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 Abstract—It is crucial for the research of object localization, 

grasp pose estimation and the secure handling of objects to 
prevent damage or dropping during the pick-and-place process. 
This study employs the Mask R-CNN algorithm to locate the 
object, and to obtain the mask. Then, the mask is combined with 
the depth image to generate a point cloud. Subsequently, an 
algorithm is proposed to determine whether the object is suitable 
for vacuum gripper grasping. For an unsuitable case, the point 
cloud is fed into a PointNet++ model, which utilizes geodesic 
distance as the loss function to predict a grasp pose for the parallel 
gripper in an end-to-end manner. Additionally, to achieve stable 
grasping, this study arranges eight FSRs in an array 
configuration. By analyzing contact force information, it can 
detect the slippage, caused by insufficient applied force, and 
further compensates the gripping force. To enhance the 
performance of the proposed object pick-and-place system, a 
hand-eye calibration and a motion trajectory planning are 
performed. Finally, the system is tested on a six-DOF robotic arm, 
involving objects such as ball, bottle, paper cup, box and wooden 
block. The proposed system achieves a success rate of 92% in 
object pick-and-place over 100 experiments. 

 Index Terms—Force Sensing Resistor, Grasp Pose, Object 
Detection, PointNet++, Robotic Arm 

I. INTRODUCTION 

HE utilization of robotic arms has primarily been confined 
to industrial environments, where they are pre-programmed 

with specific parameters to handle and process objects. 
However, a recent trend has emerged in which robotic arms are 
being incorporated into daily life scenarios. This trend 
necessitates the requirement for robotic arms to be capable of 
managing objects of diverse sizes, shapes, and materials. 
Therefore, it becomes crucial to address the research of object 
localization, grasp pose estimation, and ensuring secure object, 
handling to prevent damage or dropping during the picking 
process. 

Point clouds have found widespread use in the field of 
robotics research as they contain geometry information of 
objects. However, estimating grasp poses becomes challenging 
when dealing with complex object shapes. Moreover, relying 
solely on partial geometric representations within the point 
cloud can introduce biases into grasp pose calculations. In order 
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to address these challenges, several methodologies [1-5] have 
adopted deep learning models to learn the implicit relationship 
between object point clouds and grasp poses. 

Wang and Lin [6] employ PointNet [7] as feature learning 
network, aiming to directly regress a quaternion for the grasp 
pose. However, their approach of using Euclidean distance as 
the loss function and manipulating the dataset by randomly 
multiplying the ground truth quaternions by -1 is not optimal for 
minimizing training errors. As an alternative, we propose 
utilizing geodesic distance and ensuring that the real part of 
ground truth quaternions is non-negative. Further details are 
explained in Section 2. 

To enhance the safety of the gripping process, a force 
compensation system has been developed. By integrating 
sensors with the gripper, the system is capable of perceiving the 
contact information between the gripper and the object. The 
primary goal of the force compensation system is to detect 
potential slippage and adjust the force accordingly to prevent the 
object from dropping. Details are discussed in Section 3. 

 

Fig. 1.   Overall system flowchart 

Fig. 1 elaborates on the overall system flowchart of the 
proposed system. Firstly, an Intel RealSense™ D435i depth 
camera is installed on the end-effector. Once RGB and depth 
images are captured, Mask R-CNN [8] is utilized to generate a 
mask of the desired object on the RGB image. The mask is then 
combined with depth information to generate a point cloud. 
Subsequently, an algorithm is proposed to determine whether 
the object is suitable for vacuum gripper grasping. If not, the 
object point cloud is fed into a deep learning model to predict a 
grasp pose for parallel gripper. Finally, motion trajectories are 
planned, and object pick-and-place process is conducted, where 
a force compensation algorithm will be involved during the 
process. A six-degrees-of-freedom robotic arm, Ufactory Lite 6, 
is used to demonstrate the experiments. Robot experiments will 
be discussed in Section 4. 
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II.  GRASP POSE ESTIMATION 

A. Vacuum Gripper Grasp Pose Estimation 

To detect the experiment objects, a Mask R-CNN model was 
trained on a dataset of 200 images using transfer learning. The 
trained model is then utilized to detect the mask of the object, 
whose point cloud is generated by combining the mask with the 
depth image. The proposed algorithm aims to find the most 
suitable plane within the point cloud. Fig. 2 illustrates the 
flowchart of grasp pose estimation for vacuum gripper. 

