT 
Kismet[13], NAO [14], etc. Cao et al. [15] proposed ROBEE 
architecture to generate drive from internal needs, and decide 
the action by preconditions-action pair for satisfying the 
highest drive. [16][17][18] follow similar formulation which 
modeled internal needs by drives and determine the intensity of 
motivation by drives and external stimuli, and the concept of 
motivation is introduced by Cañamero et al. [19]. Also, they 
utilized reinforcement learning for the decision making to learn 
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the relation between the dominant motivation and actions, and 
it is a similar way as in Gadanho et al. [20][21]. Lin et al. [16] 
and Yang et al. [17] used different ways to take human’s 
intentions into consideration in the decision making system. 
Lin et al. [16] used the intention recognition for certain kinds of 
intention, and Yang et al. [17] designed some commands for 
users as the intention of users. However, because the dominant 
motivation is decided by whether the intensity of motivation is 
larger than a pre-defined threshold, which is a greedy way for 
determining the dominant one and it will directly affect the 
decision of action. In this work, deep reinforcement learning is 
utilized to consider all kinds of intensity of motivation, and it 
will help to target a more optimal long-term goal and consider 
more comprehensively. Different from the way of sensing the 
intention of human, we substitute it with an action of the robot, 
which is “standing by” and then the robot will wait for the user 
to interact while the action has been executed. 

B. Text Style Translation 
For the machine translation and summarization in text 

generation task, using large amount of parallel data has been 
important for deep learning method. However, there are not 
many parallel datasets for this task, and therefore, researchers 
has started focusing on learning the text generation from 
non-parallel data. The goal is to generate the sentence which 
preserves the content of the source sentence with the desired 
constraints. 

Ficler et al. [22] proposed to use conditioned RNN language 
model, while desired semantic content and style will serve as 
conditional contexts. Han et al. [23] introduced two switches 
with seq2seq model to control the style of the sentence 
generation, helping the model to capture the semantic content 
in a style and to decode in a specific style. Mueller et al. [24] 
utilized a classifier to guide the modification of the latent 
representation in variational auto-encoder (VAE) and attained 
the sentence with desired attribute. Hu et al. [25] presented a 
new neural generative model combing VAE with adversarial 
training. VAE encodes the sentence into a latent representation 
and ties it with the style to generate specific style sentence. 
Shen et al. [26] introduced cross-alignment training to align 
both latent representation and sentence population with 
Professor-Forcing algorithm [27] and continuous relaxation for 
discrete sampling process [28], and they assumed the source 
and target domain sentence share the same latent space. Very 
similar to Shen et al. [26], Lample et al. [29] presented the 
method with alignment to the latent representation and two 
decoders are used to generate the sentence with specific styles. 
Zhao et al. [30] proposed style discrepancy loss and cycle 
consistency loss to handle the arbitrary style in the source 
domain, but a disadvantage is that it can only have one target 
style in target domain. Melnyk et al. [31] introduced the 
attention mechanism to the auto-encoder part in Shen et al. [26], 
and reduced the parameters for multiple styles by a 
collaborative classifier. 

Our Text Style Translation module is largely influenced by 
Shen et al. [26], Zhao et al. [30], and Melnyk et al. [31]. We 

utilize a pre-trained language model for speeding up the 
convergence, and preserve better style information with an 
auto-encoder for style encoding. In addition, cycle consistency 
loss is also used to preserve a better semantic content, and N+1 
discriminator [32] similar to collaborative classifier in Melnyk 
et al. [31], which is a good way to handle possible multiple 
moods for the robot in the future. 

C. Visual Question Generation 
There are several approaches for visual understanding and 

question generation, such as knowledge-based approach, data 
driven approach, etc. In knowledge-based approach, 
researchers utilize the information with high-level description 
in structured representation. Aditya et al. [33] integrated deep 
learning based perception module (object, scene, and scene 
constituent recognition) and the concept modeling from 
commonsense knowledge obtain from the text, and proposed 
scene description graph (SDG) to encode the relations among 
the entities from perception module. Then, they utilized the 
template based sentence generation (SimpleNLG [34]) to 
generate the sentence. Wu [35] also proposed to use deep 
learning perception module for high level structured 
information, and integrated the existing commonsense 
knowledge base (concept net) and the word embedding method 
to associate the structured information and topic database with 
different concept nodes for the following conversation. 
However, the limited database for the sentence generation is a 
big disadvantage in knowledge-based approach for the social 
robot, because human will quite easily to get tired of similar 
sentences that keep popping out. Data driven approach with 
deep learning does not suffer the same problem. Wu et al. [36] 
used external knowledge and encode it into vector for input in 
deep learning based sentence generation. For improving the 
various caption generation, Johnson et al. [37] presented Dense 
Captioning (DenseCap) which is similar to Faster R-CNN [38] 
and combines recognition network, localization network, and 
sentence generation, and it localizes and describes different 
regions of an image. Dai et al. [39] introduced conditional 
generative adversarial network with policy gradient for solving 
the image captioning. The generated sentences are more natural 
and diverse as compared to those from MLE-based model. Jain 
et al. [40]  improved the diversity and creativity of the sentence 
generation by using variational auto-encoder approach. Based 
on Jain et al. [40], Wang et al. [41] proposed an additive 
Gaussian encoding space to the latent representation in 
variational auto-encoder.  

Our Visual Question Generation module is highly inspired 
by Dai et al. [39] and Jain et al. [40], and we utilize variational 
auto-encoder with Gumbel-Softmax to for encoding phase of 
the latent representation for a more informative latent 
representation, compared with using conditional generative 
adversarial network, and introduce the discriminator for 
enforcing the association between the generated sentence and 
the image which is the advantage in Jain et al. [40]. 



iRobotics 
Vol. 2, No. 3, September, 2019 

19 

III. DESIGN OF AUTONOMOUS SOCIAL ROBOT 

A. System Architecture 
The proposed autonomous system of the robot is shown in 

Fig. 1. The autonomous system interacts with the environment, 
and the robot will get feedbacks and the sensing information 
back. We model the internal needs of robot as drives which 
generates the intensity of motivations with external stimuli 
sensed by the robot. Since the homeostasis requires to balance 
the drives, a decision making system is utilized to bound the 
intensity of motivation. The intensity of motivation is modeled 
as the state of the decision making system, which decides what 
actions the robot should take. After the chosen action is 
executed, we can get the feedback from the user to tune the 
preference of the user. What’s more, the mechanism of moods 
is built up by the value of drives and stimuli, and it will 
influence the style of chatting. In the decision making part, 
deep reinforcement learning algorithm is applied to choose the 
robot actions, such as charging, resting, finding people, singing 
or dancing, asking question, chatting, and standing by. 

Another main focused point in this work is the module of 
asking question. For satisfying the need of curiosity, we utilize 
the deep learning based Visual Question Generation (VQG) for 
asking question, and combine the variational auto-encoder with 
Gumbel-Softmax and adversarial training to make the VQG 
generate multiple different questions. 

In addition, the dialogue system of social chat is also made 
for a more interesting interaction between robot and human, 
and the system flow is shown in Fig. 2. First, what the human 
says will be transferred into text by speech-to-text module, and 
an interactive dialogue management module is going to manage 
the system how it should respond to the user by QA Bot or by 
Seq2Seq chit-chat module. As we mentioned previously, the 
mechanism of moods is a gate for controlling the response 
being positive or negative style, and the text style translation 
module will transfer the style of the sentence from the chit-chat 
module. Eventually, the generated sentence from QA Bot or 
from Text style translation will be turned into speech to be 
spoken out by the robot through the text-to-speech module. Due 
to the reason that providing more information for users, we will 
show some information on the touch pad of our robot With QA 
Bot. 

In the rest of this chapter, the homeostatic model and 
decision making system will be described in Section B firstly.  

  
Figure 1. The architecture of the whole system. 

 
Figure 2. The system architecture of Dialogue System. 

Then, we will describe how the dialogue system and the deep 
learning based text style translation module work in Section C. 
Finally, the deep learning based visual question generation is 
mentioned in the last Section D. 

B. Homeostatic model and decision making system 
In this works, the internal needs of the robot are modeled as 

drives. Inspired by Maslow’s hierarchy of needs, we re-define 
internal needs in our work for making the robot act like a 
human as in Table 1. We define 6 kinds of need, namely, Need 
of Energy (NEner), Need of Safety and Rest (NSaR), Need of 
Belonging (NBel), Need of Esteem (NEst), Need of 
Self-Actualization (NSA), and Need of Curiosity (NCur). 
NEner represents that robot relies on energy to maintain 
working condition. Because the robot will have some safety 
issue and overheat issue due to robot motions, NSaR is needed 
as well by the robot. Just as human needs the company of 
friends or family, therefore, NBel means the need of the robot 
for its belonging to a society with human friend. Notice that 
NEst is the need for the sense of the achievement, which means 
to offer the services like singing or dancing, because providing 
service to humans is considered as a main functions of the 
social companion robot. Also, as a social robot, one crucially 
important skill is to chat, which refers to the need, NSA. Lastly, 
behaving like a human, curiosity is a very important 
characteristic, so NCur is defined as such need of the robot. 

Drives are internal parameter of the robot in the form of real 
numbers, and the value of it indicates the degree of 
dissatisfaction of the certain need. The set of the drives used in 
the system is denoted as D. Each drive di∈D is normalized to 
the range [0,1], and smaller value represents that the need is 
more satisfied. In contrast, the larger value means the need is 
more severe. 

The stimuli are defined as the external conditions that are 
sensed by the sensors of the robot. There are three kinds of  

TABLE I  
PROPOSED INTERNAL NEEDS FOR SOCIAL ROBOT 

Maslow’s hierarchy of needs Ours 
Need of physiology Need of Energy (NEner) 
Need of safety Need of Safety and Rest (NSaR) 
Need of love and belonging Need of Belonging (NBel) 
Need of esteem Need of Esteem (NEst) 
Need of self-actualization Need of Self-Actualization (NSA) 
 Need of Curiosity (NCur) 
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Figure 3. The model architecture of our DDQN. 

stimuli, such as Stimulus of Overheat (SOver), Stimulus of 
Human (SHum), and Stimulus of Encouragement (SEnc). 
SOver is designed to handle the situation of the overheat of the 
motors in each joint, in result of having the movement 
frequently increasing the raising of temperature. It can motivate 
the robot to know when to take a rest for cooling down the 
motors. SHum means that whether there is a human in front of 
the robot or not, whereby the robot will know if it needs to 
interact with the human currently and also affect the belonging 
to human for robot. SEnc represents that whether the human 
give some encouragements to the robot when the robot interacts 
with the human. While the robot gets the encouragement from 
the human, the satisfaction of the certain need will continue for 
a while, which is similar like the feeling of human. 

The set of stimuli is denoted as ST, and each stimulus 
sti∈ST is defined as 0 or 1 as in the equation (1). 

1,       
st

0,   
i if the sensor is activated

otherwise


= 


               (1) 

Motivations can be considered as the goals for 
compensating the internal needs of the robot. The intensity of 
Motivations is generated by the linear combination of value of 
drives and several external stimuli, and the relation is shown in  
Table 2. The set of the motivations is denoted as M, and each 
motivation is denoted as mi. The relation between drives and 
motivations is one-to-one, which means that for each drive in 
the system, the corresponding motivations exists. 

Then, the 6 dimensional vector of intensities of motivation 
will be modeled as the state of our decision making system. 
Based on the state, we utilize the deep reinforcement learning 
algorithm, which is Dueling Deep Q-Network (DDQN) [42], to 
decide the action with the reward function. The reason for 
choosing a value based reinforcement learning is that policy 
based reinforcement learning and actor-critic based 
reinforcement learning are easily reach to optimal goal and 
stuck there. However, the value based method can take the  

TABLE II 
PROPOSED MOTIVATIONS FOR SOCIAL ROBOT 

Drive/Stimulus Motivation 
NEner/<N/A> Motivation of Survival 
NSaR/ SOver Motivation of Rest 

NBel/ SHum, SEnc Motivation of Relationship 
Nest/ SHum, SEnc  Motivation of Achievement 
NSA/ SHum, SEnc Motivation of Social Interaction 
NCur/ SHum, SEnc Motivation of Asking 

 

advantage for reaching the global optimal more easily. We 
hope that the robot can adapt to and kinds of environment, so 
we set the initial situation randomly while training. Therefore, 
to our best knowledge and empirical testing, both policy based 
method and actor-critic based method cannot work better than 
value based method like DDQN. The model architecture in this 
work is shown in Fig. 3. 

