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 Abstract—In the context of Industry 4.0, integrating 
automation equipment into production lines has become 
increasingly prevalent. The efficiency of a factory’s production is 
significantly influenced by the autonomous handling and supply 
of materials or workpieces. This study focuses on the Autonomous 
Guided Vehicle (AGV) system, which utilizes advanced 
technologies such as laser optical radar (Light Detection and 
Ranging, LiDAR) and reflection ridges (Corner Cubes) to achieve 
indoor positioning and synchronous construction of the contour in 
a spatial field guided by a specifically dedicated map. The primary 
emphasis is on AGV indoor positioning technology, employing 
LiDAR and reflections to calibrate each position coordinate. The 
research establishes the core technology of indoor Simultaneous 
Localization and Mapping (SLAM) through the application of a 
Robots Operating System (ROS), which performs simulation, 
testing, and the verification analysis of the AGV mechanism. The 
study also develops a dynamic model for the AGV system, 
estimates optical position parameters, and integrates them into 
the Adaptive Monte Carlo Localization (AMCL) combined with 
the optical indoor positioning algorithm. The hybrid 
AMCL-Optical positioning provides superior accuracy than 
individual methods. 

Index Terms— Autonomous Guided Vehicle (AGV), Light 
Detection and Ranging (LiDAR), Corner Cube, Simultaneous 
Localization And Mapping (SLAM), Indoor Positioning, Adaptive 
Monte Carlo Localization (AMCL) 

I. INTRODUCTION 

n recent decades, significant technological advancements 

have propelled us into an era marked by automation and the 

integration of data exchange processes within manufacturing 

domains recognized as Industry 4.0 [1]. At its core, Industry 4.0 
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envisions a production landscape where humans and machines 

collaborate within a cyber-physical system, fostering 

communication, cooperation, and self-organization [2]. A 

pivotal aspect of Industry 4.0 is the emphasis on Human-Robot 

Collaboration (HRC), where collaborative robots, or cobots 

equipped with safety and collision avoidance systems, work 

alongside human counterparts without the need for additional 

safety barriers [3]. In cutting-edge intelligent unmanned 

factories, common automated handling systems include 

automated guided vehicles (AGVs) [4], and autonomous 

mobile robots (AMRs) [5]. The advent of Industry 4.0 has 

fueled a growing demand for customization. AGVs, being 

programmable for route planning and task automation, excel in 

scenarios requiring frequent changes in handling paths. The 

dynamic nature of customization necessitates rapid 

advancements in intelligent positioning, mapping, and 

navigation technologies for AGVs [6], making them pivotal in 

contemporary robotics and autonomous unmanned vehicles. 

Within this framework of industry 4.0 and HRC, a reliable 

Indoor Positioning System (IPS) is crucial for indoor 

transportation, facilitating navigation, and pinpointing the 

locations of individuals, robots, and autonomous vehicles [7, 8]. 

IPS plays a key role in realizing the full potential of Industry 

4.0 in contemporary production plants. 

In autonomous guided vehicles (AGVs), acquiring real-time 

environmental information and precise location data is crucial 

for ensuring safe and efficient movement. To achieve this, 

having an accurate map of the environment and the AGV’s 

positioning information is imperative. The evolution of 

technologies like wireless networks and mobile computing has 

led to the increasing popularity of location positioning [9]. 

While the Global Positioning System (GPS) [10] excels in 

outdoor settings, it falls short for indoor positioning due to poor 

satellite signal penetration. Indoor positioning, essential in 

various settings such as factories, airports, and exhibitions, 

faces the challenges of environmental interference and higher 

accuracy requirements. As a result, indoor positioning has 

become a prominent research focus in the broader field of 

positioning and navigation. 

Commercial indoor mapping systems featuring LiDAR or 

RGB-D cameras share common components for data 

processing and sensor synchronization [11]. Complementary 

sensors like RGB cameras or thermographic sensors may be 

added for enhanced data acquisition. Unlike outdoor devices 

using GNSS signals, indoor systems address signal penetration 

challenges through inertial methods, beacons, or, commonly 

Indoor Positioning of Autonomous Guided Vehicles 

Using LiDAR-Corner Cubes with Adaptive Monte 

Carlo Localization 
Pei-Ren Liaw, Brijesh Patel, Ju-Yi Lee, and Po Ting Lin*, Member, RST 

I 

mailto:jen225668@gmail.com
mailto:aero.brijesh@gmail.com
https://scholars.ncu.edu.tw/zh/persons/ju-yi-lee
mailto:potinglin@mail.ntust.edu.tw


            International Journal of iRobotics 

Vol. 6, No. 3, 2023 

31 

[12], SLAM algorithms initially developed for autonomous 

robots[13]. 

This study presents a novel indoor positioning method for 

automatic guided vehicles, utilizing LiDAR and Corner Cube 

optical features to overcome featureless environments. The 

approach integrates the AMCL algorithm to compensate for 

AGV positioning errors and ensure continuous and accurate 

tracking. Implemented in the Robot Operating System (ROS), 

the method is validated through preliminary simulations and 

analyses using the OmniBot automated guided vehicle system. 