 

Fig. 2.   Vacuum grasp pose estimation flowchart 

First, we implement the random sample consensus 
(RANSAC) algorithm to detect a plane within the point cloud. 
Outlier removal is then conducted to remove points that are far 
from their neighboring points. Furthermore, the inliers are 
projected onto the plane, reducing them to 2-D points. Next, the 
2-D convex hull is computed on the plane to create a polygon 
that encompasses all the data points. The centroid of this 
polygon is determined by averaging the maximum and 
minimum values of its vertices in both the x and y directions. 
Using this centroid as the center, a circle is established within 
the bounds of the convex polygon. Subsequently, the diameter 
of circle is calculated and is compared to the diameter of the 
suction cup. To account for potential errors of point cloud data 
in acquisition and localization, the diameter of suction cup (1.7 
cm) is multiplied by a safety factor (2), yielding a threshold of 
3.4 cm. If the calculated diameter of circle is greater than this 
threshold, it is considered suitable for vacuum gripper. The 
grasp position and pose can be calculated by back-projecting the 
center of the circle into 3-D space and employing principal 
component analysis (PCA) method, respectively. As the object 
point cloud might comprise multiple planes, the RANSAC plane 
detection is applied to the outliers following the generation of 
the first plane. This iterative process is repeated up to three times. 
Prioritization is assigned to the planes. Theoretically, the closer 
the gripper's z-axis aligns with the direction of gravity, the more 
stable the grasping. Consequently, we calculate dot products 
between the z-axis vector of plane and the base coordinate 

z-axis of robotic arm's ( zv = (0, 0, 1)). A smaller value from the 

dot product indicates a higher priority level. 

Fig. 3 demonstrates the results obtained from the algorithm 
applied to five different objects. For the ball, bottle, and paper 
cup, the calculated suitable area diameters were smaller than the 
threshold of 3.4 cm, indicating them as unsuitable for vacuum 
gripper. However, the calculations for the box and wooden 
block reveal suitable regions for vacuum gripper. 

B. Parallel Gripper Grasp Pose Estimation 

In this work, we implemented PointNet++ [9], a successor to 
PointNet, which enhances the ability to extract local features of 
point cloud by involving the addition of two steps: sampling and 

grouping. The model learns hierarchical features by repeatedly 
performing sampling and grouping, ultimately achieving higher 
accuracy. The proposed network architecture is illustrated in Fig. 
4. The model takes object point clouds as input and extracts 
local features through repeated sampling and grouping. Finally, 
it connects to a multilayer perceptron (MLP) with a modified 
last layer of four neurons, tailored to predict the four quaternion 
values. As the model has been modified from classification to 
numerical regression, the softmax function should be substituted 
with the identity function. 

 

Fig. 3.   Vacuum grasp pose estimation results 

 

Fig. 4.   Parallel gripper grasp pose prediction network architecture 

During the dataset collecting process, objects were 

individually placed on the area as shown in Fig. 5(a). The 

obtained point cloud was published as PointCloud2 to ROS 

topic and displayed in RViz. In the virtual environment, the 

end-effector was dragged to annotate a desired grasp pose 

corresponding to the object as shown in Fig. 5(b). A unit 

quaternion representing the tool center point (TCP) coordinate 

in relation to the base coordinate was obtained by calling ROS 

TF package. Object point cloud was further sampled to a 

number of 1024 points and then normalized to the interval of 

[-1, 1]. 