The reward function is to encourage the right action at the 
right moment, and the goal here is to balance the value of the 
drives, which will be decreased after execution of the action, 
and influence the intensity of the motivation. The reward will 
mainly be defined in two ways. First, if the action  is not 
standing by, the reward will be calculated by the difference 
between the current mi and mi

desired. For example, if the desired 
range of mi is [0.4, 0.6] with mi = 0.5, then you will get a 
positive reward κ×(1+0.5-0.6)=0.9κ, which is less than 1. 
Secondly, if the executed action is “standing by,” the value of 
mi in the desired range will be calculated as Σiri. The reward 
will be determined by whether Σiri becomes greater than the 
threshold or not. For example, if the robot chooses the action 
“standing by” as in the previous example, it has higher 
possibility to get a higher reward. The detail of the reward 
function is shown in equation (2) and (3).  

Moreover, the personality like whether the robot is more 
interested at interacting with the human can be designed by 
tuning the desired range of the motivation. For example, if the 
desired range is smaller, the intensity of the motivation will 
easily exceed the range. Then, the robot will do the specific 
action frequently to keep the motivation in the desired range. 
For adapting to different users’ preference, there will be an 
external reward to deal with the feedback from the users. 
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Figure 4. The flow of dialogue management. 

C. Dialogue System 
Dialogue system is utilized to handle the action of social 

chatting. In the human-robot interaction via chatting, we will 
utilize the speech to text (STT) module to transfer the speech 
into text, and use dialogue management to choose the kind of 
dialogue preferred by the human. If chit-chat is chosen by the 
human, a sequence to sequence chat-bot, to which the text style 
transfer module is connected, is applied. If the 
Question-Answering Bot (QA Bot) is operating, some specific 
kinds of questions can be answered. After answering is done 
from the text style transfer module or QA Bot module, the 
answers will be spoken out by the text to speech (TTS) module 
of the robot. In the dialogue management, a webpage is made 
for human to choose different kinds of chatting, and it is shown 
on the touch pad mounted on the robot. The user just needs to 
touch the button on the pad to choose. After the preferred 
button is pressed, the text will be passed directly to “the 
sequence to sequence with attention chit-chat module” or 
passed through the “entity extraction and keyword 
classification module” to select different QA functions.  

There are 8 types of QA functions, such as information 
retrieval, weather, time, news, related topics, google map, 
playing music, and taking photo. We will first try to tell the 
category by certain words ζ, and utilize the Natural Language 
Toolkit (NLTK), like word tokenizer, part-of-speech (POS) 
tagging, and name entity recognition, to get useful message for 
answering. In other words, the function will extract the 
keyword query for the QA Bot. After knowing the category of 
the question, the label of name entity of each word will be 
checked first. If the word has the label, the word will be added 
to the keyword query list. Then, check each POS tagging for the 
word that is without label of name entity. The words with useful 
POS tagging will also be added into the keyword query list. 
Finally, one utilizes the keywords for the QA Bot. The flow of 
dialogue management is shown in Fig. 4. 

The deep learning based chit-chat bot module is applied here, 
and it is a sequence to sequence model with attention 
mechanism [43]. This model is an auto-encoder model for 
encoding the input text into the latent space, and the attention 
mechanism for focusing on the input tokens is utilized while 
generating the output sentence. The optimization method is the 
basic cross-entropy loss to calculate the generated tokens in the 
discrete sampling way. 

The output sentence of the chit-chat bot and the output mood 
from the mechanism of the moods will be the input of the text 
style translation module, which is a function to translate the 

sentence from mood to another. In this work, there are three 
main factors for influencing the moods of the robot, and they are 
the value of the drives, the emotion of the human in interaction, 
and the encouragement from the human. Note that an unsatisfied 
robot’s need will make the robot become more negative, which 
is just similar to the human case where one feels anxious and 
negative when he/she suffers a severe need, like, hunger. In 
contrast, while the needs are satisfied, the robot act in a more 
positive way. In addition, if the human has negative emotion, the 
robot can speak in a more positive way to cheer him/her up. If 
the human has positive emotion, the robot however can speak in 
negative way to make joke of the human. On the other hand, the 
mood of the robot can also be affected if the human encourages 
the robot; i.e., if there is encouragement, the robot intends to act 
in a positive way. The detail of the mechanism is shown in the 
following via equation (4). 
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Our text style translation is considered as an unsupervised 
learning problem, because there are few parallel corpora to use. 
The architecture of the module is shown in Fig. 5, and we will 
introduce the training process firstly. There are sentence data, x1 
and x2, from different domains, X1 and X2, respectively, and 
their respective labels for each style, say, δ1 and δ2, will be 
encoded into the latent space as y1 and y2, respectively, by Ey. 
Then, the encoder Ez will encode both x1 with y1 as initial hidden 
state and x2 with y2 as initial hidden state into the same latent 
space as z1 and z2, respectively, where z is the latent variable. 
For generating the data from X2 to X1, we input the 
concatenation vector of encoded z and the style y1 as the initial 
hidden state in the generator G, and the generated sequence of 
hidden states in Long Short-Term Memory (LSTM) cell is 
denoted as 2ĥ i . In contrast, for generating the data from X1 and 
X 2, we input the concatenation vector of encoded z and the style 

 
Figure 5. The architecture of text style translation. 
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y2 as initial hidden state in the generator G, and the generated 
sequence of hidden states in LSTM cell is denoted as 1ĥ i . If the 
style representation is given as the same style of source sentence, 
the generated sequence of hidden state will be denoted as the 
reconstructed one, like 1

ih  and 2
ih . The model will be 

pretrained to speed up the convergence as in Ramachandran et 
al. [44]. The model architecture of Ez is a two layer LSTM; G is 
a one layer LSTM, and Ey is one layer of fully connected layer. 
The discriminator D is the same architecture as TextCNN [45]. 

In order to force the encoded latent representations in the 
same latent space and the generated sentence sharing the same 
data distribution with desired style of data domain, we utilize 
N+1 discriminator for the cross-alignment training [26] with the 
sequence of hidden states, such as 1ĥ i  with 2

ih  and 2ĥ i  with 1
ih . 

There are three classes of the N+1 discriminator, which are 
reconstructed sequence with positive style, reconstructed 
sequence with negative style, and transferred sentence with 
positive/negative style.  

Also, while generating the style representation y, the 
auto-encoder is applied to make y become more meaningful 
information. The cycle consistency loss is here to preserve 
more content from the source sentence, and therefore after the 
style of generated sentence of tokens, 1ˆ ip  or 2ˆ ip , is transferred, 
the generated sentence should be possible to transfer back to the 
original source sentence. 

While testing, the style representation of the current mood 
of robot will be inputted to the generator, and the opposite style 
label will be inputted to the style encoder. Then we can get the 
transferred sentence to be the output sentence for robot to speak 
out. 

D. Visual Question Generation 
The architecture of the VQG in this work is shown in Fig. 5. 

In training process, an image encoder EI encode the information 
of the image, and the encoder Ez will encode both encoded 
image features and the sentence, x∈X, into latent space with the 
latent variable z by Categorical Variational Auto-Encoder with 
Gumbel-Softmax techniques [28]. It will encode the last hidden 
state information in encoder with random noise g sampled from 
the Gumbel distribution Gum by the reparameterization trick. 
The generator G will generate the sentence with the initial state 
as the concatenation of the latent representation z and encoded 
image feature. The same techniques of Gumbel-Softmax of 
continuous relaxation for discrete sampling process and the 
Professor Forcing for aligning the sentence population is 
applied here, and is used to align two sequences of hidden states 
by the discriminator D1 for adversarial training. One of them is 
that the inputs are the ground truth tokens, and another is that 
the inputs are the previous generated logits with continuous 
relaxation. In addition, because some generated sentences do 
not match to the image in other previous works, the adversarial 
training is utilized for improving the relatedness between the 
generated sentence and the image. The discriminator D2 will try 
to classify the difference between the generated sentence with 

 
Figure 6. The architecture of Visual Question Generation. 

 
Figure 7. Pepper Robot. 

inputs of previous logits with encoded image feature and the 
ground truth sentence with the encoded image feature. 

The model architecture of 𝐸𝐸𝐼𝐼 is a VGG16 model [46] to the 
first fully connected layer with 4096 neurons which is 
pre-trained on the ImageNet and the parameter will be fixed 
while training, and it will connected to a fully connected layer 
with 512 neurons to output the image feature. Both Ez and G are 
one layer LSTM, and D1 is also the same architecture of 
TextCNN. D2 is a CNN-LSTM architecture, which inputs the 
tokens into CNN-LSTM layer and then do the dot product 
operation with the last hidden state of LSTM and image feature 
vector. 

IV. EXPERIMENT 
The experiment of our proposed system will also be break 

down to three sections, and one is for homeostatic model and 
decision making system; another is for text style translation; the 
other is for visual question generation. The robot we used in the 
experiment is Pepper, and it is shown in Fig. 6. 

A. Homeostatic Model and Decision Making System 
Due to the algorithm of decision making system, the 

experiment is done in the simulation, and it is evaluated with 
two metrics. The first one is the reward function of the 
algorithm for evaluating the result of the deep reinforcement 
learning algorithm, and the second one is the Robot Secure Rate 
(RSR) [16][17] for evaluating that whether the robot is secure 
or not. The reward can approach 650 after training 4000 epochs, 
and the Figure 7 shows the rewards, which is averaged for every 
30 epochs, in the learning process. While testing for 100 epochs, 
the average reward is 770.19. The reason that reward in testing 
is higher than in the training is due to the epsilon greedy 
strategy in training, which chooses random action for 
exploration. 

In RSR index, when a drive exceeds 0.9, it is considered as 
insecure for our social robot. Thus, the metric representing the 
time ratio of robot being in secure robot is defined as in 
equation (5). RSR=0 means the social robot is always insecure, 
and RSR=1 means the social robot is always secure. The 
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performance is shown in Table. , and it has a better performance 
compared with [16][17] which consider only the dominant 
motivation. 
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where N is the total time step, se(t) is an indicator for showing if  
the robot is secure at t time step 

The changing of mood value is shown in Figure 8, and if the 
threshold is defined as 0.44, the mood transition is stable for 
each time period. 

B. Text Style Translation 
The experiment is evaluated on dataset which is provided 

by Shen et al. [26], and it is the Yelp dataset. It is a restaurant 
reviews dataset, which utilizes the user ratings to classify the 
positive reviews and the negative reviews, and the sentences 
longer than 15 words are eliminated. Finally, there are 350K 
positive sentences and 250K negative sentences, and the words 
appear less than 5 times will be unknown tokens. 270K positive 
sentences and 180K negative sentences are for training, and 
76K positive sentences and 50K negative sentence for testing, 
while the rest of them are for validation. In order to evaluate the 
transferred sentences, a model-based evaluation is used. A 
pre-trained sentiment classifier, which is TextCNN, evaluates 
whether the sentence has the correct style, and it has 97.47% 
accuracy on the testing data. As a baseline, we compare against 
the model with Hu et al. [25] and Shen et al. [26], which is also 
provided in Shen et al. [26]. The result is shown in the  
Table 4. While we are testing the code from Shen’s github, they 
revised the program at March and got the score of 83.94%. Our 
result has a better accuracy as compared with them. In addition, 
our method without style auto-encoder will get a lower 
accuracy, which represents that style auto-encoder really help 
to improve the accuracy by extracting and preserving better 
style latent representation. 

TABLE. III 
THE PERFORMANCE OF RSR INDEX. 

Work RSR index 
Lin et al. [16]  0.9 
Yang et al. [17] 0.98 
Our proposed one 0.9994 

 
TABLE IV 

THE RESULT OF TEXT STYLE TRANSLATION 
Method Accuracy 
Hu et al. (2017)[25] 83.5 
Shen et al. (2017)[26]:  
Cross-aligned auto-encoder 78.4 

Shen et al. (2018 github code) 83.94 
Ours (W/O style auto-encoder) 82.05 
Ours (W/ style auto-encoder) 84.65 

 
Because of not sharing the same dialogue dataset yet, it will 

have some difficulties while transferring the sentence for 
different styles. It will be our future work to find a shared 
dataset to train both models. We demonstrate some current 
examples in Table 5. 