II. REVIEW ON EXISTING INDOOR POSITIONING AND MAPPING 

TECHNIQUES. 

The literature reveals a growing emphasis on robot Indoor 

Positioning Systems (IPS) to ascertain real-time positions 

within designated workspaces. Fig. 1 shows different types of 

techniques and methods for IPS. Accurate indoor robot 

localization is crucial, but traditional methods like GPS fall 

short indoors due to signal blockage [14]. Recent research has 

leveraged ubiquitous Wi-Fi signals [15] for cost-effective and 

accessible indoor robot positioning, avoiding the need for 

additional infrastructure compared to other wireless 

technologies like Bluetooth[16], Infrared[17], and UWB [18]. 

Many techniques have been explored to address indoor robot 

localization, with a focus on the simultaneous localization and 

mapping (SLAM) problem. LiDAR sensors, with active light, 

provide precise and dense environmental data, especially in 

fast-moving indoor settings, ensuring robust localization with 

SLAM systems [19]. Yang et al. propose a pixel threshold 

eight-point method and an improved epipolar constraint 

algorithm to enhance the accuracy of vision-based indoor 

positioning, offering a cost-effective solution without 

additional hardware [20]. 

 
Fig. 1. Robot indoor positioning methods 

Various methods have been explored in the literature, as 

documented in works such as shown in Fig. 2 [21, 22]. 

 
Fig. 2. IPS localization techniques and methods [22] 

Triangulation, as highlighted, utilizes the geometric 

properties of triangles to calculate an object’s position based on 

known reference point coordinates [23]. Notable algorithms, 

including Received Signal Strength Indicator (RSSI), Angle of 

Arrival (AOA), Time of Arrival (TOA), Time Difference of 

Arrival (TDOA), and Time of Flight (TOF), are widely 

employed [24, 25]. RSSI utilizes signal strength attenuation 

[26], while AOA calculates angles for precise positioning. 

TOA relies on time calculations, requiring accurate 

synchronization, and TDOA employs hyperbolic 

characteristics [27]. TOF measures the time difference between 

transmitted and received pulses.  

Fingerprinting involves an offline stage where a feature 

database is established and an online stage where measured 

features are compared for location estimation [28]. Adege et al. 

propose a system for both indoor and outdoor positioning; the 

work utilizes a hybrid of Support Vector Machine and Deep 

Neural Network algorithms [29]. In a different approach to 

indoor positioning, Malar et al. suggest an indoor positioning 

system based on fingerprinting and support vector machines 

[30]. Additionally, Zheng et al. introduced an indoor 

localization system employing a particle filter and support 

vector machine. This system aims to determine the user’s speed 

and direction of motion through a mobile device, leveraging the 

device’s sensors and utilizing a particle filter for effective 

sensor fusion [31]. 

Proximity-based systems, relying on grids of antennas with 

known locations, detect an object’s position based on its 

proximity to these antennas [32]. Vision analysis, a technique 

rooted in image processing by cameras covering the indoor 

environment, identifies predefined objects within a database 

[33]. 

III. MATERIAL AND METHODS 

A. LiDAR-SLAM 

This study utilizes the PEPPERL+FUCHS LiDAR model 

OMD30M-R2000-B23-V1V1D-HD-1L manufactured in 

Germany. This LiDAR offers an impressive specification, 

including a 360  detection range, a 30m detection distance, 

25mm  absolute accuracy, and 12mm  measurement noise. 

Renowned for its high precision and stability, this LiDAR is 

well-suited for Autonomous Guided Vehicle (AGV) operations 

and diverse application environments due to its resistance to 

background interference and strong anti-ambient light 

capabilities. Operating on Pulse Ranging Technology (PRT) 

and following the Time of Flight (TOF) principle, the LiDAR 

calculates target distance based on the time difference between 

pulse transmission and reception, offering resilience to external 

light sources and minimal sensitivity to environmental changes. 

Additionally, it incorporates a sophisticated filtering algorithm 

with three variations—average/mean, maximum value, and 

reflected energy—tailored for noise reduction, challenging 

conditions, and low reflectivity, respectively. The LiDAR’s 

adaptability is further enhanced by its compatibility with 

PACTware DTM series components, known for their 

user-friendly interface, facilitating easy setup and operation. 

This comprehensive LiDAR solution generates indoor contour 

graphics, showcasing its robust capabilities in various scenarios. 
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In this study, the Gmapping SLAM [34], a widely used 
approach for lidar and odometry, employs the 
Rao-Blackwellized Particle Filters (RBPF) method with 
enhancements. In the RBPF algorithm, particles are strategically 
placed on the map, assigned different weights based on sensor 
values, and selectively retained or removed. The RBPF-based 
SLAM process involves sampling, importance weighting, 
adaptive resampling, and map estimates. Particles are drawn 
based on an initial pose estimate from a motion model and 
refined using the latest observations. Importance weighting 
evaluates how well particles represent the target distribution. 
Adaptive resampling may be triggered based on the effective 
particle number. Finally, the map carried by each particle is 
updated through the robot’s pose history and observations. 
Gmapping improves the proposal distribution and selective 
resampling, providing accurate mapping in long corridors and 
low-feature environments. However, it relies on odometer data 
and is unsuitable for uneven ground or drone applications. 

