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Abstract—In the context of Industry 4.0, integrating
automation equipment into production lines has become
increasingly prevalent. The efficiency of a factory’s production is
significantly influenced by the autonomous handling and supply
of materials or workpieces. This study focuses on the Autonomous
Guided Vehicle (AGV) system, which utilizes advanced
technologies such as laser optical radar (Light Detection and
Ranging, LiDAR) and reflection ridges (Corner Cubes) to achieve
indoor positioning and synchronous construction of the contour in
a spatial field guided by a specifically dedicated map. The primary
emphasis is on AGV indoor positioning technology, employing
LiDAR and reflections to calibrate each position coordinate. The
research establishes the core technology of indoor Simultaneous
Localization and Mapping (SLAM) through the application of a
Robots Operating System (ROS), which performs simulation,
testing, and the verification analysis of the AGV mechanism. The
study also develops a dynamic model for the AGV system,
estimates optical position parameters, and integrates them into
the Adaptive Monte Carlo Localization (AMCL) combined with
the optical indoor positioning algorithm. The hybrid
AMCL-Optical positioning provides superior accuracy than
individual methods.

Index Terms— Autonomous Guided Vehicle (AGV), Light
Detection and Ranging (LiDAR), Corner Cube, Simultaneous
Localization And Mapping (SLAM), Indoor Positioning, Adaptive
Monte Carlo Localization (AMCL)

I. INTRODUCTION

In recent decades, significant technological advancements

have propelled us into an era marked by automation and the
integration of data exchange processes within manufacturing
domains recognized as Industry 4.0 [1]. At its core, Industry 4.0
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envisions a production landscape where humans and machines
collaborate within a cyber-physical system, fostering
communication, cooperation, and self-organization [2]. A
pivotal aspect of Industry 4.0 is the emphasis on Human-Robot
Collaboration (HRC), where collaborative robots, or cobots
equipped with safety and collision avoidance systems, work
alongside human counterparts without the need for additional
safety barriers [3]. In cutting-edge intelligent unmanned
factories, common automated handling systems include
automated guided vehicles (AGVs) [4], and autonomous
mobile robots (AMRS) [5]. The advent of Industry 4.0 has
fueled a growing demand for customization. AGVs, being
programmable for route planning and task automation, excel in
scenarios requiring frequent changes in handling paths. The
dynamic nature of customization necessitates rapid
advancements in intelligent positioning, mapping, and
navigation technologies for AGVs [6], making them pivotal in
contemporary robotics and autonomous unmanned vehicles.
Within this framework of industry 4.0 and HRC, a reliable
Indoor Positioning System (IPS) is crucial for indoor
transportation, facilitating navigation, and pinpointing the
locations of individuals, robots, and autonomous vehicles [7, 8].
IPS plays a key role in realizing the full potential of Industry
4.0 in contemporary production plants.

In autonomous guided vehicles (AGVs), acquiring real-time
environmental information and precise location data is crucial
for ensuring safe and efficient movement. To achieve this,
having an accurate map of the environment and the AGV’s
positioning information is imperative. The evolution of
technologies like wireless networks and mobile computing has
led to the increasing popularity of location positioning [9].
While the Global Positioning System (GPS) [10] excels in
outdoor settings, it falls short for indoor positioning due to poor
satellite signal penetration. Indoor positioning, essential in
various settings such as factories, airports, and exhibitions,
faces the challenges of environmental interference and higher
accuracy requirements. As a result, indoor positioning has
become a prominent research focus in the broader field of
positioning and navigation.

Commercial indoor mapping systems featuring LiDAR or
RGB-D cameras share common components for data
processing and sensor synchronization [11]. Complementary
sensors like RGB cameras or thermographic sensors may be
added for enhanced data acquisition. Unlike outdoor devices
using GNSS signals, indoor systems address signal penetration
challenges through inertial methods, beacons, or, commonly
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[12], SLAM algorithms initially developed for autonomous
robots[13].

This study presents a novel indoor positioning method for
automatic guided vehicles, utilizing LiDAR and Corner Cube
optical features to overcome featureless environments. The
approach integrates the AMCL algorithm to compensate for
AGV positioning errors and ensure continuous and accurate
tracking. Implemented in the Robot Operating System (ROS),
the method is validated through preliminary simulations and
analyses using the OmniBot automated guided vehicle system.

I1.REVIEW ON EXISTING INDOOR POSITIONING AND MAPPING
TECHNIQUES.