C. Figures and Tables 
For the experiment, we combine the VQG dataset from 

Microsoft [47] and the VQA dataset [48] together, because the 
questions in VQG dataset are more natural than VQA dataset. 
However, the sentences in VQG dataset are not enough for the 
training, so VQA dataset is used. There are approximately 
120K images and 3~5 sentences for each image in total. 
Evaluations of the generated sentences with the image are 
human evaluation, and there are three main evaluation metrics, 
such as “Diverse Meaning”, “Relatedness with the Image”, and 
“Relatedness with the Scene”. The reason that we use the 
human evaluation is due to the goal of generating diverse 
sentence for the image. There is no specific ground truth 
sentence for each image, and we should consider the meaning 
of the sentence, because it is weird for robot to ask similar 
sentences just by changing some prepositions in the sentence. 

TABLE V 
SAMPLE OF TEXT STYLE TRANSLATION 

User speak/ Chit-Chat 
model 

Transferred to 
negative 

Transferred to 
positive 

How was your day 
today? / Pretty good, 
how about you? 

Pretty bad, but you 
can get? 

Pretty good, you can 
like! 

Do you feel good? /No, I 
feel very sad today. 

No, I really felt 
disappointed with 
this place. 

Totally a very nice 
experience with friends. 

How was your lunch? / It 
is very delicious! 

It is not very 
delicious! 

It is very delicious! 

How was your 
breakfast? / It is gross. 

It is gross. It is delicious. 

 

 
Figure 8. The reward and RSR changing in the training process. 

 
Figure 9. The mood changing in one testing epoch. 
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• Diverse Meaning (DM) 

Check if the meaning of the generated sentences is 
repetitive or not. For example, “how many people are there?” 
and “how many laptops are there?” are different meaning, 
while “how many people are there?” and “how many people are 
here?” are the same meaning. 
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where si is the generated sentence in the set of generated  
sentences S, and N is the number of sentences in the set. 

• Relatedness with the Image (RI) 

Check if the generated sentence describes the image 
correctly or not. For example, the model sometimes generates 
the sentence: “is the dog sleeping?” for a cat in the image, and it 
will be counted as not related to the image. 
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where si is the generated sentence in the set of generated  
sentences S, and N is the number of sentences in the set. 

• Relatedness with the Scene (RS) 

Check if the generated sentence is related to the scene of the 
image and other sentences. For example, model generates the 
sentence: “is there pizza on the table?” for an image of hotpot 
restaurant. Although there is not pizza in the image, this 
sentence is still around the scene of food, and it will be 
considered that it is related to the topic. 
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where si is the generated sentence in the set of generated  
sentences S, and N is the number of sentences in the set. 

We build our testing dataset by finding the images from 
internet, and some images are more common in daily life for 
robot to observe in real world. There are 50 testing images, and 
we use 100 sampling noises to generate the sentences. Finally, 
the model can generate 15.7 sentences in average, which means 
785 sentences in total. The score of DM is 0.879, and it means 
that there are 87.9% sentences having different meaning for 
each image. The score of RI is 0.917 representing that 91.7 % 
of generated sentences can accurately describe the image. The 
score of RS is 0.996, and it means that almost all the generated 
sentences are related to the scene of the image. One example is 
shown in Fig. 10. 

V. CONCLUSION 
We proposed a novel autonomous system based on the 

homeostatic theory with inspiration from Maslow’s hierarchy 
of needs for a social companion robot acting in a human manner, 
and built up the mechanism of moods for it. A robot with 
moods can improve the human-robot interaction, and moods 
are also going to be used in the dialogue system. As a social 
companion robot, dialogue system is indispensable, and there 
are two main functions. First, the chit-chat bot with the text 
style translation for transferring the positive or negative style, 
which is decided by the mechanism of the moods. Second, the 
QA bot for answering general questions is also built up. In 
addition, in order to make robot behaves in more humanlike 
way, we model the internal need of curiosity that is an 
important characteristic of human. The visual question 
generation module with visual perception system of robot are 
proposed to handle the curiosity need and to take initiative in 
the interaction. 

Dueling Deep Q Network (Dueling DQN) is utilized for the 
decision making part of the autonomous system, and it can 
reach a more global optimal goal by modeling the continuous 
state, which is the intensity of motivations. For modeling 
different personality for the robot, the desired range of the 
intensity of motivation can be changed to make robot perform 
different dedication to interact with the human.  

In the dialogue system, the chit-chat bot is a Seq2Seq with 
attention model, and the data driven based text style translation 
is proposed. In text style translation module, the pre-trained 
language model is used to speed up the convergence, and 
combine the cross-alignment training for aligning the sentence 
population of two styles. Moreover, N+1 discriminator is used 
for decreasing the parameters of the model and a style 
auto-encoder is used to extract more meaningful information of 
style. To preserve the content of the sentence, 
cycle-consistency loss is also used for updating. In the QA bot, 
there are functions, such as information retrieval type, asking 
weather, asking time, asking news, asking related topics, asking 
for google map, asking for playing music, asking for taking 
photo.  

Deep learning based visual question generation deploys the 
categorical variational auto-encoder with Gumbel-Softmax for 
encoding the latent representation, and utilize the 

 
'what is on the table ?', 'are there any children in the picture ?', 'what color is 
the tablecloth ?', 'how many people are in the picture ?', 'how many candles 
are on the cake ?', 'are the candles lit ?', 'are these children ?', 'is the woman 
wearing glasses ?', 'is this a birthday cake ?', 'what color is the cake ?', 'what 
are the people eating ?', 'are these people eating ?', 'what is the girl eating ?', 
'what is the woman holding ?', 'are the children happy ?', 'what occasion is 
being celebrated ?' 

Figure 10. The example of Visual question generation. 
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Professor-Forcing algorithm and continuous relaxation for 
discrete sampling process to avoid bias exposure. We also used 
the adversarial training to match sentences with the image 
better. 

In the experiment of autonomous system, the Robot Secure 
Rate (RSR) can reach 99.94% in the testing, which means the 
robot can satisfy the internal needs well. For the text style 
translation module, we used a pre-trained sentiment classifier to 
determine the performance, and it has 84.65% accuracy to 
successfully transfer the style. The evaluation metrics of 
diverse meaning, relatedness of image, and relatedness of the 
topic are used for the visual question generation module, and it 
is done by the human evaluation. We can get 15.7 sentences for 
a single image in average, and get 87.9% sentences with 
different meaning. There are 91.7% generated sentences 
described the image correctly, and 99.6% of generated 
sentences are related to the same topic of the image. 

There are future works for each part in this work. In 
autonomous system, changing the personality of the robot by 
tuning desired range of intensity of motivation should be in a 
more automated way. In the dialogue system, in order to 
combine the chit-chat bot and text style translation module, we 
should find a better dialogue dataset for training both of them. 
Otherwise, the text style translation is difficult to transfer the 
style of sentence outputted from the chit-chat bot. In the visual 
question generation, it can be developed as a visual 
understanding module by getting the answer back from the 
human. Most important of all, we will target at the companion 
ability in our future work, such as focusing on a specific human 
who needs companion and maximizing the usage of our mood 
mechanism. In addition, we should also try to develop a better 
evaluation for evaluating the users’ feeling and the companion 
ability of the robot. 
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Abstract—This paper proposed the path tracking design of a 
mobile robot based on Takagi-Sugeno (T-S) fuzzy modeling 
method and sliding mode control. The T-S fuzzy model is utilized 
to represent the equation of motion of the mobile robot, and the 
concept of parallel distributed compensation (PDC) is applied to 
design the T-S fuzzy controller. The stability of the system is 
guaranteed by linear matrix inequalities (LMIs) from Lyapunov 
approach. The sliding mode control (SMC) preserves the 
advantages of quick response and low noise. Therefore, the T-S 
fuzzy control combine the SMC enable a mobile robot system to 
possess better robustness. 

 
Index Terms—Takagi-Sugeno(T-S) fuzzy modeling, mobile robot, 

sliding mode control. 

I. INTRODUCTION 

N order to adapt to different environments, the 
maneuverability of robots is getting more important. As 

technology advances, we hope to provide a better platform for 
mobility and maneuverability so that an omni-directional 
platform design can be proposed to replace the traditional 
differential drive moving platform [1]. The omni-directional 
mobile robot (ODMR) is constructed by several 
orthogonal-wheels inside the wheel [2]. In recent years, the 
research and technological development of mobile robots are 
popular and make wide ranges of applications used in the 
industrial sectors, hospitals, or family, etc. [3]. 

The mathematical model of an ODMR system was derived 
[4]. The dynamic equation of the robot is nonlinear [5]. It is a 
difficult task to design a nonlinear tracking controller. The 
LMI-based fuzzy control is a better way to approach and solve 
the complex problem. 

The T-S fuzzy is a particular framework. It can be applied to 
represent a nonlinear system. The feature of T-S fuzzy model is 
to express the local dynamics of each fuzzy rule by linear system 
model [6]. After T-S fuzzy model was built, the PDC offers the 
design of fuzzy controller which shares the same fuzzy sets with 
the T-S model in the premise parts [7]. 

In the traditional approach, the feedback gains of PDC are 
designed via the LMI conditions. To determine the feedback 

 
 
Gwo-Ruey Yu is with Department of Electrical Engineering, National 

Chung Cheng University, Chia-Yi, Taiwan   (e-mail: ieewoyu@ccu.edu.tw). 
Wen-Yen Chen is with Department of Electrical Engineering, National 

Chung Cheng University, Chia-Yi, Taiwan. 
Research is supported in part by the Ministry of Science and Technology, 

Taiwan, R.O.C., under Grant Numbers MOST 107-2221-E-194 -044 -MY2. 

gains of PDC, Lyapunov theorem is applied to derive a 
sufficient stability condition which guarantees the closed-loop 
fuzzy is globally stable. The stability condition is expressed in 
terms of LMI so that the feedback gains of fuzzy controller 
could be obtained via convex optimization programming 
technique. 

To upgrade the control performance of mobile robot, the 
sliding mode control has been combined with T-S fuzzy model 
in this paper. This approach makes the control system have 
quick respond and better robustness [8]. 

II. T-S FUZZY CONTROLLER 
The T-S fuzzy model proposed by Takagi and Sugeno is 

described by IF-THEN rules. 

A. T-S Fuzzy Model 
The main feature of a T-S fuzzy model is constructed by 

several rules for controlling a non-linear system. Let p  be the 
number of the fuzzy rules. The i  th rule can be defined as 

Model Rule i : 
( ) ( )1 1IF  is  AND  AND  is i p ipz t M z t M ,                          

   
( ) ( ) ( )

( ) ( )
THEN  1,2, ,i i

i

x t A x t B u t
i p

y t C x t
 = + = =



                     (1) 

where ipM  is the fuzzy set, ( )1z t  ,…., ( )pz t  are known 

variables, ( )x t  is the state vector, ( )u t  is the input vector, 
n n

iA R ×∈ , n m
iB R ×∈ , l n

iC R ×∈ . 

The state equation of T-S fuzzy model is described as 
follows: 

( )
( )( ) ( ) ( )( )

( )( )

( )( ) ( ) ( )( )

1

1

1

p

i i i
i

p

i
i

p

i i i
i

w z t A x t B u t
x t

w z t

h z t A x t B u t

=

=

=

+
=

+

∑

∑

∑



    =

                (2) 

where 

                      
( )( )

( )( ) [ ]
1

1

0 1

p

i
i

i

h z t

h z t
=


=


 ∈

∑                                (3) 
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B. PDC Fuzzy Controller 
The PDC fuzzy controller shares the same fuzzy membership 

with the T-S fuzzy model. 