B. Corner Cube 

The Corner Cube is an optical pyramid reflector composed 

of three-sided glass prisms that redirect the incident beam in the 

opposite direction. It is commonly used in measurement and 

laser light-ranging applications. This experiment employed the 

corner pyramid prism with product specifications 

D12.7 9.5 mm  provided by Yuqun Optoelectronics 

Technology Co., Ltd. The working principle of the Corner 

Cube involves three reflections, once from each surface, 

causing a reversal in the direction illustrated in Fig. 3. The 

Corner Cube features three perpendicular faces forming a 

Cartesian coordinate system ( , , )x y z , with [ , , ]a b c  

representing the direction of any incident ray.  

As the incident light rays reflect successively from different 

sides of the Corner Cube, specific changes occur in their 

directional components. Initially, when reflected from the first 

side, the x-component, denoted as ' 'a  undergoes reversal to 

' 'a− , while the y and z-components remain unaltered, resulting 

in a modified direction of [ , , ]a b c− . Similarly, upon reflection 

from the y and z sides, the b and c components undergo a 

reversal. The sequential reflections result in the ray direction 

transitioning through [ , , ]a b c  to [ , , ]a b c−  , then to [ , , ]a b c− −  

finally to [ , , ]a b c− − − , and ultimately departing from the 

Corner Cube. Notably, the distance traveled remains constant 

for any incident ray, irrespective of its initial reflection point. 

 
Fig. 3. Schematic diagram of corner cube 

C. ROS-Gazeebo 

The Robot Operating System (ROS) is an open-source 

meta-operating system designed for robot software 

development, offering services akin to an operating system. It 

facilitates hardware abstraction, low-level device control, 

implementation of common functionalities, and inter-process 

message passing. ROS operates as a peer-to-peer process 

network during runtime, utilizing a communication 

infrastructure for loose coupling. ROS adopts a distributed 

processing architecture with nodes, emphasizing code reuse, 

enabling independent design and flexible coupling at runtime. 

It encourages clear function interfaces for writing 

ROS-agnostic libraries, supporting collaboration through 

distributed code repositories. The detailed ROS architecture is 

illustrated in Fig. 4. 

 
Fig. 4. ROS architecture 

In terms of system modeling and configuration, the study 

employs standard ROS tools like Gazebo, Rviz, and rqt for 

visualization. Gazebo, a 3D robot simulator, is used to create a 

simulation environment for AGV, importing the robot using the 

Unified Robot Description Format (URDF). Rviz serves as a 

3D parameter visualization tool with plugins for importing 

maps and displaying sensor data. The rqt tool, a graphical user 

interface, visualizes AGV’s standalone runtime. The TF 

(Transformation) system in ROS allows practical visualization 

of coordinate transformations, which is essential for 

understanding relationships between different coordinate 

systems. Together, these tools enhance ROS’s capabilities, 

providing a comprehensive framework for effective robot 

research and development. 

D. Adaptive Monte Carlo Positioning (AMCL) 

Monte Carlo localization (MCL) [35] is an algorithm 

employing a particle filter for a robot to estimate its position 

and orientation while navigating and sensing the environment 

with a given map. In MCL, particles represent potential robot 

states ( , , )X X Y = , initially uniformly distributed across the 

environmental state space, indicating a lack of prior global 

positioning information. As the robot moves and senses the 

surroundings, particles undergo resampling based on sensor 

observations to converge toward the actual pose state. In each 

iteration, the robot undergoes motion updates, applying the 

robot’s movement to all particles. Sensor updates refine particle 

positions based on the robot’s environment sensing, adjusting 

particle weights to enhance accuracy. Resampling generates a 

new set of particles around those with higher weights, 

optimizing computational resources. The MCL algorithm is 

shown below: 

1 
1Algorithm MCL( , , ) :t t tX u z−  

2 
t tX X= =   

3 for 1 to :m M=  

4  [ ] [ ]

1_ ( , )m m

t t tx motion update u x −=  

5  [ ] [ ]_ ( , )m m

t t tw sensor update z x=  

6  [ ] [ ],m m

t t t tX X x w= +    
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7 end for  

8 for m 1 to :M=  

9  [ ] [ ]draw from with probabilitym m

t t tx X w  

10  [ ]m

t t tX X x= +  

11 end for  

12 return tX  

Monte Carlo Localization (MCL) starts with a large number of 

evenly distributed particles on the map, but over iterations, they 

cluster in one location, wasting computational resources if the 

initial count is maintained. Adaptive Monte Carlo Localization 

(AMCL) [36] improves MCL by dynamically adjusting particle 

numbers using the Kullback-Leibler Divergence (KLD) 

method [37]. AMCL addresses MCL’s computing inefficiency 

by recalculating the particle count in each iteration, eliminating 

redundant particles for improved performance. AMCL’s 

adaptation resolves fixed particle count issues and mitigates the 

problem of robot kidnapping by adjusting particle numbers 

based on localization accuracy. 