The literature reveals a growing emphasis on robot Indoor
Positioning Systems (IPS) to ascertain real-time positions
within designated workspaces. Fig. 1 shows different types of
techniques and methods for IPS. Accurate indoor robot
localization is crucial, but traditional methods like GPS fall
short indoors due to signal blockage [14]. Recent research has
leveraged ubiquitous Wi-Fi signals [15] for cost-effective and
accessible indoor robot positioning, avoiding the need for
additional infrastructure compared to other wireless
technologies like Bluetooth[16], Infrared[17], and UWB [18].
Many techniques have been explored to address indoor robot
localization, with a focus on the simultaneous localization and
mapping (SLAM) problem. LiDAR sensors, with active light,
provide precise and dense environmental data, especially in
fast-moving indoor settings, ensuring robust localization with
SLAM systems [19]. Yang et al. propose a pixel threshold
eight-point method and an improved epipolar constraint
algorithm to enhance the accuracy of vision-based indoor
positioning, offering a cost-effective solution without
additional hardware [20].

| Robot Indoor Positioning Techniques |

Wireless Communication Map Matching Equipment /Self
Positioning Positioning Positioning
Bluetooth LiDAR Global

Positioning
Camera Kidnapping
Problem

Pose
Tracking

Fig. 1. Robot indoor positioning methods

Various methods have been explored in the literature, as
documented in works such as shown in Fig. 2 [21, 22].
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Fig. 2. IPS localization techniques and methods [22]
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Triangulation, as highlighted, utilizes the geometric
properties of triangles to calculate an object’s position based on
known reference point coordinates [23]. Notable algorithms,
including Received Signal Strength Indicator (RSSI), Angle of
Arrival (AOA), Time of Arrival (TOA), Time Difference of
Arrival (TDOA), and Time of Flight (TOF), are widely
employed [24, 25]. RSSI utilizes signal strength attenuation
[26], while AOA calculates angles for precise positioning.
TOA relies on time calculations, requiring accurate
synchronization, and TDOA  employs hyperbolic
characteristics [27]. TOF measures the time difference between
transmitted and received pulses.

Fingerprinting involves an offline stage where a feature
database is established and an online stage where measured
features are compared for location estimation [28]. Adege et al.
propose a system for both indoor and outdoor positioning; the
work utilizes a hybrid of Support Vector Machine and Deep
Neural Network algorithms [29]. In a different approach to
indoor positioning, Malar et al. suggest an indoor positioning
system based on fingerprinting and support vector machines
[30]. Additionally, Zheng et al. introduced an indoor
localization system employing a particle filter and support
vector machine. This system aims to determine the user’s speed
and direction of motion through a mobile device, leveraging the
device’s sensors and utilizing a particle filter for effective
sensor fusion [31].

Proximity-based systems, relying on grids of antennas with
known locations, detect an object’s position based on its
proximity to these antennas [32]. Vision analysis, a technique
rooted in image processing by cameras covering the indoor
environment, identifies predefined objects within a database
[33].

I1l. MATERIAL AND METHODS

A. LiDAR-SLAM

This study utilizes the PEPPERL+FUCHS LiDAR model
OMD30M-R2000-B23-V1V1D-HD-1L  manufactured in
Germany. This LIiDAR offers an impressive specification,
including a 360" detection range, a 30m detection distance,
+25mm absolute accuracy, and £12mm measurement noise.
Renowned for its high precision and stability, this LIDAR is
well-suited for Autonomous Guided Vehicle (AGV) operations
and diverse application environments due to its resistance to
background interference and strong anti-ambient light
capabilities. Operating on Pulse Ranging Technology (PRT)
and following the Time of Flight (TOF) principle, the LIiDAR
calculates target distance based on the time difference between
pulse transmission and reception, offering resilience to external
light sources and minimal sensitivity to environmental changes.
Additionally, it incorporates a sophisticated filtering algorithm
with three variations—average/mean, maximum value, and
reflected energy—tailored for noise reduction, challenging
conditions, and low reflectivity, respectively. The LiDAR’s
adaptability is further enhanced by its compatibility with
PACTware DTM series components, known for their
user-friendly interface, facilitating easy setup and operation.
This comprehensive LiDAR solution generates indoor contour
graphics, showcasing its robust capabilities in various scenarios.
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In this study, the Gmapping SLAM [34], a widely used
approach  for lidar and odometry, employs the
Rao-Blackwellized Particle Filters (RBPF) method with
enhancements. In the RBPF algorithm, particles are strategically
placed on the map, assigned different weights based on sensor
values, and selectively retained or removed. The RBPF-based
SLAM process involves sampling, importance weighting,
adaptive resampling, and map estimates. Particles are drawn
based on an initial pose estimate from a motion model and
refined using the latest observations. Importance weighting
evaluates how well particles represent the target distribution.
Adaptive resampling may be triggered based on the effective
particle number. Finally, the map carried by each particle is
updated through the robot’s pose history and observations.
Gmapping improves the proposal distribution and selective
resampling, providing accurate mapping in long corridors and
low-feature environments. However, it relies on odometer data
and is unsuitable for uneven ground or drone applications.