Since data collecting process is time-consuming, data 

augmentation was employed to reduce time cost. Assuming the 
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original point cloud is captured when the object is placed at the 

0° as shown in Fig. 6. Both point cloud and corresponding 

grasp pose are multiplied by a rotation around z-axis of base 

coordinate by an angle θ, to simulate the object, placed at 

different positions. The horizontal field of view of depth 

camera is approximately 70°, thus the object is rotated by an 

angle of θ degrees around the z-axis within the range of ±35° 

degrees to generate new data. 

  

(a) Environment setup  (b) Grasp pose annotation 

Fig. 5.   Dataset collecting process 

 

Fig. 6.   Data augmentation 

A quaternion is represented as 0 1 2 3q q i q j q k+ + + , where 

0q , 1q , 2q  and 3q  are real number, and i , j  and k are the 

basis elements. Suppose a unit quaternion q  ( 1q = ), q  and 

q−  represent the same orientation in 3-D space. To tackle this 

property, Wang and Lin [6] randomly multiply the ground truth 

quaternions by -1, and use Euclidean distance, as defined in (1), 

as loss function to train on PointNet model. 

2GT predLoss q q= −                             (1) 

However, a problem may arise by doing so. Given two 

similar input data and their grasp poses 
1

q  and 
2

q . Suppose 
2

q   

was randomly multiplied by -1, resulting in a new value 

denoted as 
2

q  . The predicted values 
1

p  and 
2

p  are estimated 

during the training process. If we calculate Euclidean error 

between the ground truths and the predicted values, we can find 

that one of the errors is small while the other one is relatively 

large. In this scenario, the model is not able to minimize the 

overall error. While geodesic distance measures the angle of 

difference between two unit quaternions, as defined in (2). 

1
2 cos ( )

GT predq q
−

=                               (2) 

In this case, two errors are found to be nearly the same, the 

model is now able to minimize overall error. 

Finally, 30 samples were collected. Data augmentation was 

performed with θ = 5°, resulting in a total of 450 samples. To 

facilitate a comparison between the proposed method and 

Q-PointNet, the ground truth quaternions were randomly 

multiplied by -1, creating dataset A, which was then randomly 

divided into a training set of 360 samples and a testing set 

containing 90 samples. The training parameters employed were 

as follows: Adam optimizer was used with learning rate of 

0.001, momentum of 0.9, weight decay of 0.0001, batch size of 

45, and total of 500 epochs. The training environment was set 

up on Ubuntu 20.02, and a GeForce RTX 3090 GPU was 

utilized to accelerate the training process. 

Fig. 7 shows the training loss curve of dataset A. It is 

evident from Fig. 7(a) that both loss curves have converged by 

epoch 500. However, it is obvious that the model trained using 

Euclidean distance as the loss function converged with a 

relatively large error than the one using geodesic distance. Fig. 

7(b) shows the training loss of models on PointNet++. The 

results demonstrate that both models significantly reduce the 

errors in comparison to Fig. 7(a). Moreover, Fig. 7(b) reveals 

that the error of using Euclidean distance is still slightly larger 

than the one using geodesic distance. 

  

(a) Loss function comparison of 

PointNet 
(b) Loss function comparison of 

PointNet++ 

Fig. 7.   Training loss curves of dataset A 

This work proposes an alternative approach for 

manipulating datasets. Consider that a quaternion q  and q−  

represent the same orientation, it is possible to train the model 

using only one representation of quaternions. This can be 

achieved by ensuring that the real part of the quaternion 

remains non-negative for all ground truth samples, as defined in 

(3) 

,  if Re{ } 0

,  if Re{ } 0

n n

n

n n

q q
q

q q


=

− 





                        (3) 

The processed dataset is referred to as dataset B. Fig. 8 

shows the training results of dataset B that four trained models 

have converged by epoch 500 with small error. Additionally, in 

Fig. 8(b), models trained on PointNet++ reach slightly smaller 

errors compared to those trained on PointNet, as shown in Fig. 

8(a).  