E. Indoor Localization Algorithm Design 

This study integrates the optical positioning method and the 

AMCL positioning method for indoor positioning. The goal is 

to address the limitations of both the AMCL global positioning 

and indoor optical methods. The aim is to enhance the 

efficiency of AGV indoor positioning tasks in environments 

with similar spatial geometry or large areas. 

Basically, the concept of indoor optical positioning for the 

AGV on-board system in this paper involves constructing the 

position coordinates 
, ( , )S i i iP X Y  for 4S =  optical reflective 

prisms (Corner Cube) detection points in the indoor geographic 

coordinate system, where 1, 2,..., Si N= . The LiDAR is 

employed to measure the distance LSiL  between these detection 

points, as represented by Eq. (1). Convert back to the LiDAR 

measurement position coordinates ( , )LDP X Y . The LiDAR 

coordinate point is LDP ; the optical reflective prism coordinate 

point is 
,S iP . 

 
,LSi LD s iL P P= −  (1) 

In 3D spatial coordinates, distance is a scalar quantity. The 

distance between LiDAR and each optical reflecting prism is 

accurately estimated using Bier’s theorem. The derivation 

process involves applying the polygon positioning principle 

and the three-point ranging formula. The AGV on-board 

system operates in inertial coordinates G E NO X Y Z− , assuming 

a constant height for the LiDAR and all reflecting prism points 

iZ z= . This simplification to the 2D XY plane motion allows 

for spatial distance calculations using Bier’s theorem. The 

coordinates of the LiDAR detection point and the selected 

reflection prism point are denoted as 

, ,( , )  ( , )S i i i S j j jP X Y and P X Y  respectively, with their square 

distance given by Eq. (2) and Eq. (3). 

 2 2 2( ) ( )Li i iL X X Y Y= − + −  (2) 

 
2 2 2( ) ( )L j j jL X X Y Y= − + −  (3) 

After resolving the Eq. (2) and (3), 
 
2 2 2 2 2 2[( ) ( ) ] [( ) ( ) ]Li L j i i j jL L X X Y Y X X Y Y− = − + − − − + −  (4) 

 

2 2 2 2 2

2 2 2 2 2

[( 2 ) ( 2 )]

[( 2 ) ( 2 )]

Li i i i i

L j j j j j

L X X XX Y Y YY

L X X XX Y Y YY

− + − + + −

= − + − + + −
 (5) 

Eq. (5) can be simplified as, 

 

2 2 2 2 2

2 2 2 2 2

( ) ( ) 2[ ]

( ) ( ) 2[ ]

Li i i i i

L j j j j

L X Y X Y XX YY

L X Y X Y XX YY

− + + + − +

= − + + + − +
 (6) 

In Eq.(6), specify the focal point of reflection prisms i and j 

as 
, ,( , )  ( , )S i i i S j j jP X Y and P X Y  , respectively. Define the 

distance between the coordinate origin O(0,0) and the prisms 

using Eq. (6). After horizontally shifting the items, rearrange 

and rewrite the Eq. (7). 

 

2 2 2 2 2 2( ) ( )

2 ( ) 2 ( )

Li i i L j j j

i j i j

L X Y L X Y

X X X Y Y Y

− + − − +

= − − −
 (7) 

Assuming there are m  groups of reflection prisms, the 

LiDAR measures the test distance value for each group per scan, 

denoted , 1, 2,....LiL i m= . Equation (7) is expressed on both 

sides of the equal sign, as shown in Eq (8) and (9). 

 
2 2 2 2 2 2( ) ( )k Li i i L j j jA L X Y L X Y= − + − − +  (8) 

 
,1 ,22( ), 2( )k i j k i jB X X B Y Y= − = − −  (9) 

Where 1,2,...,k m= . The above Eq (8) and (9) is a group of 

m  simultaneous linear equations, which is rewritten into 

matrix form, as in Eq. (10). 

 

1 11 12

2 21 22

1 2

, where A . , . . ,

. . .

m m m

A B B

A B B
X

A BP B P
Y

A B B

   
   
     
   = = = =  
     
   
   
   

 (10) 

A  is a [ 1]m  matrix, B  is a [ 2]m  matrix, and P  is a 

[2 1]  matrix. Solving for the position vector P  involves 

setting Eq. (10) equal on both sides and left multiplying by the 

transpose matrix. This results in the [ ]TB B  [ ]m m  square, as 

shown in Eq. (11). 

 T TB A B BP=  (11) 

Given the known spatial coordinates of the indoor optical 

reflectance prism, LiDAR scanning is employed to derive the 

relative distance test value. This process results in the 

formulation of an approximate linear system representing AGV 

distance measurement and coordinate position, expressed in Eq. 