Model Rule i : 
( ) ( )1 1IF  is  and  and  is i p ipz t M z t M…                              

      ( ) ( )THEN ,  1,2, ,iu t F x t i p= = …                                  (4) 

The final outputs of the fuzzy systems are shown as follows 

( ) ( )( ) ( )
1

r

i i
i

u t h z t F x t
=

= ∑                          (5) 

where 

( )( )
( )( ) [ ]

1
1

0 1

p

i
i

i

h z t

h z t
=


=


 ∈

∑                               (6) 

C. Decay Rate Controller Design Using Relaxed Stability 
Analysis 

In a continuous-time fuzzy system, if there exists a common 
positive definite matrix P. The condition that 

( )( ) ( )( )2V x t V x tα≤ −  for all trajectories is equivalent to [6] 

( )1 2 0T
ii iiG P PG s Q Pα+ + − + ≤                   (7) 

2 0
2 2

T
ij ji ij jiG G G G

P P Q Pα
+ +   

+ − + ≤   
   

         (8) 

where i j< , ii i i iG A B F= − , ij i i jG A B F= − , ji j j iG A B F= − , s 
is the number of trigger rules that 1 s r< ≤  and Q is the 
semi-definite matrix. 

III. DESIGN OF LMI-BASED FUZZY CONTROLLER  

A. The Four-Wheel ODMR Model 
Fig. 1 shows the structure of four-wheel ODMR. Table I lists 

the symbols of the four-wheel ODMR. Table II lists the value of 
the parameter. 

 
Figure 1.  The four-wheel ODMR. 

TABLE I 
THE SYMBOLS OF THE FOUR-WHEEL ODMR. 

Wheel 1 Front left wheel 
Wheel 2 Rear right wheel 
Wheel 3 Rear left wheel 
Wheel 4 Front right wheel 

L The radius of the ODMR 
iD , i=1~4 The traction force of the wheels 

φ  The angle between wX  and mX  
ϕ  The azimuth angle of robot 

 
TABLE II 

THE VALUE OF THE PARAMETER. 

wI  0.02108 2kgm  

vI  11.25 2kgm  
r  0.0245 m  
c  5.983× 610− skgm /2  
m  9.4 kg  
L  0.178 m  

The T-S fuzzy model of this robot is proposed in the literature. 

The states of the mobile robot ( ) ( ) ( ) ( )
T

x t x t y t tφ =  


  , the 

control input variables ( ) ( ) ( ) ( )1 2 3
T

u t u t u t u t=    , and the 

output variables ( ) ( ) ( ) ( )
T

y t x t y t tφ =  


  . The dynamic 
equation of the four-wheel ODMR is 

( ) ( ) ( ) ( ) ( )
( ) ( )

x t A x x t B x u t

y t Cx t

= +

=



                      (9) 

and we have 

( ) ( ) ( ) ( )( )
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Then gets the state equation as follows 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 2 1

2 1 2

3 3

w

w

w

x t a x t a t y t u t

y t a t x t a y t u t

t a t u t

φ

φ

φ φ

= − +

= + +

= +



  



  
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Figure 2. The block diagram of the tracking system. 

B. Path Tracking Controller Design 
In order to achieve the objective of path tracking, we must be 

rewrite (14) to the error state equation. First, define the error 
state variables as follows: 

( ) ( ) ( ) ( ) ( )e t r t y t r t Cx t= − = −                   (12) 

where ( ) ( ) ( ) ( ) .
T

r r rr t x t y t tφ =  


   

Substituting (12) into (11) gets the error state equations as 
follows: 

    
( )

( )
( )
( )
( )

1 2 1 1

2 1 2 2

3 3 3

0
0

0 0

w w

w w

w w

x a a t x u r t
y a t a y u r t

a u r t

φ
φ

φ φ

 −       
        = + +        
                



 



 

 

   (13) 

where ( )r t  is the input command signal. 

To avoid the steady-state error problem, we add a PI 
controller in the feed-forward loop. Fig. 2 shows the block 
diagram of the path control system. 

From Fig. 2, we can obtain: 
i iu F x G

r y r Cx
η

η
= +
= − − −

                            (14) 

The augmented state equation is derived as 
0 0
0 0 1

x A x B
u r

Cη η
         

= + +         −         





               (15) 

Moreover, 

( )
( )

( )
( ) ( ) ( )

0 0
0 0 1

x xA B
u r

Cη η
 ∞   ∞      

= + ∞ + ∞        ∞ ∞−        





   (16) 

Let eq. (15) subtract eq. (16), we have 
( )
( )

( )
( ) ( )

0
0 0

x x x xA B
u u

Cη η η η
 − ∞   − ∞    

= + − ∞         − ∞ − ∞−      

 

 

  (17) 

Let 
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( )

( )
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e

e

x x x t
tη η η

 − ∞   
=   − ∞   

  

  

, we have 

( )
( )

( )
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0
0 0

e e
e

e e

x t x tA B
u t

t tCη η
      

= +      −      





            (18) 

Thus, we get the new error state equation: 

( ) ( ) ( ) ( ) ( )
0
0 0 e e e e

A B
e t e t u t A e t B u t

C
   

= + = +   −   
    (19) 

The total control input is designed as 

[ ] [ ] ( )e
e i i i i

e

y
u F G F G e t

η
 

= = 
 

                (20) 

C.  T-S Fuzzy Rules 
Fig. 3 shows the membership functions. The T-S fuzzy model 

is designed by the following rules: 

Model Rule 1: 
( )IF  is about 1tφ −  

( ) ( ) ( ) ( ) ( )1 1 1THEN  and ee t A e t B u t y t C e t= + = 

             (21) 

Model Rule 2: 
( )IF  is about 0tφ  

( ) ( ) ( ) ( ) ( )2 2 2THEN  and ee t A e t B u t y t C e t= + = 

            (22) 

Model Rule 3: 
( )IF  is about 1tφ  

( ) ( ) ( ) ( ) ( )3 3 3THEN  and ee t A e t B u t y t C e t= + = 

             (23) 

where 
1 2 1
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1 2
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3
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1 0 0 0 0 0 1 0 0 0 0 0
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0 0 1 0 0 0 0 0 1 0 0 0
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0 0 0 0 0
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0 0 1 0 0 0
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a a
A A

a a
a a

a
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−   
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   
   
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 −
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 
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1 2 3 3 3

1 2 3
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0
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×


= = =


= = =





  

  

 

Now, we can define the PDC fuzzy controller and the new 
T-S fuzzy system as follows 

Model Rule 1: 
( )IF  is about 1tφ −  

( ) ( ) ( )1 1THEN eu t F x t G tη= +                                         (24) 

Model Rule 2: 
( )IF  is about 0tφ  

( ) ( ) ( )2 2THEN eu t F x t G tη= +                                            (25) 

Model Rule 3: 
( )IF  is about 1tφ  

( ) ( ) ( )3 3THEN eu t F x t G tη= +                                         (26) 
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Figure 3.  Fuzzy membership function. 

 
Figure 4.  Sliding mode control 

IV. SLIDING MODE CONTROL 

The sliding controller design provides a systematic approach 
to the problem of sustaining stability and accordant 
performance for system with model uncertainty. It has been 
successfully applied to robot arms, electric motors, and fly 
vehicles in recent years. Thus, sliding mode control has been 
studied popular in many fields due to the great advantage in 
quick response and better robustness. 

Sliding mode control must work at least two subsystems. 
Using the approaching condition, the system states approach 
into the sliding surface. Using the sliding condition, the system 
states will achieve the control object on the sliding surface. Fig. 
4 shows the state variation under sliding mode control. 

In general, there are two steps for designing sliding mode 
controller. 

Step 1. Choose a suitable sliding surface )(xs . 

Step 2. Design a variable structure control u  which will drive 
the system state to the sliding surface in finite time. 

Generally, the sliding surface can be set as 

( ) 1 1 2 2 1 1n n n ns x c x c x c x c x− −= + + + +              (27) 

For a system ( ) ( )x f x g x u= + , the sliding mode control law 
can be chosen as 

( ) ( ) ( ) ( )
1 1

sgn , 0s s su g x f x g x k s k
x x x

− −∂ ∂ ∂   = − − ⋅ >   ∂ ∂ ∂   
 (28) 

In this paper, the authors combine the T-S fuzzy model and 
sliding mode control to treat with the path control of the mobile 
robot. Let the error state equation (13) to be rewritten as 
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Figure 5. The velocity responses of the mobile robot 
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Figure 6. The variation of u1 
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disturbance signal. The T-S fuzzy sliding control law will be 
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Figure 7. The variation of u2 
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Figure 8. The variation of u3 

V. COMPUTER SIMULATION 

A. Path Regulation 
To show the effects of the T-S fuzzy sliding control, the 

conventional T-S fuzzy control is applied to the mobile robot  

for comparison. Let the reference commands be step input 
signal. The initial conditions of  x , y , ϕ  are 0.2, 0.2 and 0.1.  Fig. 
5 shows the responses of x-velocity, y-velocity and angle 
velocity, respectively. Obviously, the T-S fuzzy sliding 
controller is faster than the conventional T-S fuzzy controller. 
Fig. 6~8 shows the responses of control input 1u  , 2u  and 3u  , 
respectively. Obviously, the energy of the T-S fuzzy sliding 
controller is better than that of the conventional T-S fuzzy 
controller. 

B. Path tracking 
To illustrate the effectiveness of the T-S fuzzy sliding control 

design, let the path tracking command be the reference signals 
shown in Fig. 9 and Fig. 10, respectively. The conventional T-S 
fuzzy control is applied to the mobile robot for comparison. Fig. 
9~11 shows the responses of x-velocity, y-velocity, and angle  
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Figure 9. The variation of x-velocity 
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Figure 10. The variation of y-velocity 
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Figure 11. The variation of φ  

velocity, respectively. Fig. 12 shows the path tracking response 
of the mobile robot. Obviously, the performance of the T-S 
fuzzy sliding controller is superior to that of the conventional 
T-S fuzzy controller. 
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Figure 12. The response of path tracking 

Fig. 13 shows the integral square tracking error of the mobile 
robot. Obviously, the tracking error of the T-S fuzzy sliding 
controller is less than that of the conventional T-S fuzzy 
controller. The tracking performance is measured by 

( ) ( )
10

0
 T

I t
E e t e t dt

=
= ∫                           (31) 

VI. CONCLUSION 
The path controller design of a mobile robot based on T-S 

fuzzy model and sliding mode control has been proposed. The 
T-S fuzzy system was used to model the mobile robot. The PDC 
controller was designed by stability condition derived from 
Lyapunov theory. In order to promote the system performance, 
the sliding mode control was integrated into the T-S fuzzy 
system. Computer simulation demonstrates the T-S fuzzy 
sliding controller is better than the conventional T-S fuzzy 
controller for the mobile robot.  
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Figure 13. The integral square tracking error 
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 Abstract—One of the drawbacks of supervised learning for 
convolution neural networks (CNNs) is the lack of efficient 
manners to collect training features. Therefore, we proposed a 
self-organizing synthetic mechanism to facilitate the training 
ability of recognition. The proposed architecture consists of two 
functional modules: a self-organizing synthesis layer (SOS) 
embedding in the convolution neural network. The former 
automatically classifies and refines incoming training or testing 
patterns into several clusters, which are regarded as the template 
features in recognition stage; that is, the clustered features are 
present to the input layers of the latter module for training. The 
proposed system is applied to the terrain detection for a mobile 
robot, where an LED pointer projects a straight line on the terrain 
by an angle of 45 degrees. The image of the line is captured by a 
CCD camera mounted at the front of the robot. It demonstrated 
that the recognition rate is above 95% after 20 patterns have been 
synthesized and trained and above 99% after 30 patterns have 
been trained in the experiments. 

 Index Terms—impedance control, compliance control, 
compliance teaching, human-robot cooperation 

I. INTRODUCTION 
ONVOLUTION neural networks are a hierarchical 
multi-layer neural network, capable of 

deformation-invariant visual pattern recognition, even if the 
input pattern is deformed in shape, shifted in position or 
imposed by noises [1-2]. Corresponding to the category of the 
input pattern, only one cell is activated in the higher stage of the 
network. Other cells respond to other categories. It can acquire 
the ability to recognize patterns by learning and can be trained 
by either supervised or unsupervised learning. In practice, there 
is a major problem in the training process of a convolution 
neural network. it needs hard labor to construct a tremendous 
amount of good training set. To solve these problems, a two-fold 
neural network called Flexible Self-organizing Synthetic 
Convolution Neural Network (FSS-CNN) is proposed in this 
paper. The neural network adopts a framework of convolution 
neural networks but evolves with a self-organizing synthetic 
mechanism. The proposed architecture consists of two 
functional modules: self-organizing synthesizer (SoS) and a 
CNN. The module of SoS takes charge of pattern decomposition, 
feature extraction functions and clustering from the training 
pattern. The number of planes in each stage of the CNN hence is 
determined according to the number of clustered features and  
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Figure 1. Diagram of the network that executed the clustering process. 

the clustered features are presented to the input layer of the CNN 
for training. 