B. Corner Cube

The Corner Cube is an optical pyramid reflector composed
of three-sided glass prisms that redirect the incident beam in the
opposite direction. It is commonly used in measurement and
laser light-ranging applications. This experiment employed the
corner pyramid prism with  product specifications
D12.7%*9.5mm provided by Yugun Optoelectronics
Technology Co., Ltd. The working principle of the Corner
Cube involves three reflections, once from each surface,
causing a reversal in the direction illustrated in Fig. 3. The
Corner Cube features three perpendicular faces forming a
Cartesian coordinate system (x,y,z) , with [a,b,c]
representing the direction of any incident ray.
As the incident light rays reflect successively from different
sides of the Corner Cube, specific changes occur in their
directional components. Initially, when reflected from the first
side, the x-component, denoted as 'a' undergoes reversal to
'—a', while the y and z-components remain unaltered, resulting
in a modified direction of [-a,b,c]. Similarly, upon reflection
from the y and z sides, the b and ¢ components undergo a
reversal. The sequential reflections result in the ray direction
transitioning through [a,b,c] to [-a,b,c] , then to [-a,-b,c]

finally to [-a,-b,—c], and ultimately departing from the

Corner Cube. Notably, the distance traveled remains constant
for any incident ray, irrespective of its initial reflection point.

Fig. 3. Schematic diagram of corner cube

C. ROS-Gazeebo

The Robot Operating System (ROS) is an open-source
meta-operating system designed for robot software
development, offering services akin to an operating system. It
facilitates hardware abstraction, low-level device control,
implementation of common functionalities, and inter-process

message passing. ROS operates as a peer-to-peer process
network during runtime, utilizing a communication
infrastructure for loose coupling. ROS adopts a distributed
processing architecture with nodes, emphasizing code reuse,
enabling independent design and flexible coupling at runtime.
It encourages clear function interfaces for writing
ROS-agnostic libraries, supporting collaboration through
distributed code repositories. The detailed ROS architecture is
illustrated in Fig. 4.
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Fig. 4. ROS architecture

In terms of system modeling and configuration, the study
employs standard ROS tools like Gazebo, Rviz, and rqt for
visualization. Gazebo, a 3D robot simulator, is used to create a
simulation environment for AGV, importing the robot using the
Unified Robot Description Format (URDF). Rviz serves as a
3D parameter visualization tool with plugins for importing
maps and displaying sensor data. The rqt tool, a graphical user
interface, visualizes AGV’s standalone runtime. The TF
(Transformation) system in ROS allows practical visualization
of coordinate transformations, which is essential for
understanding relationships between different coordinate
systems. Together, these tools enhance ROS’s capabilities,
providing a comprehensive framework for effective robot
research and development.

D. Adaptive Monte Carlo Positioning (AMCL)

Monte Carlo localization (MCL) [35] is an algorithm
employing a particle filter for a robot to estimate its position
and orientation while navigating and sensing the environment
with a given map. In MCL, particles represent potential robot
states X =(X,Y,8), initially uniformly distributed across the

environmental state space, indicating a lack of prior global
positioning information. As the robot moves and senses the
surroundings, particles undergo resampling based on sensor
observations to converge toward the actual pose state. In each
iteration, the robot undergoes motion updates, applying the
robot’s movement to all particles. Sensor updates refine particle
positions based on the robot’s environment sensing, adjusting
particle weights to enhance accuracy. Resampling generates a
new set of particles around those with higher weights,
optimizing computational resources. The MCL algorithm is
shown below:
1 Algorithm MCL(X, ,,u,,2,):

X =X =0
3 form=1toM:
4 x™ = motion _update(u,, x'")
5 w™ = sensor _ update(z,, xI™)
6

X=X+ 04w
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7 end for
8 form=1toM:
9 draw xI™from X, with probability oc w{™

10 xt = xt + Xt[m]
11 end for
12 return X,

Monte Carlo Localization (MCL) starts with a large number of
evenly distributed particles on the map, but over iterations, they
cluster in one location, wasting computational resources if the
initial count is maintained. Adaptive Monte Carlo Localization
(AMCL) [36] improves MCL by dynamically adjusting particle
numbers using the Kullback-Leibler Divergence (KLD)
method [37]. AMCL addresses MCL’s computing inefficiency
by recalculating the particle count in each iteration, eliminating
redundant particles for improved performance. AMCL’s
adaptation resolves fixed particle count issues and mitigates the
problem of robot kidnapping by adjusting particle numbers
based on localization accuracy.