(12) to Eq. (14). 

 

1 11 12

2 21 22

1 2

, where A . , . . ,

. . .

m m m

A B B

A B B
X

A BP B P
Y

A B B

   
   
     
   = = = =  
     
   
   
   

 (12) 
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 2 2 2 2 2 2{ ( )} { ( )}k LS i Si Si LSj Sj SjA L X Y L X Y= − + − − +  (13) 

 
,1 ,22( ), 2( )k Si Sj k Si SjB X X B Y Y= − = − −  (14) 

Where 1,2,...,k m= , and to solve the linear system Eq. (12), 

let [ ]TB B  is a square matrix of [ ]m m  as in Eq. (15), 

 T TB A B BP=  (15) 

The numerical solution for the LiDAR position vector  

( , )LDP X Y  is obtained, as depicted in Eq. (16). 

 ( 1)( )T TP B B B A−=  (16) 

Minimize the sum of squares of measurement errors using 

numerical solutions, as defined by Eq. (17), 

 2(Squre Error) ([ ( )] )TMin Min B A BP= −  (17) 

Minimizing LiDAR measurement errors is achieved by 

determining the position vector  ( , )LDP X Y through Eq. (17). 

To find the optimal solution for the system ( , )LD o oP X Y , 

simultaneous equations are solved, subject to mathematical 

constraints specified in Eq. (18). 

 
0

0

2

2

[ ( )]
0

[ ( )]
0

T

X X

T

Y Y

B A BP

X

B A BP

Y

=

=

 −
=




 −
=

 


 (18) 

The known spatial coordinates of indoor optical reflectance 

prisms, denoted as 
, ( , )S i Si SiP X Y , are assumed to undergo 

LiDAR scanning to obtain relative distance test values, DSiL , 

which are treated as random variables subject to random error 

distribution. Here, i  represents the sample point code, ranging 

from 1, 2,..., Si N= . The experiment involves stratified 

sampling for the four Corner Cubes test positions (S=4). The 

distance test value DSL , is treated as a random variable with a 

normal distribution function, 
2( , )DS S SN L    represented by a 

Gaussian probability density function, as given in Eq. (19), 

 
2

2(

22

)

1
( | , )

2

DS S

S

L

DS S S

s

N L e





 

−
−

=  (19) 

Where S=1,2,3,4. 

IV. EXPERIMENT DESIGN OF INDOOR OPTICAL POSITIONING 

A. Experimental Design of Indoor Positioning Using LiDAR 

This study explores LiDAR and Corner Cube applications in 

indoor positioning and simultaneous contour mapping (SLAM). 

Preliminary experiments involve indoor mapping, positioning, 

and distance measurements for AGV tracking. LiDAR and 

Corner Cube are positioned in a fixed room with known maps, 

conducting static distance tests and contour mapping with 

varying sample sizes. The aim is to validate LiDAR’s ranging 

function and accuracy, assess the impact of sample size on 

distance measurement accuracy 

( 1 3 2 450, 500S S S SN N N N= = = = ), and discuss positioning 

result consistency through statistical estimation. 

As depicted in Fig. 5, the LiDAR is fixed on the indoor 

ground, while four reflective prism Cubes are positioned on the 

thin plate wall around the room. The exterior space dimensions 

in Case 1.1 and Case 1.2 are W=1700mm, L=2900mm, forming 

a polygonal area. The position coordinates (mm) are LiDAR 

Pxy=[15, -165], Corner Cube [S1;S2;S3;S4] = [-650, 0; 0, 850; 

1000, 0; 0,-2000]. For Case 2.1 and Case 2.2, the experimental 

site maintains the same scene layout with LiDAR coordinates 

Pxy=[20, -5] and Corner Cube [S1;S2;S3;S4]= [-650, 0 ; 0, 850, 

0; 1000, 0; 0, -2000]. 

 
Fig. 5. Layout of the indoor test space for LiDAR experiments 

B. Contour Map Creation 

The experimental setup involved planning the test site, 

arranging LiDAR and Cube test equipment, and conducting 

indoor optical positioning experiments. LiDAR scanned and 

measured distances to each Cube, generating a radar map of 

reflected echo energy as shown in Fig. 6. The digitized values 

of the environment contour were then used to create an indoor 

contour map as shown in Fig. 7, providing AGV on-board 

systems with boundary information for autonomous 

positioning.  

  
(a) Case-1 : Ranging energy 

responds to LiDAR maps 

(b) Case-2 : Ranging energy 

responds to LiDAR charts 

Fig. 6. LiDAR/Cube indoor scanning and positioning data 
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Fig. 7. Indoor space boundary outline map 

C. LiDAR test data and its analysis  

The test revealed that in the absence of occlusions between 

the LiDAR scanning beam and optical prisms, accurate 

coordinate estimation was achieved. Despite the LiDAR being 

stationary, the laser pulse wave energy response from four 

reflective prisms on the indoor wall was distinct. The pulse 

wave reflected at various locations resulted in a spectrum of 

relative distances with random variations, representing the 

ranging system’s uncertainty or accuracy. MATLAB®  was 

employed for statistical analysis, utilizing distance values to 

implement a 2-D three-point positioning and linear least 

squares algorithm for LiDAR position coordinates ( , )LDP X Y . 