II. SELF-ORGANIZING SYNTHETIC MECHANISM FOR KERNELS 
There are two functions processing in the self-organizing 

synthetic mechanism: the decomposition/extraction and feature 
clustering. The feature extraction function is for the purpose of 
features refinery from the training patterns. The process 
calculates the central coordinate of a feature pattern by means of 
the geometry mean method and normalizes the feature pattern to 
meet the size of the receptive field of a “seed cell” in. The 
clustering is processed by a simple Hamming network with 
out-star connections between the input nodes and the output 
nodes. The connections store output features with 
self-organizing clustering as shown in Figure 1. 

The training pattern x is a form of a binary vector in the 
proposed system. The Hamming network is employed to 
selecting a stored class that is at a minimum Hamming distance 
(HD) with the incoming noise or incomplete training pattern 
presented at the input[10]. The Hamming network consists of 
two layers. The first layer is Hamming Distance Calculating 
layer calculating the matching score between the input vector x 
and the stored pattern vectors in a feed-forward manner. The 
second layer of the Hamming network is called MAXNET, 
which is a recurrent recall network. The MAXNET selects the 
node with the maximum matching score of the first layer and 
suppresses the other output nodes. 

If the Hamming network serves as a vector classifier with p 
outputs and n bits input vector x is representing training patterns. 
The output node connects to an input vector with a weight 
matrix wm. The m’s output node netm represents the matching 
score between input patterns and clustered features. The 
equation can be expressed as  

netm= (wm)tx = n-HD(wm,x)                    (1) 

Instead of using the above equation the netm can be 
expressed as 

netm = xt(wm) = 1
m
j j mx w j=∑                       (2) 
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the weight vector mw j  is the normalized weight vector with 
small bias, which can be defined as: 

j

mj
mj

mj

w
w

wε
=

+ ∑
                               (3) 

The ε is a bias value and set to 0.5 in this work. The purpose 
of Eq.(3) is to prevent the input pattern being classified into an 
incorrect clustered feature, which contains more useful pixels 
(i.e. pixel value with 1) then correct feature does. 

The second layer of the Hamming network is MAXNET, 
whose purpose is to enhance the m-th node with a maximum 
matching score and to suppress the others. MAXNET is a 
recurrent network with both excitatory and inhibitory 
connections. The weight matrix wm of the MAXNET is the size 
of p×p and shown as below: 

m

1
1

1

1

η η η
η η η
η η η

η η η

− − … − 
 − − … − 
 = − − … −
 
 
 − − − … 

w
    

 

Where 0<η<1/p, is called the lateral interaction coefficient. 
Lippmann proved that MAXNET will always converge and find 
the node with the maximum value when η<1/p [11]. When 
initialized with the input vector, the network starts processing it 
by adding positive self-feedback and negative cross-feedback. 
When the MAXNET stabilizes, the only unsuppressed node will 
be the one with the largest initializing entry. This means that the 
only nonzero output response node is the node closest to the 
input vector. The recurrent update rule of MAXNET according 
to the equation as: 

yk+1= f(wmyk) 

where yk and yk+1 represent output in step k and k+1, respectively. 
The activation function f(●) is given by 

( )
     0

0    0
x x

f x
x

≥
=  <

 

The convolution neural network is successive to the SoS. 
Each stage consists of two layers: a layer of simple cells, or 
S-cells, followed by a layer of complex cells, or C cells. Each 
layer is divided into a number of planes, each of which consists 
of a rectangular array of cells. the S-cells respond to features at 
higher levels of abstraction via a variety of kernels (filters); for 
example, corners with intersecting lines at various angles and 
orientations. The C-cells integrate the responses of groups of 
S-cells by Max pooling operations. Because each S-cell is 
looking for the same feature in a different location, the C-cells' 
response is less sensitive to the exact location of the feature on 
the input layer. This behavior is what gives the Convolution 
neural network its ability to identify characters regardless of 
their exact position in the field of the retina. By the time it has 
reached the final layer of C-cells, the effective receptive field of 
each cell is the entire retina. 

DECOMPOSITION EXTRACTION
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Figure 2. Framework of FSS-CNN 

The original convolution neural network requires some 
foreknowledge of the desired features on each stage, and each 
plane on a stage, to respond. Under that, a set of training vectors 
should be developed for each layer, and the layers should be 
trained independently. It selects the representative cell for each 
plane carefully, to ensure that the input pattern is presented in 
the proper location with respect to the representative's receptive 
field [12.] 

III. FLEXIBLE SELF-ORGANIZING SYNTHETIC CONVOLUTION 
NEURAL NETWORK (FSS-CNN) 

The detailed framework of FSS-CNN is shown in Figure 2, 
which includes two major parts: Self-organizing 
Synthesizer(SOSN) in the lower part and CNN in the upper part. 

The self-organizing synthetic mechanism functionally 
consists of a decomposition, feature extraction function and 
clustering with a pruning mechanism. It classifies the training 
patterns into some clusters of features and tailors them to fit the 
required size to train CNN.  

The decomposition and extraction function analyzes the 
training pattern and refines the features. The features obtained 
from the decomposition process are all fixed in size and some of 
them are not well-located on the template window. The meaning 
of refining a feature is to put the character distribution of the 
feature to the center of the pattern and to tailor the features to 
meet the request of training the successive network. The feature 
extraction function generates the central coordinates of a feature 
pattern by means of the geometry mean method as section 2.1 in 
this paper. 

The purpose of the clustering process is to classify the 
refined features under the control parameter of vigilance vector. 
The vigilance vector, with 0 < V ≦ 1, measures the degree of 
discrimination between different classes of refined features. If V 
is small, the similarity condition is easier to meet, resulting in a 
coarse categorization and more refined patterns are merged into 
a category. On the other hand, if V is chosen to be close to 1, 
many finely divided categories are formed and fewer refined 
patterns are merged. The network decrease in size through a 
pruning process.  

As an input vector lies outside sensitivity regions of all, a 
new neuron is added. In order to avoid incremental growth 
infinitely, the network decrease in size through a pruning 
process. The probability of an operational neuron deleted 
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increases in direct proportion to the overlap between its 
sensitivity region and regions of its neighbors. The overlap 
between the sensitivity regions of several neurons is estimated 
by computing the frequency of activation of overlapping 
neurons with the same input vector. Therefore, the deletion 
probability of a neuron is increasing linearly. 

The whole process is illustrated as follow: 
Step 1: set the vigilance vector V=0.1, 0.4, 0.9. 
Step 2: initialize parameters 
Step 3: present a pattern vector x, where x∈{0,1}n 
Step 4: according to the size of seed cells, extract the feature of 

x. and using the geometry mean method to locate central 
coordinates of each extracted feature. 

Step 5: calculate the match score M(p,wj) between the refined 
feature and weight vector wj 

Step 6: if M(p,wj) < V for all j then 
activates a new neuron j* by initializing its 
reference vector to wj*=p, and its deactivation 
parameter to * 1

j
Pr =  

else 
update the weight vector w 

Step 7:if several neurons are activated in step 6, deactivate one 
of neurons if rnd( ) > Prj ,where Prj is deactivation 
parameter, and rnd( ) is a uniformly distributed random 
number in the range (0,1). The probability of 
deactivation of activated neuron is increasing as follows: 
Prj(t+1) = Prj(t) - η(Prj(t) - Prmin), where η and Prmin are 
pruning constants. 

Step 8: goto step 3 

Another part of FSS-CNN is the CNN framework. The CNN 
in this paper is trained by means of supervised learning. That is 
to say, the synaptic connections of the network are reinforced by 
means of a learning way with a “teacher”. The “teacher” in the 
proposed system is the self-organizing synthetic mechanism. 
The number of S-cell and C-cell planes of the CNN fully 
depends on the number of clustered features.  

The whole process of FSS-CNN in pattern recognition 
executed can be divided into two serial phases: a training phase 
and recall phase. When a new pattern is presented to the input 
layer of the network, in recall phase, could not be recognized, 
the system will get into the training phase. During training phase, 
the flexible self-organizing synthetic mechanism automatically 
extracts the shape of refined feature, tailors the size of refined 
feature, and also calculates the central coordinates of a refined 
feature. Meanwhile, it also determines the number of S-cell and 
C-cell planes in each stage of CNN. The feature clustering 
process classifies the refined features into several clusters of 
features. This mechanism also presents the clustered features to 
the CNN and chooses a “seed cell” in a plane for training those 
seed cell. Training of CNN is performed step by step from the 
lower to the higher stage. The response of the cells on the 
highest stage of the network shows the final results of 
pattern-recognition in the recall phase. After being well trained, 

 
Figure 3. Training patterns in simulation 1 

    
(a)                                                 (b) 

 
(c) 

Figure 4. Response of self-organizing synthetic mechanism  
(a) 4 patterns have been presented; (b) 8 patterns have been presented; 

(c) 12 patterns have been presented.. 

the network can perform a rather robust pattern recognition 
without being affected by any deformation, such as changes in 
size, or shifts in position. 

IV. EXPERIMENTS 
In order to test the performance of FSS-CNN, two 

simulations are presented. In the first simulation, we present 
twelve BMP training patterns; each contains 19*19 pixels’. 
Each of training patterns, representing the image map that a 
laser pointer projects on the ground by the degree of 45, is used 
to train CNN. In the second simulation we examine the ability of 
recognition to the digital numerals from 0 to 9. 

The network of flexible self-organizing synthetic 
mechanism is presented with twelve 19*19 pixels’ training 
patterns a shown in Figure 3. in those figures, each of them 
represents a laser pointer projects on the ground, 
pattern(1)~pattern(5) represent the “corner” of a wall; 
pattern(6)~pattern(9) represent the “stairs”; pattern(10) 
represents “clear space”, and the others represent the “obstacle”. 

A. Simulation 1 

1). Response of self-organizing synthetic mechanism 
In simulation 1, after pattern(1)~pattern(4) are been 

presented to the flexible self-organizing synthetic mechanism, 
the network yields the clustered features and be shown in Figure 
4(a). After pattern(5)~pattern(8) and pattern(9)~pattern(12) 
were presented, the responses of flexible self-organizing 
synthetic mechanisms are shown as Figure 4(b) and Figure 4(c), 
respectively. 
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(a)                                             (b) 

 
(c)                                            (d) 

Figure 5. Response of CNN (a) corner (b) space (c) stair (d) obstacle. 

2). Response of CNN 
The CNN, which has been trained with refined patterns, is 

tested by a set of patterns. In this simulation, four test pattern 
including “clear space”, ”stairs”, ”obstacle”, and “corner” 
pattern are presented to the input layer of CNN. The responses 
of cells in CNN are shown in Figure 5 respectively. 

B. Simulation 2 
In this simulation, we present hand-written numerals 

through 0 to 9 at the input layer of FSS-CNN step by step and 
randomly. When a numeral pattern is presented to the input 
layer of the network, in recall phase, could not be recognized, 
the system will get into the training phase and the 
self-organizing Synthesizer generated the refined-clustered 
features according with the vigilance vector and pruning 
mechanism in the clustering entity. 

It is difficult to state quantitatively to what degree the system 
can deal with deformation in patterns because we do not have an 
appropriate mathematical measure to correctly express the 
psychological feeling of the deformation. For this reason, we 
only could evaluate the performance of this network roughly. 
The recognition rate is above 95% after 20 patterns have been 
trained, and above 99% after 30 patterns have been trained in 
this simulation. Such that the numbers of clustered features 
almost do not increase after 30 patterns presented. 