E. Indoor Localization Algorithm Design

This study integrates the optical positioning method and the
AMCL positioning method for indoor positioning. The goal is
to address the limitations of both the AMCL global positioning
and indoor optical methods. The aim is to enhance the
efficiency of AGV indoor positioning tasks in environments
with similar spatial geometry or large areas.

Basically, the concept of indoor optical positioning for the
AGV on-board system in this paper involves constructing the
position coordinates P, ;(X;,Y;) for S=4 optical reflective

prisms (Corner Cube) detection points in the indoor geographic
coordinate system, where i=12,..,N; . The LIiDAR is

employed to measure the distance L, between these detection

points, as represented by Eq. (1). Convert back to the LIDAR
measurement position coordinates P, (X,Y) . The LiDAR

coordinate point is P, ; the optical reflective prism coordinate
pointis P, ;.

L :"PLD -R,

1)

In 3D spatial coordinates, distance is a scalar quantity. The
distance between LiDAR and each optical reflecting prism is
accurately estimated using Bier’s theorem. The derivation
process involves applying the polygon positioning principle
and the three-point ranging formula. The AGV on-board
system operates in inertial coordinates Oy — XY, Z , assuming
a constant height for the LIiDAR and all reflecting prism points
Z = z;. This simplification to the 2D XY plane motion allows

for spatial distance calculations using Bier’s theorem. The
coordinates of the LIDAR detection point and the selected
reflection prism point are denoted as
Poi(X;,Y;) and R ;(X;,Y;) respectively, with their square
distance given by Eq. (2) and Eqg. (3).

LLi2 =(x_xi)2+(Y_Yi)2 (2

L* = (X=X)?+(Y -Y))* ©)

After resolving the Eq. (2) and (3),
Li® = L" =IOX= X2+ =Y)PT=I(X = X)* +(Y =Y))*] (4)

I-Li2 _[(X2 + Xi2 —ZXXi)-‘r(YZ +Yi2 _ZYYi)]

5
=L 2 —[(X 7+ X 2= 2XX ) + (Y2 +Y,2 = 2YY))] ®)

Eqg. (5) can be simplified as,
L2 = (X2 +Y?) + (X2 +Y.2) = 2[ XX, +YY,] ©)

=L 2~ (X2 4Y2)+ (X 24Y2) = 2[XX, +YY,]

In Eq.(6), specify the focal point of reflection prisms i and j
as R, (X;,Y;)and R, ;(X;,Y;) , respectively. Define the
distance between the coordinate origin O(0,0) and the prisms

using Eq. (6). After horizontally shifting the items, rearrange
and rewrite the Eq. (7).

I-l_i2 _(Xi2 +Yi2)_ I-Lj2 _(ij +Yj2)

()
=2X(X, = X,)=2Y (Y, -Y,)

Assuming there are m groups of reflection prisms, the
LiDAR measures the test distance value for each group per scan,
denoted L;,i=12,...m. Equation (7) is expressed on both
sides of the equal sign, as shown in Eq (8) and (9).

A< :LLiZ_(xiz +Yi2)_LLj2_(xj2+Yj2) (8)

Bk,l =2(X; - Xj)' Bk,2 =—2(Y; _Yj) C))

Where k =1,2,...,m. The above Eq (8) and (9) is a group of
m simultaneous linear equations, which is rewritten into
matrix form, as in Eq. (10).

'Ai Bll BlZ
AZ BZl BZZ X

A= BP,where A = B=| . : ,P={Y} (10)
A\n Bml Bmz

A is a [mx1] matrix, B is a [mx2] matrix, and P is a
[2x1] matrix. Solving for the position vector P involves
setting Eq. (10) equal on both sides and left multiplying by the
transpose matrix. This results in the [B'B] [mxm] square, as
shown in Eq. (11).

B'A=B'BP (12)

Given the known spatial coordinates of the indoor optical
reflectance prism, LiDAR scanning is employed to derive the
relative distance test value. This process results in the
formulation of an approximate linear system representing AGV
distance measurement and coordinate position, expressed in Eq.
(12) to Eq. (14).

Ai Bll BlZ
A By By X
A=BP,whereA=| . [|B=]| . . ,Pz{Y} (12)



34 Liaw et. al.

Indoor Positioning of Autonomous Guided Vehicles Using LiDAR-Corner Cubes with Adaptive Monte Carlo Localization

A ={L" - (X4’ +YSi2)}_{LLSj2 _(ijz +YSj2)} (13)
Bk,l = 2(XSi - Xs,'): Bk,z = _Z(YSi _YSj) (14)

Where k =1,2,...,m, and to solve the linear system Eq. (12),
let [B"B] is a square matrix of [mxm] as in Eq. (15),
B'A=B'BP (15)
The numerical solution for the LiDAR position vector
P, (X,Y) is obtained, as depicted in Eq. (16).