In this experiment, LiDAR is equipped with four optical 

reflection prisms with well-defined spatial coordinates. LiDAR 

scans yield a statistical probability distribution for the 

measured distance-random variable, DSiL , stratified into S 

layers. In this experiment, with S=4 and sample sizes 

( 1 2 3 450, 500, 50, 500S S S SN N N N= = = = ) assumed to follow 

a normal distribution ( , )Si SiN   . 

Experimental design involved 1 50SPN =  and 2 500SPN =  

samples, estimating normal distribution statistics ( , )S S   for 

random variables, as detailed in Table. 1. The LiDAR/Cubes 

ranging result data, ( , )LSP X Y , and positioning estimates 

distribution are illustrated in Fig. 8 to Fig. 11, with an enlarged 

view of LiDAR position attitude coordinates, ( , )LDP X Y  

regions on the right. Statistical analysis results for the 

experimental distance values between LiDAR and Cubes S 

(S=1,2,3,4), DSiL , are summarized in Table. 2. 

Case 1.1 involves the LiDAR and Corner Cube positional 

coordinates, a sample population denoted as DSiL , with i  

ranging from 1 to 50 and S  from 1 to 4. The minimum 

standard deviation of the sample, SL , is 7.12 @ 4DL , while the 

maximum is 9.06 mm@ 3DL . Notably, Cube 4 exhibits the 

lowest sample population error, whereas Cube 2 has the 

highest. 

 
Fig. 8. Spatial distribution of LiDAR/Cubes ranging data 

positioning estimates for case 1.1 

Case 1.2 is identical with case 1.1 for position coordinates a 

sample population denoted as 
DSjL , with j  ranging from 1 to 

500 and S  from 1 to 4 The minimum standard deviation of the 

sample, SL , is 7.59 mm observed at 4DL , while the maximum 

is 9.76 mm at 1DL . Cube 4 demonstrates the lowest sample 

population error, whereas Cube 2 has the highest. 

 
Fig. 9. Spatial distribution of LiDAR/Cubes ranging data 

positioning estimates case 1.2 

Case 2.1 assigns the LiDAR and Corner Cube positional 

coordinates, a sample population denoted as DSiL , with i  

ranging from 1 to 50 and S  from 1 to 4. The minimum 

standard deviation of the sample, SL , is 6.65 mm @ 4DL , 

while the maximum is 10.55 mm@ 1DL . Notably, Cube 4 

exhibits the lowest sample population error, whereas Cube 2 

has the highest. 

 
Fig. 10. Spatial distribution of LiDAR/Cubes ranging data 

positioning estimates case 2.1 

Case 2.2 is identical with case 2.1 for position coordinates a 

sample population denoted as 
DSjL , with j  ranging from 1 to 

500 and S  from 1 to 4 The minimum standard deviation of the 

sample, SL , is 6.90 mm observed at 4DL , while the maximum 

is 9.90 mm at 1DL . Cube 4 demonstrates the lowest sample 

population error, whereas Cube 2 has the highest. 
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Fig. 11. Spatial distribution of LiDAR/Cubes ranging data 

positioning estimates case 2.2 

Table. 1. Statistics of LiDAR/Cubes ranging data 

Cube 

S 
DSL  

(mm) 

DSL  

(mm) 

SL  

(mm) 

rsE  

(mm) 
SL  

(mm) 

Case 1.1 :  No of Samples ( SPnN ) = 50 

1 1 1DL  685.2 669.7 15.5 8.92 

2 1 2DL  1015.1 966.8 48.3 7.56 

3 1 3DL  998.7 978.5 20.2 9.06 

4 1 4DL  1835.1 1815.6 19.5 7.12 

Case 1.2 :  No of Samples ( SPnN ) = 500 

1 2 1DL  685.2 666.9 18.3 9.76 

2 2 2DL  1015.1 967.2 47.9 8.31 

3 2 3DL  998.7 978.5 20.2 8.33 

4 2 4DL  1835.1 1816.6 18.5 7.59 

Case 2.1 :  No of Samples ( SPnN ) = 50 

1 3 1DL  670.0 646.6 23.4 10.55 

2 3 2DL  855.2 809.0 46.2 8.99 

3 3 3DL  980.0 961.8 18.2 8.05 

4 3 4DL  1995.1 1980.7 14.4 6.65 

Case 2.2 :  No of Samples ( SPnN ) = 500 

1 3 1DL  670.0 648.7 21.3 9.90 

2 3 2DL  855.2 809.4 45.8 8.43 

3 3 3DL  980.0 961.9 18.1 8.17 

4 3 4DL  1995.1 1980.6 14.5 6.90 

Table. 2. Statistical Analysis of Estimated LiDAR Location 

Coordinates (X, Y) 