V.  DISCUSSION 
The performance of the original convolution neural network 

is highly dependent upon the selectivity of training features and 
this is hard laboring work for the designed to create the features. 
The Proposed CNN is derived from the generic convolution 
neural network. The shape of training feature and the number of 
S-cell planes fully depend on the features, which refined and 
clustered by the Self-organization Synthesizer. The SOS plays 

an important role for CNN to recognize patterns. The SOS itself 
does not need to prepare the entire set of training patterns, 
momentarily may present pattern for training into the input layer 
to do for training. Therefore, FSS-CNN is a network that is 
capable of online learning and has a highly flexible 
characteristic. It is very suitable to be used in changeable terrain 
detection. 
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 Abstract—This manuscript covers a new frontier to ascertain 
whether Visual Simultaneous Localization and Mapping 
(vSLAM) has the ability, by itself, to perform further motion 
tasks as path planning and autonomous navigation by using a 
single RGB-D camera. The proposed solution is the creation in 
real-time of a standard Two-Dimensional Occupancy Grid Map 
(2D OGM) module for an indoor environment leveraging 
complete compatibility with the Robot Operating System (ROS).  
The robot pose is estimated by the state-of-the-art feature-based 
algorithm so-called Oriented FAST and Brief SLAM 2 (ORB-
SLAM2). Subsequently, the map is built by the combination of 
the depth information and the pose of the mobile robotic 
platform (MRP). The experimental process is divided into two 
stages: virtual and real environments. The purpose of the first 
part is to collect data and gain expertise configuring the system, 
whereas the second stage delineates the possibility to implement 
the suggested approach in a real application.  Therefore, the 
resulting map is compared with a ground truth map constructed 
by a ROS LIDAR-based method to validate the potential and 
system’s applicability. Furthermore, this study aims to transmit 
essential knowledge to those roboticists who are beginning to 
delve a viable vSLAM-based solution. 

Index Terms—Visual Simultaneous Localization and Mapping 
(vSLAM), Robot Operative System (ROS), ORB-SLAM2, 2D 
Occupancy Grid Map, RGB-D Camera, Mobile Robotic Platform 
applications, Depth image, Gazebo Simulation, RViz Monitoring. 

I. INTRODUCTION 
OBILE robotic platforms (MRP's) possess significant 
and rising applications in academic, commercial, and 

industrial fields such as novel algorithms development, 
shipments, warehousing, and logistics robots, to name a few. 
Nowadays, Robot Operating System, better known as ROS, 
has become the de-facto standard open-source framework for 
programming robotics to build effective, flexible, and 
expandable solutions including a well-known problem called 
Simultaneous Localization and Mapping (SLAM) [1], [2].  

SLAM encompasses a couple of simultaneous 
requirements: the estimation of the state of a robot 
(localization) and its surroundings modeling (mapping) by 
utilizing data acquired from onboard sensors. This research 
focuses on the mapping capability that comprises three 
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concerns. First of all, the primary necessity of a map creation 
of an unknown environment. Secondly, the built map supports 
further tasks as path planning, autonomous navigation, and 
even it might proffer visual information for a human operator. 
Thus, the error computed in the estimation of the robot state is 
considerably decreased by the use of a consistent map and the 
place recognition adroitness know as loop-closure detection, 
which solves the last concern.  

The proposed approach shares the perspective of Cadena et 
al. [3] that defines three eras in the historical advancement of 
SLAM. The classical age (1986-2004) covered the essential 
formulations for SLAM characterized by extended Kalman 
Filters (EKF), Rao-Blackwellized particle filters, and 
maximum likelihood estimation. The posterior era is 
denominated as algorithmic-analysis age (2004-2015) which 
examined observability, convergence, and consistency 
properties of SLAM. Furthermore, the efficient and main 
open-source SLAM libraries were elaborated in this period. At 
present, the robust-perception age is taking place in SLAM 
studies and is delineated by four essential criteria: robust 
performance, high-level understanding, resource awareness, 
and task-driven perception. All of them are still unsolved 
challenges. In the interest of contributing with a primer 
solution, this research implements a feature-based method 
known as Oriented FAST and Brief SLAM 2 (ORB-SLAM2) 
which in many instances such as [4] [5], [6], [7] and [8] has 
been established as the state-of-the-art feature-based algorithm 
founded on its accuracy, robustness, automatic relocation and 
loop closure capability. 

Moreover, as it is argued in [9], the ORB feature 
descriptors evidence the best performance in several aspects as 
quantity feature detection, computational efficiency, feature-
matching efficiency per feature-point, and total matching 
speed rate. The back-end output of the method mentioned 
above is a sparse-points 3D map. Hence, the limitations and 
drawbacks of utilizing this outcome to link up into other ROS 
packages, the solution proposed is the creation in real-time of a 
standard Two-Dimensional Occupancy Grid Map (2D OGM) 
module for an indoor environment as a typical office 
surrounding. The depth image provided from an RGB-D 
camera is converted into a standard laser-scan message, which 
combined with the MRP’s pose estimated by the vSLAM 
algorithm and rectified by a Transformation Broadcaster, 
allows the map creation. Subsequently, the resulting map is 
compared with the map built by a ROS LIDAR-based method 
denominated as gmapping1, an improved approach presented 
in [10] that applies Rao-Blackwellized particle filters to 
decrease the possibility of particle depletion and loop closure 
detection. Besides, it possesses high accuracy distribution 
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concerning the observation likelihood of the last received 
sensor data, the odometry, and a scan-matching process. The 
map created by gmapping has elected as ground truth 
following the results described in [11] and [12] pointing it out 
as the best performance evaluated method. 

In the beginning, this manuscript summarizes the works 
related to the available map builders based on ORB-SLAM2. 
The following section contains the key concepts and 
mathematical background the research comprises to develop 
the proposed system. Thence, the simulated and real 
environments are described in detail to move forward into the 
map comparison and finally establishing the conclusions and 
further research. 

II. RELATED WORK 
The vSLAM research community is continuously growing 

and formulating novel applications for MRP, in particular, 
applying open-source SLAM libraries as ORB-SLAM2 and 
benchmarks to analyze their improvements, but for 
applications in real environments, there are only a few.  

Mo, Chen, Wang, and Wang [13] proposes an autonomous 
exploring mobile robot annexing a new thread in the original 
system [4]. This additional function can build a 3D local octree 
dense map using point cloud information acquired from an 
RGB-D camera. Then, the octree-map is projected into a 2D 
occupancy grid mapping in order to proceed with the 
exploration execution. Following a similar methodology, a 
navigation system for obstacle avoidance in humanoid robots 
is performed by He, Leng, and Zha [14].  Both types of 
research have no evidence or more in-depth information that 
shows the 2D OGM quality obtained in their systems to 
compare with the solution proposed in this study. 

Quite the opposite occurs in the 2D OGM module 
proposed recently by Xu, Feng, Kamat, and Menassa [15], 
which combines the robot pose estimated by ORB-SLAM2 
with the laser-scan converted from the point cloud information 
obtained from the camera. Additionally, they have achieved 
path planning and continuous navigation with full ROS 
compatibility on homogeneous corridors and laboratory rooms 
at school buildings. Due to the recentness of their publication, 
it does not exist an open-source package available to develop 
any further experimental tests and analyzes. Dissimilar to the 
methodology aforementioned, the present manuscript asserts 
the map creation based on depth information instead of point 
cloud data and the experimental tests are performed in a fully-
equipped office environment. It is worth mentioning that both 
studies were developed almost at the same time. 

III. BACKGROUND 

A. Robot Operating System 
 ROS 2  is a nontraditional operative system (OS) for 
management and scheduling process; instead of that, it 
administers and maintains a well-structured communications 
framework over the OS host in a heterogeneous computing 
network. Furthermore, it supports large-scale software 
integration and code reuse. Philosophically, the purpose of 
ROS is based on five essential pillars: peer-to-peer, tools-
based, multi-lingual, slim, and free-open source platform [16].  

                                                           
2 ROS link: http://wiki.ros.org/ 

The fundamentals of the Robot Operative System are 
constructed in four main concepts: nodes, messages, topics, 
and services [1], [16]. 

• Nodes are instances on ROS that execute computations 
allowing the OS being modular. They communicate to 
each other through messages can be classified as 
publisher and subscriber nodes, e.g., when a publisher 
node transmits data, the information provided is 
available for any subscriber node which must be able to 
establish communications with the publisher. Note that 
a node can be subscriber and publisher at the same time. 

• Messages are strictly typed packets that can be 
composed by other messages.  There are many types of 
messages, from standards primitives such as integer, 
floating point, boolean, and so forth to arrays of 
primitive types, constants or a twist used to describe 
three-dimensional and rotational velocities.  

• Topics are the strings to define a particular sort of data 
that allows proper communication among publisher and 
subscriber nodes.  

• Services are synchronized and remote procedure calls to 
transmit data between nodes designed to work 
recurrently to perform computations in a limited amount 
of time.  

 The openness and versatility of ROS architecture have 
allowed the creation of several tools that may be categorized 
into eight segments, as is shown in the next section: 

1) High-end drivers support: on ROS, interfacing any 
sensor or actuator requires no effort. Robotics device 
drivers and packages are available and maintained by 
their official developers. 

2) Debugging nodes: for developing robotics research and 
applications, the system involved is frequently a vast 
scheme. To simplify its management, ROS has designed 
a modular structure which is able to insert and remove 
nodes at runtime in the most natural way possible 
increasing notably the efficiency and productivity when 
a robotic system becomes more and more complex. 

3) Logging and playback: any topic and its data associated 
can be logged into the disk in order to be replayed in 
next sessions to perform controlled comparisons and 
modifications of algorithms in development, making 
plainer, and further experimental procedures. 

4) Packaged subsystems: this feature is oriented to the 
ability of ROS for running an entire process composed 
of many nodes with one single command typing, a tool 
called roslaunch.  

5) Cooperative Development: at the time of writing, there 
are more than 2500 official ROS packages properly 
documented, maintained, and assisted by an active 
community of users and developers [2], [17].  

6) Visualization and Monitoring: ROS Visualization 
(RViz) might be one of the more powerful and useful 
tools that this ecosystem has developed dynamically to 
view several sorts of data - depth images, laser scans, 
geometric primitives robot poses, trajectories, and 

http://wiki.ros.org/
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suchlike. All of them, configurable instantaneously 
from a panel in the RViz plugin. 

7) Composition of functionality: elaborated systems as 
mobile-robot navigation might require multiple cluster-
nodes initializations with total certainty of no data 
collisions involved. ROS grants it through the design of 
software named stuck, which is a set of nodes that 
working altogether perform an important task. 

8) Transformations: tf (short for transform) is a ROS 
package to manage spatial relationships and its 
transforms. The tf system builds a dynamic tree based 
on all the frames referenced in the coordinates system. 

B. ORB-SLAM2 
Mur-Artal and Tardós in [4] describe an integral and open-

source SLAM system that supports monocular, stereo and 
RGB-D cameras exposing real-time, loop closing and 
relocation accomplishments, also includes drift reduction, 
metric scale, and ROS package support3. As is illustrated in 
Fig. 1, the global framework of the ORB-SLAM2 system is 
principally formed by three threads working in parallel: 
tracking, local mapping, and loop closing, the latter, enables 
the creation of a secondary thread to accomplish full Bundle 
Adjustment (BA) and map updating afterward a loop closure 
detection. The next section comprehends a brief description of 
the central part of the threads developed in [18]. 

The algorithm estimates the camera pose in the actual 
frame using ORB feature points that match with the previous 
frame performing an optimization pose using motion-only BA. 
Subsequently, the matched feature points in the local map 
sparse-points are searched by reprojection allowing the camera 
pose optimization with all matches.  In the end, this thread 
decides whether the insertion of a new keyframe should take 
place or not. Motion-only BA enhances the camera orientation 
R ∈ SO(3) and position t ∈ ℝ 3, decreasing the reprojection 
error between matched 3D points Xi ∈ ℝ 3 in world coordinates 
and key points xi

(.), either monocular xi
m ∈ ℝ 2 or stereo xi

s ∈ 
ℝ 3, with i ∈ X denominated the set of all matches such that: 

{ } ( ) ( ) ( ) 2

,
, arg min i i

R t i X
R t x RX tρ π⋅ ⋅ ∑∈

 = − + 
 ∑  (1) 

In (1), ρ corresponds to the robust Huber cost function and 
∑ is the covariance matrix associated with the key point’s 
scale.  

The projection functions π(.), represented as πm and πs for 
monocular and stereo respectively are defined in (2) and (3), 
where (fx, fy) are the focal lengths, (cx, cy) correspond to the 
principal point in the image, and b represents the camera 
baseline. 
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C. Occupancy Grid Maps 
In mobile robotics, an occupancy grid map is a classic and 

frequently used method to represent the robot’s surroundings. 
This representation, proposed by Moravec and Elfes [19], [20] 
ordinarily makes use of two or three juxtaposed dimensions to 
transform a real space into an array of cells, where each cell 
contains information of the occupancy probability and the 
spatial uncertainty of the environment. The smaller the spatial 
uncertainty, the lesser the number of cells occupied by any 
object [21].  