P=(B"B)™B'A (16)

Minimize the sum of squares of measurement errors using
numerical solutions, as defined by Eq. (17),

Min(Squre Error) = Min([B" (A—BP)J?) 17

Minimizing LiDAR measurement errors is achieved by
determining the position vector P (X,Y)through Eq. (17).
To find the optimal solution for the system P, (X,,Y,),

simultaneous equations are solved, subject to mathematical
constraints specified in Eq. (18).

3[BT (A—BP)P? 0
oX X=X
Y (18)
aABT(A-BPYF| _,
oY -

The known spatial coordinates of indoor optical reflectance
prisms, denoted as P, ;(X,Yy), are assumed to undergo
LiDAR scanning to obtain relative distance test values, L.,

which are treated as random variables subject to random error
distribution. Here, i represents the sample point code, ranging
from i=12,.,Ng . The experiment involves stratified
sampling for the four Corner Cubes test positions (S=4). The
distance test value L, is treated as a random variable with a

normal distribution function, N(Lg |ys ,05°) represented by a

Gaussian probability density function, as given in Eq. (19),

7(LDS —Hs )Z
2

e 20

N(LDs |;uslasz): (19)

7o,

Where S=1,2,3,4.

IV. EXPERIMENT DESIGN OF INDOOR OPTICAL POSITIONING

A. Experimental Design of Indoor Positioning Using LiDAR
This study explores LIiDAR and Corner Cube applications in

indoor positioning and simultaneous contour mapping (SLAM).

Preliminary experiments involve indoor mapping, positioning,
and distance measurements for AGV tracking. LiDAR and
Corner Cube are positioned in a fixed room with known maps,
conducting static distance tests and contour mapping with
varying sample sizes. The aim is to validate LiDAR’s ranging
function and accuracy, assess the impact of sample size on
distance measurement accuracy
( Ng; = Ng; =50,Ng, =Ng, =500 ), and discuss positioning

result consistency through statistical estimation.

As depicted in Fig. 5, the LiDAR is fixed on the indoor
ground, while four reflective prism Cubes are positioned on the
thin plate wall around the room. The exterior space dimensions
in Case 1.1 and Case 1.2 are W=1700mm, L=2900mm, forming
a polygonal area. The position coordinates (mm) are LiDAR
Pxy=[15, -165], Corner Cube [S1;S2;S3;S4] = [-650, 0; 0, 850;
1000, 0; 0,-2000]. For Case 2.1 and Case 2.2, the experimental
site maintains the same scene layout with LIiDAR coordinates
Pxy=[20, -5] and Corner Cube [S1;S2;S3;S4]=[-650, 0 ; 0, 850,
0; 1000, 0; 0, -2000].

Fig. 5. Layout of the indoor test space for LIDAR experiments

B. Contour Map Creation

The experimental setup involved planning the test site,
arranging LIiDAR and Cube test equipment, and conducting
indoor optical positioning experiments. LiDAR scanned and
measured distances to each Cube, generating a radar map of
reflected echo energy as shown in Fig. 6. The digitized values
of the environment contour were then used to create an indoor
contour map as shown in Fig. 7, providing AGV on-board

systems with boundary information for autonomous
positioning.
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Fig. 7. Indoor space boundary outline map

C.LiDAR test data and its analysis

The test revealed that in the absence of occlusions between
the LIiDAR scanning beam and optical prisms, accurate
coordinate estimation was achieved. Despite the LiDAR being
stationary, the laser pulse wave energy response from four
reflective prisms on the indoor wall was distinct. The pulse
wave reflected at various locations resulted in a spectrum of
relative distances with random variations, representing the
ranging system’s uncertainty or accuracy. MATLAB® was
employed for statistical analysis, utilizing distance values to
implement a 2-D three-point positioning and linear least
squares algorithm for LIDAR position coordinates P, (X,Y).

In this experiment, LiDAR is equipped with four optical
reflection prisms with well-defined spatial coordinates. LiDAR
scans yield a statistical probability distribution for the
measured distance-random variable, L, , stratified into S

layers. In this experiment, with S=4 and sample sizes
(Ng, =50, N, =500, N, =50,N,, =500) assumed to follow
a normal distribution N (x,0y;).