Case 

No of 

Sample 

SPnN  

True 

Value 

Xn (mm) 

Average 

Value 

Xμn (mm) 

Standard 

Deviation 

Xσn (mm) 

1.1 50 15 16.97 6.71 

1.2 500 15 16.09 6.60 

2.1 50 20 18.94 6.45 

2.2 500 20 19.66 6.20 

Case 

No of 

Sample 

SPnN  

True 

Value 

Yn (mm) 

Average 

Value 

Yμn (mm) 

Standard 

Deviation 

Yσn (mm) 

1.1 50 -165 -167.93 5.76 

1.2 500 -165 -166.97 6.22 

2.1 50 -5 -6.24 5.33 

2.2 500 -5 -6.57 5.90 

Utilizing LiDAR/Cubes ranging data, the three-point 

positioning and least squares (LSQ) algorithm were employed 

to derive statistical estimates of LiDAR position coordinates (X, 

Y).  

• Case 1.1 - Positioning Error: 7.05mm. 

• Case 1.2 - Positioning Error: 4.50mm. 

• Case 2.1 - Positioning Error: 3.27mm. 

• Case 2.2 - Positioning Error: 3.21mm. 

Results from Case 1 and Case 2 indicate that optimal 

positioning accuracy is achieved when the LiDAR position is 

perpendicular to the corner cube. Sample size minimally affects 

positioning accuracy. In cases where the LiDAR and corner 

cube have an angled irradiation angle, positioning accuracy 

slightly diminishes in experiments with a small number of 

samples but remains within an acceptable range 

D. AMCL integrated with optical indoor positioning method 

simulation. 

Integrating AMCL with optical positioning techniques 

exhibits a unique strength. Combining these methods addresses 

potential reliability issues that may arise when each method is 

used separately. AMCL can face challenges in environments 

with highly repetitive geometric features, leading to positioning 

failures. On the other hand, optical positioning may encounter 

failures or inaccuracies due to obstacles or angles. By 

integrating both approaches, the environmental features 

captured by optical positioning can enhance AMCL’s particle 

convergence speed and overall positioning reliability. The 

experiment involves two stages: first, using SLAM for map 

construction, coordinate system definition, and optical prism 

position recording; second, employing the constructed map for 

AGV’s indoor global positioning, enhancing overall accuracy 

and reliability. In this experiment, Gmapping SLAM in ROS 

constructed the simulation map using two environments in 

Gazebo with the AGV model. The node graph was checked by 

SLAM to understand the sensor information flow direction. 

The SLAM results were observed using Rviz, simulating a 

rectangular environment map with low and high features, as 

depicted in Fig. 12. 

  

Fig. 12. Rectangular environment map with low features 

In this experiment, the focus shifted to the indoor global 

positioning of the Omnibot AGV, utilizing the map constructed 

in the previous stage. The convergence of particle numbers was 

observed by implementing both the traditional AMCL 

positioning method and the AMCL combined with optical 

positioning. The experiment involved calculating the error 

between the actual AGV position and the positioning result. A 

comparative analysis was conducted between the positioning 

outcomes of the traditional AMCL method and the AMCL 
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combined with optical positioning. Fig. 13 visually depicts the 

key stages of the experimental process. 

 
Fig. 13. Flow diagram of the experimental process 

1) Traditional AMCL method 

The simulation experiment utilized the traditional AMCL 

localization method, as depicted in Fig. 14, showcasing the 

particle distribution at nine distinct time points. Given the 

absence of initial pose information from LiDAR alone, the 

particles are uniformly distributed across the map. The 

convergence process of particle numbers is driven by both 

motion and sensor information. The positioning error, 

calculated by comparing the actual AGV posture with the 

estimated posture of AMCL at each time point, reveals the 

variations in positioning error at nine different instances, as 

depicted in Fig. 15. 

 

   

T=1 T=2 T=3 

   

T=4 T=5 T=6 

   

T=7 T=8 T=9 

Fig. 14. Particle distribution map of traditional AMCL 

positioning (simulation) 

 
Fig. 15. Traditional AMCL positioning error plot 

2) AMCL combined with optical method 

In this simulation experiment, the methodology involves 

combining AMCL with the optical positioning method. Fig. 16 

displays the particle distribution at nine specific instances, 

showcasing the AGV’s ability to establish the initial possible 

pose information distribution range through the optical 

positioning method. The particles initially exhibit a more 

concentrated distribution with optical localization and 

gradually converge through movement and sensor information 

to achieve accurate positioning. The positioning error is 

calculated by comparing the AGV’s actual posture at each point 

in time with the estimated posture of AMCL. Fig. 17 outlines 

the changes in positioning error across nine instances. 

   

T=1 T=2 T=3 
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T=4 T=5 T=6 

   

T=7 T=8 T=9 

Fig. 16. Particle distribution map of hybrid AMCL/Optical 

positioning (simulation) 

 
Fig. 17. Hybrid AMCL/Optical positioning error plot 

V. EXPERIMENTAL RESULT AND VALIDATION 

To assess the performance of the AMCL combined with the 

optical indoor positioning method, an experimental design 

equipped with an automated guided vehicle called OmniBot 

having LiDAR implemented in a planned arena with 

dimensions of W=1700 mm and L=2900 mm is shown in Fig. 