Thrun [22] points out that two algorithm actions 
distinguish the standard occupancy mapping techniques: 

• The computation of numerous binary estimation 
problems, obtained by a decomposition of a highest-
dimensional mapping problem, is resolved independently 
one from another. Moreover, the formation of conflicts 
created by the decomposition is inevitable. This 
drawback is treated on the grid cell level by the 
utilization of  Bayesian methods. Paradoxically, even the 
noise-free data suffer the same issue. 

• The map is generated by using inverse models, meaning 
that the map’s information comes from the robot’s 
sensors.  

The creation of a map m and its accuracy relies on the set 
of sensor measurements, zt={z1,…,zt}, such as sonar or lidar 
data and the path of the robot, xt={x1,…,xt}, structured as the 
sequence of all posses in which the acquisition data was 
performed. The algorithm benchmark to solve any occupancy 
grid mapping problem is based on the computation of the 
posterior over maps given the measurements zt. 

( )  ,t tp m z x  (4) 

 
Figure 1. The global framework of the ORB-SLAM2 system. 
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Occupancy grid maps are considered fine-grained grids 
determined throughout the continuous space which contains 
finitely but plenty of grid cells, denoted as mi: 

{ }im m=  (5) 

 In (5), a binary occupancy value is assigned to each mi, 
implying whether a grid cell is unoccupied or not. It is 
assigned a “0” for unoccupied and “1” for occupied. Hence, as 
it has mentioned before, the occupancy grid approach is 
analyzed as a cluster of independent problems: 

( )  ,t t
ip m z x  (6) 

 The posterior over maps can be expressed by the product 
of the probability computed in each independent grid cell, 
namely that of marginals:  

( ) ( )  ,   ,t t t t
i

i

p m z x p m z x= ∏  (7) 

 TABLE I summarizes the algorithm that Thrun, Burgard, 
and Fox propose in [23] to solve the occupancy grid mapping 
problem applying a binary Bayes filter and the log-odds 
representation of occupancy: 

( )
( ),

  ,
log

1   ,

t t
i

t i t t
i

p m z x
l

p m z x
=

−
 (8) 

 The probability representation might have numerical 
instabilities for values close by one or zero; this drawback can 
be avoided through the application of the log-odds, and the 
probabilities are computed from the log-odds ratio: 

( ) { },

1  , 1
1 exp

t t
i

t i

p m z x
l

= −
+
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 The function ism(mi , xt , zt)  represents the inverse sensor 
model p(mi | zt , xt) utilizing the log-odds form: 

( ) ( )
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 The constant l0 is known as prior of occupancy: 
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TABLE I.  
STANDARD OCCUPANCY GRID MAPPING ALGORITHM USING THE BINARY 

BAYES FILTER 

 Std_Occ_Grid_Algrthm({lt-1, i},  xt , zt): 
1: for all grid cells mi do 
2:      if mi in the perceptual range of zt

  then 
3:           lt,i = lt-1,i + ism(mi , xt , zt) – l0 

4:      else 
5:           lt,i = lt-1,i   
6:      endif 
7: endfor 
8: return {lt,i} 

 

IV. SYSTEM OVERVIEW 
As shown in Figure 2, the 2D Indoor Occupancy Grid 

Mapping System is composed of five modules: Visual SLAM 
(ROS-based ORB-SLAM2), Transformation Broadcaster, 
Depth Image to Laser Scan Converter, 2D OGM Creator, and 
the Map-Server. Although the proposed architecture has 
performed experiments in simulated and real environments by 
using only RGB-D cameras, this approach can also use stereo 
cameras as an input system.  

Real-time 2D OGM construction and monitoring are 
visualized on RViz 4 software. Besides, the 3D sparse-point 
map generated by the visual odometry module is added and 
synchronized into the RViz environment. The occupancy grid 
map might be saved into the storage disk using the Map-Server 
Module.  

The TF Broadcaster builds a proper TF tree to obtain a 
rectified camera pose to construct the map, correctly. All of the 
modules as mentioned earlier are full-compatible ROS 
packages enabling the reuse and interconnections with other 
developed systems on ROS as Navigation or Motion Planners 
Stacks to achieve autonomous navigation tasks. 

A. Vision Sensor 
To generate a 2D OGM, the system requires two different 

sorts of images as input: RGB and depth. Both of them 
acquired from the Vision Sensor Module (VSM)  emphasizing 
that both frames must be aligned. In other words, their topics 
must have the same timestamp in ROS to establish a proper 
correspondence between their coordinate systems. This 
                                                           

4 Rviz package: http://wiki.ros.org/rviz 

 
Figure 2. Overview of the 2D Indoor Occupancy Grid Mapping System. 
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condition should be satisfied in order to achieve an accurate 
estimation of the MRP’s pose and the map construction.  

This study employs two Intel RealSense Cameras that 
generate aligned images, the models R200 and D435 for 
simulation and real environments, respectively.   

B. Visual SLAM 
This module computes the camera pose and generates a 

3D sparse-point map using a ROS-based ORB-SLAM2 
package. The original implementation developed in [4] does 
not possess any compatibility with the standard navigation 
ROS messages making unachievable any further application 
or research development such as motion planning or 
autonomous navigation. To address this inconvenient, the 
system utilizes an alternative package5, which has removed 
the Pangolin dependency and added the input and output 
manipulation data via ROS topics leveraging full 
compatibility and configuration. 

The Visual SLAM Module (VSLAMM) possesses two 
types of parameters related to the vision sensor and the 
algorithm itself. The first-mentioned are those related to the 
camera so-called intrinsic parameters, which are based on the 
pinhole camera model and may be obtained after performing a 
camera calibration. TABLE II summarizes a description of the 
intrinsic camera parameters. 

The second type of parameters configure and calibrate the 
VSLAMM performance and has two sub-classifications: static 
and dynamic. Several parameters belong to the static type; all 
of them have to be cautiously configured before the system 
starts to work. They cannot be set up at runtime being this the 
reason to be named as static parameters.  TABLE III shows 
the description of the critical static parameters.  

On the contrary, there are only three dynamic parameters 
that can be configured at runtime. TABLE IV contains their 
description. 

C. Transformation Broadcaster 
The coordinate system so-called frame of the camera pose 

computed by the VSLAMM does not correspond with the 
standard 3D right-handed frame on ROS that has the next axis 
directions: X forward, Y left, and Z up. Usually, the world 
coordinate system is known as map, which is the referenced 
coordinate system to subsequently obtain all the frames poses 
in a robot. The relationship between two frames is a frame 
pose, which is composed by a translation vector, and a 
rotation matrix represented via bullet quaternions.  

TABLE II.  
INTRINSIC CAMERA PARAMETERS 

No. Parameter Description Units 

1 fx, fy 
Focal lengths expressed in pixel (px) 
units. (px) 

2 cx, cy 
Coordinates of the principal point that 
is often located at the image center. (px) 

3 k1, k2 
First two higher-order radial distortion 
coefficients. (units) 

4 p1, p2 Tangential distortion coefficients. (units) 

5 bl Camera baseline: the distance 
between right and left imager. (m) 

                                                           
5 ORB-SLAM2 ROS: http://wiki.ros.org/orb_slam2_ros 

TABLE III. 
 ORB-SLAM2 STATIC PARAMETERS DESCRIPTION 

No. Parameter Description Units 

1 fps 
Frame rate: number of unique and 
consecutive frames that the system is 
set to handle. 

(frame/
sec) 

2 bf 
Multiplication’s result of the x-axis 
focal length (fx) by  the camera base 
line (bl). 

(px x 
m) 

3 ThDepth 

Depth threshold to define how far or 
close the system looks for ORB 
features in the image. It is multiplied 
by the camera baseline in order to 
obtain a distance threshold. 

(units) 

4 nFeatures Maximum number of ORB features 
allowed per image. (units) 

5 width Width camera resolution. (px) 

6 height Height camera resolution. (px) 

  
TABLE IV.  

ORB-SLAM2 DYNAMIC PARAMETERS DESCRIPTION 

No. Parameter Type Description 

1 mode boolean 
It defines the operation mode 
of the system: 0 for SLAM 
and 1 for only localization. 

2 reset boolean 
It allows a re-initialization 
system to erase the original 
map.  

3 min_keyframes integer 

It sets the minimum number 
of keyframes on the map to 
keep the system works with 
no auto-reset. 

 
Transformation Broadcaster Module (TFBM) has two 

objectives to achieve in the system. The first purpose is to 
modify the camera pose’s coordination system in order to 
guarantee total correspondence with the ROS standard frame. 
The second objective is to preserve the relationship between 
the coordinate frames in the MRP through the time utilizing a 
transformation (TF) tree, as illustrated in Figure 3. 

TFBM makes use of the tf package6 to build a tf tree, as 
shown in Figure 3 (b) which follows the standard hierarchical 
structure developed for mobile robots for LIDAR-based 
SLAM, as illustrated in Figure 3 (a). 

(a) Lidar-based TF tree (b) Visual Odometry based TF tree 

Figure 3. Typical TF tree on ROS 

                                                           
6 tf package: http://wiki.ros.org/tf 
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TABLE V.  
PARAMETERS OF THE DEPTH IMAGE TO LASER SCAN CONVERTER 

No. Parameter Description Units 

1 scan_height Number of pixel-rows to create 
the virtual laser scan. (px) 

2 scan_time 
The sampling time for scanning. 
Usually, the value is given by 
the expression: 1/fps. 

(sec) 

3 range_min Minimum threshold distance  (m) 

4 range_max Maximum threshold distance (m) 

5 output_frame_id Topic name to identify the 
created virtual laser scan. NA 

 

D. Depth Image to Laser Scan Converter 
ROS environment utilizes a specific type of message 

identified as sensor_msg/LaserScan for acquiring 2D laser 
data arrays from measurements performed from laser scanners. 
This message and the robot’s pose become the required inputs 
to create a 2D OGM and update the map periodically.  

Similarly, in the Depth Image to Laser Scan Converter 
Module (DI2LSCM), a laser scan message is obtained using 
the depth image originated in the RGB-D camera node. The 
conversion process is handled by an open-source package 
named depthimage_to_laserscan7 that employs a depth image 
to create a virtual laser scan by extracting a horizontal 
segment of the image given a pre-defined height and other 
parameters, all of them summarized in TABLE V. 

E. 2D Occupancy Grid Map Creator  
The 2D OGM Creator  Module (2DOGMCM) subscribes 

to the topics published by the TFBM and the DI2LSCM 
receiving the MRP’s pose and the virtual laser scan 
respectively to execute the creation and recurring update of 
the map. The map’s quality relies directly on two factors: 
accuracy of the robot’s pose and proper calibration of the 
2DOGMCM parameters. The last to be mentioned is related 
to the occupancy grid map algorithm detailed in the literature 
review section and the map updating parameters listed in 
TABLE VI. 

TABLE VI.  
PARAMETERS OF THE 2D OCCUPANCY GRID MAP CREATOR. 

No. Parameter Description Units 

1 map_update_rate 
Map-updating rate. The lower 
the rate, the more computational 
load is required.  

(sec) 

2 linear_update Set how long the MRP needs to 
move to process a new scan. (m) 

3 ang_update Set how much the MRP needs to 
rotate to process a new scan. (rad) 

4 temp_update 

Define the scan process mode. 
The value 1 sets the mode based 
on the angular and linear update. 
The value -1 enables the scan 
process in the case that the time 
taken between the last two scans 
is greater than the map-updating 
rate.   

(unit) 

5 occ_threshold Set value of a cell’s log-odds at 
the first exploration time. (%) 

                                                           
7 Laser scan converter: http://wiki.ros.org/depthimage_to_laserscan 

 
To achieve a creation’s map with high quality, the 

parameter rates such as linear, angular, and map updating 
must be configured as smaller as they can to maintain the 
computational load in a reasonable level meaning that an 
experimental calibration may be implemented to accomplish a 
high-performance system. 

F. Map-Server Module 
An essential function of every mapping system is based on 

the capability to storage the maps created from each visited 
place. The aim of the Map-Server Module (MSM) is 
developing tasks such as map analysis, metric accuracy 
comparisons, path planning, and autonomous navigation.      