Experimental design involved Ng,, =50 and N, =500
samples, estimating normal distribution statistics (ug,o5) for
random variables, as detailed in Table. 1. The LiDAR/Cubes
ranging result data, P(X,Y), and positioning estimates
distribution are illustrated in Fig. 8 to Fig. 11, with an enlarged
view of LiDAR position attitude coordinates, P, (X,Y)

regions on the right. Statistical analysis results for the
experimental distance values between LIiDAR and Cubes S
(5=1,2,3,4), L, , are summarized in Table. 2.

Case 1.1 involves the LIiDAR and Corner Cube positional
coordinates, a sample population denoted as L, , with i

ranging from 1 to 50 and S from 1 to 4. The minimum
standard deviation of the sample, L ¢ ,is7.12 @ L, , while the
maximum is 9.06 mm@ L,, . Notably, Cube 4 exhibits the

lowest sample population error, whereas Cube 2 has the
highest.

Case 1-1

Sampling Number = 50_Measure Error(mm) =7.0515 Sampling Number = 50 Measure Error(mm) = 7.0515
S2 ‘ + oAR [+ omr]

sif @ | s

T =l T 165} )
£ Zoon IN WD £ ) re
1000 . 5 L
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X (mm) X (mm)

Fig. 8. Spatial distribution of LiDAR/Cubes ranging data
positioning estimates for case 1.1

Case 1.2 is identical with case 1.1 for position coordinates a
sample population denoted as L. , with j ranging from 1 to

DSj
500 and S from 1 to 4 The minimum standard deviation of the
sample, L ¢, is 7.59 mm observed at L, , while the maximum
is 9.76 mm at L,,. Cube 4 demonstrates the lowest sample
population error, whereas Cube 2 has the highest.

Case 1-2

Sampling Number = 500 Measure Error(mm) = 4.4985

S2

Sampling Number = 500 Measure Error(mm) = 4.4985

¥ (mm)

0 000 0 0 20 25
X (mm) X (mm)

Fig. 9. Spatial distribution of LiDAR/Cubes ranging data
positioning estimates case 1.2

Case 2.1 assigns the LiDAR and Corner Cube positional
coordinates, a sample population denoted as L,g , with i
ranging from 1 to 50 and S from 1 to 4. The minimum
standard deviation of the sample, L ¢, is 6.65 mm @ L, ,

while the maximum is 10.55 mm@ L., . Notably, Cube 4

exhibits the lowest sample population error, whereas Cube 2
has the highest.

Case 2-1

Sampling Number = 50 Measure Error(mm) = 3.2683 Sampling Number = 50 Measure Error(mm) = 3.2683

500

L L 1 1 L L 20
4500 1000 500 0 50 1000 1500 s ) 5 2 ) 3

Fig. 10. Spatial distribution of LiDAR/Cubes ranging data
positioning estimates case 2.1

Case 2.2 is identical with case 2.1 for position coordinates a
sample population denoted as L, with j ranging from 1 to
500 and S from 1 to 4 The minimum standard deviation of the
sample, L ¢, is 6.90 mm observed at L,, while the maximum
is 9.90 mm at L,,. Cube 4 demonstrates the lowest sample
population error, whereas Cube 2 has the highest.
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Fig. 11. Spatial distribution of LiDAR/Cubes ranging data

positioning estimates case 2.2
Table. 1. Statistics of LiDAR/Cubes ranging data

Cube LDs LDs LyS Ers Lo—s
S (mm) | (mm) (mm) (mm) | (mm)
Case 1.1: No of Samples ( Ng,,) =50
1 Loy 685.2 669.7 15.5 8.92
2 Lip, 1015.1 966.8 48.3 7.56
3 Lips 998.7 978.5 20.2 9.06
4 Lips 1835.1 1815.6 19.5 7.12
Case 1.2: No of Samples ( Ny, ) = 500
1 Lot 685.2 666.9 18.3 9.76
2 Lo, 1015.1 | 967.2 47.9 8.31
3 Lyps 998.7 978.5 20.2 8.33
4 Loos 1835.1 | 1816.6 | 18.5 7.59
Case2.1: No of Samples ( Ng, ) = 50
1 Loy | 6700 | 646.6 | 23.4 10.55
2 Lo, | 8552 | 809.0 |46.2 8.99
3 Lsps 980.0 961.8 18.2 8.05
4 Lops 1995.1 | 1980.7 | 14.4 6.65
Case 2.2: No of Samples ( Ny, ) = 500
1 Lspy 670.0 648.7 21.3 9.90
2 Lo, | 8552 | 809.4 | 458 8.43
3 Lsps 980.0 961.9 18.1 8.17
4 Lspg 1995.1 | 1980.6 | 14.5 6.90
Table. 2. Statistical Analysis of Estimated LiDAR Location
Coordinates (X, Y)
No of True Average Standard
Case | Sample Value Value Deviation
N, Xn (mm) | Xun(mm) | Xon (mm)
1.1 50 15 16.97 6.71
1.2 500 15 16.09 6.60
2.1 50 20 18.94 6.45
2.2 500 20 19.66 6.20
No of True Average Standard
Case | Sample Value Value Deviation
Nepy Yo (Mm) | Yun(mm) | Yon(mm)
11 50 -165 -167.93 5.76
1.2 500 -165 -166.97 6.22
2.1 50 -5 -6.24 5.33
2.2 500 -5 -6.57 5.90