18. The Gmapping SLAM method facilitated map construction, 

map coordinate system definition, and recording of Corner 

cube positions. Subsequent experiments involved global indoor 

positioning, comparing the traditional AMCL method with the 

AMCL combined with the optical indoor positioning method. 

 
Fig. 18. Experimental test setup 

The experimental setup involved reading Omnibot 

coordinates, AMCL estimated coordinates, and AMCL particle 

variations from six relay points in a clockwise direction from 

the bottom left, as shown in Fig. 19. Calculating positioning 

error values and observing particle convergence, the 

experiment aimed to verify the global positioning performance 

of the AMCL combined with the optical indoor positioning 

method in environments with low characteristics. 

 
Fig. 19. Positioning relay point 

A. Traditional AMCL Results 

The method used in this experiment is the traditional AMCL 

positioning method. The distribution of particles at six different 

moments is shown in Fig. 20, and the dispersion degree of each 

particle in the X-axis, Y-axis, and rotation angle around the 

Z-axis at different times is analyzed, as shown in Fig. 21. 

   

T=1 T=2 T=3 
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T=4 T=5 T=6 

Fig. 20. Particle distribution map for traditional AMCL 

positioning 

Fig. 21 indicates that the particles from the traditional 

AMCL method do not converge fully after passing through six 

relay points. Instead, the variation increases in all directions, 

suggesting challenges in locating within scenes with high 

feature similarity based solely on lidar signals. The positioning 

error values, calculated by comparing the actual AGV posture 

with the estimated AMCL posture at each time point, show 

significant changes and lack accuracy, as depicted in Fig. 22. 

 
Fig. 21. Estimation of pose variation using traditional AMCL 

positioning 

 
Fig. 22. Traditional AMCL positioning error diagram 

B. AMCL Integrated with Optical Indoor Positioning Method 

In this analysis, the approach involves AMCL integrated 

with an optical positioning method. Fig. 23 illustrates the 

particle distribution at six distinct moments, demonstrating that 

the AGV can acquire the initial range of possible pose 

information distributions with the optical positioning method. 

The analysis focuses on evaluating the dispersion of each 

particle along the X-axis, Y-axis, and rotational angle around 

the Z-axis at different times, indicating the variability and 

distribution of particles in six instances, as presented in Fig. 24. 

   

T=1 T=2 T=3 

   

T=4 T=5 T=6 

Fig. 23. Particle distribution map for hybrid AMCL-Optical 

positioning method 

Fig. 24 indicates a more concentrated initial particle 

distribution facilitated by the optical positioning method. 

Subsequently, through gradual convergence with sensor 

information during movement, the particles contribute to 

achieving indoor global positioning. The calculation of 

positioning error, derived from the comparison between the 

actual AGV posture and the estimated posture of AMCL at 

each time point, is depicted in Fig. 25. This representation of 

positioning error showcases strong accuracy at the onset of 

global positioning, followed by continuous tracking of the 

AGV posture state through particle convergence in subsequent 

instances. 



Liaw et. al.  
Indoor Positioning of Autonomous Guided Vehicles Using LiDAR-Corner Cubes with Adaptive Monte Carlo Localization 

40 

 
Fig. 24. Estimation of pose variation using hybrid 

AMCL-Optical positioning method 

 
Fig. 25. Hybrid AMCL-Optical positioning error diagram 

Examining the Omnibot AGV measurements reveals that 

relying solely on the traditional AMCL localization method 

results in slow or even non-existent particle convergence, 

leading to localization failures attributed to insufficient 

information or the recognition of similar features. This 

investigation employs a hybrid approach, combining optical 

localization with the AMCL method. This integration allows 

the assignment of particles closely aligned with the AGV’s 

pose. This combined method ensures accurate tracking and 

precise localization with correct initial conditions. 

VI. CONCLUSION 

In this study, optical positioning experiments were 

conducted using LiDAR and Corner Cube based on the 

polygonal positioning principle. The results indicate that when 

the LiDAR position is perpendicular to the corner cube, the 

positioning accuracy is excellent, and the sample size 

minimally affects accuracy. Even with an angle between the 

LiDAR and the corner cube, the positioning accuracy slightly 

decreases in experiments with a small sample size but remains 

within an acceptable range. Additionally, successful LiDAR 

SLAM mapping was achieved in this study. Using ROS, 

traditional AMCL positioning was compared with AMCL 

combined with optical positioning methods. Results revealed 

that traditional AMCL localization in featureless environments 

may lead to localization failure due to particle convergence 

issues. However, the introduction of optical localization 

enhances particle convergence, accelerating the overall 

convergence speed and ensuring successful indoor global 

positioning. In the future extension of this study, the hybrid 

method will be implemented in real-time on industrial AGVs 

for indoor positioning. 
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