The proposed system applies a ROS package known as 
map_server 8  belonging to a more extensive system called 
ROS Navigation Stack9 which owns complete support for 2D 
planning and navigation tasks. The map server might be used 
as a service or a command-line tool to manipulate map data. 
An example of a saved map looks is shown in Fig. 4. 

The illustration portrays an occupancy grid map in which 
the spatial uncertainty of each cell corresponds to a standard 
pixel color configurations and ternary values: white means 
unoccupied (0), black is for occupied (100), and gray denotes 
unvisited or unknown state (-1).  

TABLE VII.  
PUBLISHED TOPICS TO VISUALIZE ON RVIZ. 

No. Topic Module 
Publisher Description 

1 color_image VSM It shows the MRP’s environment in 
RGB format. 

2 depth_image VSM It displays the MRP’s environment 
using depth format. 

3 debug_image VSLAMM 

The ORB features detected are 
shown in this image combined with 
a grayscale version of the image 
environment. 

4 vslam_footprint VSLAMM 
It represents the pose estimated 
with no standardization of the ROS 
coordinate system. 

5 pointcloud_map VSLAMM 
The 3D sparse-point metric map 
that contains all the ORB features 
detected by the vSLAM Module. 

6 vslam_link TFBM A standardized ROS robot’s pose. 

7 depthlaser_scan DI2LSCM 
It shows the virtual laser scan 
created from the depth image and 
the MRP’s pose. 

8 2doccgr_map 2DOGMC
M 

Through this topic, the creation of 
the map is displayed in real-time. 

                                                           
8 Map server package: http://wiki.ros.org/map_server 
9 Navigation stack: http://wiki.ros.org/navigation 

 
(a) LIDAR-based 

 
(b) vSLAM-based 

Fig. 4. An example of a map saved by Map-Server. 

http://wiki.ros.org/depthimage_to_laserscan
http://wiki.ros.org/map_server
http://wiki.ros.org/navigation
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G. Visualization and Supervision 
This approach becomes a versatile system regarding 

visualization and supervision functionalities drawing on a 
popular ROS tool as RViz. The monitoring window has been 
set in such a manner that the user might manipulate and 
interact with the data obtained from the topics published by 
the system modules thus depth image, point clouds, poses, 
maps among other topics.  TABLE VII collects the critical 
topics that the user needs to configure in real-time to have an 
appropriate visualization of the whole system. 

Figure 5 exhibits the monitoring interface that primarily is 
composed by the combination of the 3D sparse-point map and 
the 2D occupancy grid map enabling to contemplate the 
robustness and accuracy of the proposed system. 

V. IMPLEMENTATION AND EXPERIMENTS 
First, several experiments were held in a virtual scenario 

to validate the functionality, robustness, and accuracy of the 
vSLAM method applied to estimate the MRP pose. It is 
performed to analyze the viability of applying the proposed 
system in a real environment. This section depicts the system 
setup, environmental descriptions, intrinsic camera parameters, 
and tuning map parameters. 

A. System Setup 
1) Virtual environment: For this stage, we implemented a 

virtual ROS-based mobile robot called TurtleBot3 10 
(TB3) that presents the small size and embedded system 
properties. Equally important, this device has 
expandable and customizable characteristics as well as 
broad support in Gazebo Simulator 11 that makes it a 
versatile and affordable option for new researchers. The 
main features of the TB3 are summarized in TABLE 
VIII, that includes the technical characteristics of the 
personal computer in which the simulations were 
carried out.   It should be noticed that the information 
showed in the next table corresponds to the model 
implemented in the virtual environment.  

TABLE VIII.  
HARDWARE AND SOFTWARE SPECIFICATIONS OF THE MASTER AND HOST 

STATIONS IN THE VIRTUAL ENVIRONMENT. 

Parameter Description 
 Virtual TB3  PC-Master 
 Hardware 

Processor Intel Joule 570x Intel Core i5-7300HQ 

GPU N/A GeForce GTX 1050 

RAM 2 Gb 16 Gb 
 Software 

Operative System Ubuntu 16.4 Ubuntu 16.4 

ROS Version Kinetic Kinetic 
 Onboard Sensors 

2D LIDAR 360 Laser Distance 
Sensor LDS-01 N/A 

Camera Intel RealSense R200 N/A 

 

                                                           
10 TB: http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/ 
11 Gazebo Simulator: http://wiki.ros.org/gazebo_ros_pkgs 

 

 
2) Real environment: The implemented ROS network has 

quite a standard master-host configuration. The MRP 
runs as ROS master computer. Figure 6 illustrates the 
implemented prototype of a differential-drive ground 
vehicle equipped with an onboard industrial computer, 
many sensors, and it is designed to move through 
indoor scenarios. 

 The remote PC is a standard laptop utilized to 
teleoperate the MRP, supervise the process, and 
visualize the map construction.  TABLE IX condenses 
the leading hardware and software specifications of the 
master and host stations. 

TABLE IX.  
HARDWARE AND SOFTWARE SPECIFICATIONS OF THE MASTER AND HOST 

STATIONS IN THE REAL ENVIRONMENT. 

Parameter Description 

 MRP-Master Remote PC-Host 

 Hardware 

Processor Intel Core i7-6700TE Intel Core i5-7300HQ 

GPU GeForce GTX 1050 Ti GeForce GTX 1050 

RAM 16 Gb 16 Gb 

 Software 

Operative System Ubuntu 16.4 Ubuntu 16.4 

ROS Version Kinetic Kinetic 

 Onboard Sensors 

2D LIDAR Hokuyo UAM-05LP N/A 

Camera Intel RealSense D435 N/A 

 
Figure 6. Mobile robotic platform. 

 
Figure 5. Visualization and Supervision of the 2D OGM System. 

 

http://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
http://wiki.ros.org/gazebo_ros_pkgs
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B. Environment Description 

1) Virtual environment: It was adapted as a one-floor house 
scenario with six rooms containing some furniture such 
as tables, cabinets, and a couple of trashcans. The area 
covered by this environment is up to 15m×10m. A top 
view of this building is shown in Figure 7. 

2) Real environment: The entire set of experiments and 
calibrations have been conducted in an office 
environment with plenty of furniture. Figure 8 illustrates 
how heterogeneous and complex is the MRP surrounding, 
making the map building a real challenge. The area 
explored has the dimensions 7.5 m x 10 m and contains 
eleven workstations with two longitudinal and three 
transversal corridors. The light level is constant, and the 
walking people flow rate is moderate.  

C. Configuration of the Intrinsic Camera Parameters 
The performance of the system relies on the proper 

assignation of the intrinsic camera parameters due to the 
geometry and metrics are directly related to them. Indeed, an 
incorrect configuration may cause the robot’s rotation or 
translation to become inaccurate, generating an erroneous 
map. The next table presents the values configured to develop 
the experiments in the virtual and real environments. 

D. Map Creator Tuning 
Once the intrinsic camera parameters configuration is 

adequately performed, then the map creator requires a 
refinement procedure known as tuning process based on 
several trial tests, and researcher’s knowledge and expertise. 
TABLE XI abstracts the setup parameters of the system. They 
might be used as a guide to replicate the results obtained in 
these experiments. 

 

TABLE X.  
CONFIGURED INTRINSIC CAMERA PARAMETERS 

  Virtual 
Environment 

Real 
Environment  

No. Parameter Value Units 
1 fx ∼1206.9 ∼616.2 (px) 
2 fy ∼1206.9 ∼616.4 (px) 
3 cx ∼960.5 ∼317.9 (px) 
4 cy ∼540.5 ∼246.3 (px) 
5 p1 0 0 (units) 
6 p2 0 0 (units) 
7 k1 0 0 (units) 
8 k2 0 0 (units) 
9 bl 0.036 0.05 (m) 

 

TABLE XI.  
TUNING SYSTEM PARAMETERS 

  Virtual 
Environment 

Real 
Environment  

No. Parameter Value Units 
Visual SLAM Module 

1 fps 30 30 (px) 
2 bf ∼43.3 ∼30.8 (px) 
3 ThDepth 10 40 (px) 
4 nFeatures 1200 1000 (px) 
5 width 1920 640 (units) 
6 height 1080 480 (units) 

Depth Image to Laser Scan Module 
1 scan_height 10 50 (px) 
2 scan_time ∼0.33 ∼0.33 (sec) 
3 range_min 0.4 0.11 (m) 
4 range_max 15.0 3.0 (m) 

2D Occupancy Grid Map Creator Module 
1 map_update_rate 2 0.25 (sec) 
2 linear_update 0.005 0.04 (m) 
3 ang_update 0.001 0.005 (rad) 
4 temp_update 1 1 (unit) 
5 occ_threshold 0.11 0.25 (%) 

 

VI. RESULTS AND DISCUSSION 
The first output of the system is a superposition of two 

maps: the 3D sparse-point cloud obtained from the VSLAMM 
and the map plotted by the 2D Occupancy Grid Map Creator. 

As is shown in Figure 10, both maps hold a close metric 
relationship to each other. It is expected given that the grid 
map creation (black line), is key-based on the MRP pose 
estimated by the vSLAM Subsystem that also generates the 
3D sparse-point map (colored points). 

The maps saved by the Map-Server Module are arranged 
in Fig. 9. The above images (a) and (b) corresponds to the 
maps in the virtual environment experiments obtained by 
LIDAR-based and vSLAM-based methods correspondingly. 
The orange rectangles enclose a mapped area where two walls 
are located side by side, as seen in Figure 7.  

 

 
Figure 7. Top view of the virtual environment. 

 
Figure 8. Panoramic view of the real environment. 
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The approach proposed is the only one able to create a 

map, which describes correctly that environmental 
configuration. The lower images (c) and (d) exhibit the 
resulting maps built in the real environment by the LIDAR-
based and vSLAM-based techniques, respectively. The 
orange square spotlights the section in the real environment 
illustrated in Figure 11 and implicitly highlights an asset of 
the map creator to plot more in detail the MRP’s 
surroundings providing more accurate and realistic 
information of the explored environment.  Indeed, this 
advantage could contribute to improving avoidance 

collision functions in tasks such as path planning and 
autonomous navigation becoming safer the MRP 
applications development. 

However, the vSLAM method presents significant 
drawbacks once the MRP purely moves at high rotation 
velocity. It directly incurs the occasional loss of the robot 
pose. In order to prevent it, TABLE XII  contains the 
recommended velocities for the robot’s teleoperation. 

VII. CONCLUSIONS  
A 2D indoor occupancy grid system has been proposed 

in this manuscript using a ROS-based ORB-SLAM2 for 
indoor environments. The modular system advantages the 
accuracy performed on the estimation of the mobile robotic 
platform computed by the visual-SLAM Subsystem that 
combined with the depth information acquired from the 
RGB-D camera achieve a robust mapping system. In fact, 
this study has demonstrated the high-viability to develop 
further indoor applications in virtual and real environments 
as a result of the more detailed information contained in the 
maps created by the system in this research. 

Although the reached approach evidenced applicability 
(via qualitative methods) to accomplish tasks like obstacle 
avoidance or motion planning, the authors will conduct a 
quantitative method to analyze the accuracy of the metrics  

 
(a) LIDAR-based map – gmapping in virtual environment. 

 

 
(b) vSLAM-based in virtual environment. 

 
(c) LIDAR-based map – gmapping in real environment. 

 

 
(d) vSLAM-based in real environment 

 
Figure 9. 2D occupancy grids saved by the Map Server Module. 

 

 
Figure 10. Superposition of the 3D sparse-point and 2D occupancy 

grid maps. 
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TABLE XII.  
RECOMMENDED VELOCITIES FOR MRP OPERATION. 

No. Motion Range Value Units 

1 Pure Translation 
Linear Velocity 

Min 0.2 (m/s) 

2 Max 0.8 (m/s) 

3 Pure Rotation 
Angular Velocity 

Min 0.1 (rad/s) 

4 Max 0.24 (rad/s) 

  

providing more solid sustentation to this approach. 
Therefore, an object labeling function will be performed to 
add semantic information derived from the robot’s 
surrounding.  

Finally, this paper aims to be used by the future 
members of the SLAM community as an initial guide in 
their studies encouraging them to enter in such a 
challenging path as the development of visual-SLAM 
applications in real environments.  
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