Utilizing LiDAR/Cubes ranging data, the three-point
positioning and least squares (LSQ) algorithm were employed
to derive statistical estimates of LIDAR position coordinates (X,
Y).

Case 1.1 - Positioning Error: 7.05mm.

Case 1.2 - Positioning Error: 4.50mm.

Case 2.1 - Positioning Error: 3.27mm.

Case 2.2 - Positioning Error: 3.21mm.

Results from Case 1 and Case 2 indicate that optimal
positioning accuracy is achieved when the LiDAR position is
perpendicular to the corner cube. Sample size minimally affects
positioning accuracy. In cases where the LIiDAR and corner
cube have an angled irradiation angle, positioning accuracy
slightly diminishes in experiments with a small number of
samples but remains within an acceptable range

D.AMCL integrated with optical indoor positioning method
simulation.

Integrating AMCL with optical positioning techniques
exhibits a unique strength. Combining these methods addresses
potential reliability issues that may arise when each method is
used separately. AMCL can face challenges in environments
with highly repetitive geometric features, leading to positioning
failures. On the other hand, optical positioning may encounter
failures or inaccuracies due to obstacles or angles. By
integrating both approaches, the environmental features
captured by optical positioning can enhance AMCL’s particle
convergence speed and overall positioning reliability. The
experiment involves two stages: first, using SLAM for map
construction, coordinate system definition, and optical prism
position recording; second, employing the constructed map for
AGV’s indoor global positioning, enhancing overall accuracy
and reliability. In this experiment, Gmapping SLAM in ROS
constructed the simulation map using two environments in
Gazebo with the AGV model. The node graph was checked by
SLAM to understand the sensor information flow direction.
The SLAM results were observed using Rviz, simulating a
rectangular environment map with low and high features, as
depicted in Fig. 12.

Fig. 12. Rectangular environment map with low features

In this experiment, the focus shifted to the indoor global
positioning of the Omnibot AGV, utilizing the map constructed
in the previous stage. The convergence of particle numbers was
observed by implementing both the traditional AMCL
positioning method and the AMCL combined with optical
positioning. The experiment involved calculating the error
between the actual AGV position and the positioning result. A
comparative analysis was conducted between the positioning
outcomes of the traditional AMCL method and the AMCL
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combined with optical positioning. Fig. 13 visually depicts the
key stages of the experimental process.
Start

\ Start AGV |

l

‘ Import Environment MAP ‘

]

Distribute Particles in Environment Map
to Start Global Positioning

!

‘ LiDAR Scanning for Optical Positioning

\ Move AGV for AMCL \

Any Issue
with AGV

lNo

Particles Converge To Find AGV
Positioning

!

End

Fig. 13. Flow diagram of the experimental process

1) Traditional AMCL method

The simulation experiment utilized the traditional AMCL
localization method, as depicted in Fig. 14, showcasing the
particle distribution at nine distinct time points. Given the
absence of initial pose information from LiDAR alone, the
particles are uniformly distributed across the map. The
convergence process of particle numbers is driven by both
motion and sensor information. The positioning error,
calculated by comparing the actual AGV posture with the
estimated posture of AMCL at each time point, reveals the
variations in positioning error at nine different instances, as
depicted in Fig. 15.

T=3

T=4 T=5 T=6

T=7 T=8 T=9

Fig. 14. Particle distribution map of traditional AMCL
positioning (simulation)
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Fig. 15. Traditional AMCL positioning error plot
2) AMCL combined with optical method

In this simulation experiment, the methodology involves
combining AMCL with the optical positioning method. Fig. 16
displays the particle distribution at nine specific instances,
showcasing the AGV’s ability to establish the initial possible
pose information distribution range through the optical
positioning method. The particles initially exhibit a more
concentrated distribution with optical localization and
gradually converge through movement and sensor information
to achieve accurate positioning. The positioning error is
calculated by comparing the AGV’s actual posture at each point
in time with the estimated posture of AMCL. Fig. 17 outlines
the changes in positioning error across nine instances.

T=1 T=2 T=3
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T=4 T=5 T=6
T=7 T=8 T=9

Fig. 16. Particle distribution map of hybrid AMCL/Optical
positioning (simulation)
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Fig. 17. Hybrid AMCL/Optical positioning error plot

V.EXPERIMENTAL RESULT AND VALIDATION

To assess the performance of the AMCL combined with the
optical indoor positioning method, an experimental design
equipped with an automated guided vehicle called OmniBot
having LiDAR implemented in a planned arena with
dimensions of W=1700 mm and L=2900 mm is shown in Fig.
18. The Gmapping SLAM method facilitated map construction,
map coordinate system definition, and recording of Corner
cube positions. Subsequent experiments involved global indoor
positioning, comparing the traditional AMCL method with the
AMCL combined with the optical indoor positioning method.

Fig. 18. Experimental test setup

The experimental setup involved reading Omnibot
coordinates, AMCL estimated coordinates, and AMCL particle
variations from six relay points in a clockwise direction from
the bottom left, as shown in Fig. 19. Calculating positioning
error values and observing particle convergence, the
experiment aimed to verify the global positioning performance
of the AMCL combined with the optical indoor positioning
method in environments with low characteristics.

Fig. 19. Positioning relay point

A. Traditional AMCL Results

The method used in this experiment is the traditional AMCL
positioning method. The distribution of particles at six different
moments is shown in Fig. 20, and the dispersion degree of each
particle in the X-axis, Y-axis, and rotation angle around the
Z-axis at different times is analyzed, as shown in Fig. 21.

T=1 T=2 T=3
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T=4 T=5 T=6

Fig. 20. Particle distribution map for traditional AMCL
positioning

Fig. 21 indicates that the particles from the traditional
AMCL method do not converge fully after passing through six
relay points. Instead, the variation increases in all directions,
suggesting challenges in locating within scenes with high
feature similarity based solely on lidar signals. The positioning
error values, calculated by comparing the actual AGV posture
with the estimated AMCL posture at each time point, show
significant changes and lack accuracy, as depicted in Fig. 22.
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Fig. 21. Estimation of pose variation using traditional AMCL
positioning
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Fig. 22. Traditional AMCL positioning error diagram

B. AMCL Integrated with Optical Indoor Positioning Method

In this analysis, the approach involves AMCL integrated
with an optical positioning method. Fig. 23 illustrates the
particle distribution at six distinct moments, demonstrating that
the AGV can acquire the initial range of possible pose
information distributions with the optical positioning method.
The analysis focuses on evaluating the dispersion of each
particle along the X-axis, Y-axis, and rotational angle around
the Z-axis at different times, indicating the variability and
distribution of particles in six instances, as presented in Fig. 24.

T=4 T=5 T=6

Fig. 23. Particle distribution map for hybrid AMCL-Optical
positioning method

Fig. 24 indicates a more concentrated initial particle
distribution facilitated by the optical positioning method.
Subsequently, through gradual convergence with sensor
information during movement, the particles contribute to
achieving indoor global positioning. The calculation of
positioning error, derived from the comparison between the
actual AGV posture and the estimated posture of AMCL at
each time point, is depicted in Fig. 25. This representation of
positioning error showcases strong accuracy at the onset of
global positioning, followed by continuous tracking of the
AGYV posture state through particle convergence in subsequent
instances.
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Fig. 25. Hybrid AMCL-Optical positioning error diagram

Examining the Omnibot AGV measurements reveals that
relying solely on the traditional AMCL localization method
results in slow or even non-existent particle convergence,
leading to localization failures attributed to insufficient
information or the recognition of similar features. This
investigation employs a hybrid approach, combining optical
localization with the AMCL method. This integration allows
the assignment of particles closely aligned with the AGV’s
pose. This combined method ensures accurate tracking and
precise localization with correct initial conditions.

VI. CONCLUSION

In this study, optical positioning experiments were
conducted using LiDAR and Corner Cube based on the
polygonal positioning principle. The results indicate that when
the LIDAR position is perpendicular to the corner cube, the
positioning accuracy is excellent, and the sample size
minimally affects accuracy. Even with an angle between the
LiDAR and the corner cube, the positioning accuracy slightly
decreases in experiments with a small sample size but remains
within an acceptable range. Additionally, successful LiDAR
SLAM mapping was achieved in this study. Using ROS,
traditional AMCL positioning was compared with AMCL
combined with optical positioning methods. Results revealed
that traditional AMCL localization in featureless environments
may lead to localization failure due to particle convergence
issues. However, the introduction of optical localization
enhances particle convergence, accelerating the overall
convergence speed and ensuring successful indoor global
positioning. In the future extension of this study, the hybrid
method will be implemented in real-time on industrial AGVs
for indoor positioning.
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