Finally, all eight trained models were tested on the testing 

set as shown in Table 1. The results show that by using 

Q-PointNet’s proposed method (dataset A trained on PointNet 
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with Euclidean distance), the model achieves a test error of 

29.6°. On the other hand, dataset B trained on PointNet++ with 

both Euclidean and geodesic distances achieve test errors of 

5.8° which are significantly smaller. 

  

(a) Loss function comparison of 

PointNet 
(b) Loss function comparison of 

PointNet++ 

Fig. 8. Training loss curves of dataset B 

TABLE I 

TEST ERRORS OF EIGHT MODELS 

 Dataset A Dataset B 

Model  

Loss  

function 

PointNet PointNet++ PointNet PointNet++ 

Euclidean 29.6° 13.9° 5.9° 5.8° 

Geodesic 13.2° 6.9° 7.4° 5.8° 

III. FORCE COMPENSATION SYSTEM 

The proposed force compensation system consists of an 

actuator, MG-995 servo motor, 3D-printed gripper parts 

created by papabravo [10] and eight FSR 400s manufactured by 

Interlink Electronics. Force calibration was performed on all 

eight sensors to convert the output voltage to force values. 

  

 

(a) Left side of gripper (b) Right side of gripper 

(c) Configuration of 

FSRs projected onto 

the right-side plane 

Fig. 9.   Arrangement of FSRs on parallel gripper 

Four FSRs were installed on each side of gripper as shown 

in Fig. 9(a) and Fig. 9(b). It appears an array-like configuration 

as shown in Fig. 9(c) by projecting left-side of FSRs onto the 

right-side. Two silicone films (2 mm thick) are placed on each 

side of contact surface to provide sufficient friction and ensure 

the forces are evenly distributed. 

Our proposed method is inspired by the grasping 

mechanism of human hands. When humans attempt to grasp an 

object, an initial contact grasping force is determined by factor 

such as the volume of object. As the hands make contact with 

the object, tactile receptors beneath the skin are used to 

determine whether the current force is sufficient to lift the 

object without it slipping off. Once the receptors detect the 

onset of slippage, hands are prompted to increase the gripping 

force, thereby ensuring a more stable grasping state. 

 

Fig. 10.   Force compensation system flowchart 

Fig. 10 elaborates on the flowchart of force compensation. 

In the first stage, the system is initiated and the gripper starts 

closing until one of the sensors detects a force larger than or 

equal to 0.4 N, which is determined through fine-tuning for five 

different objects used in experiments, indicating that the object 

has been held. In the second stage, eight sensors are employed 

to detect whether slippage occurs. The method for detecting the 

slippage proposed by Cheng et al. [11] is implemented. This 

involves calculating the correlation coefficient of the sensor 

array as defined in (4). 

( )( )

( )( ) ( )( )

T

T T

X X Y Y
correlation

X X X X Y Y Y Y

− −
=

− − − −

    (4) 

where X and Y represent 1-D arrays of force obtained at the 

end of the first stage and for each sample of sensor readings 

during the second stage, respectively. Next, Fast Fourier 

transform (FFT) is applied, and the amplitude of first frequency 

component is referred to as the determinant of slippage. If the 

amplitude exceeds a predefined threshold of 0.005, where the 

number is also determined through fine-tuning, it is suggested 

that a slip has occurred or the contact area is not stable. 

In the third stage, a force compensation is defined as a 5° 

rotation increment of the motor. After the force is compensated, 

the system will return to the second stage to detect any further 

slippages. Note that during the second stage, while the object is 

being lifted, there could potentially be a false positive slip 

signal. This might occur due to the change in sensor readings at 

the contact area, caused by the absence of force being applied 

from the table. The solution to this is to ignore the first three 

determinants of slippage once the lift-up command is sent. 

Additionally, during the third stage, a false positive could 

happen while the gripper is closing (for 0.2 seconds). There is a 

time delay of approximately 1 second between when the 

compensation command is sent and when it is executed. 

Therefore, determinants of slippage within 1.5 seconds after the 

compensation command is sent will be ignored in this study. 

Fig. 11 demonstrates the results of force compensation 

experiments conducted on the object of bottle. At time 
0

t , the 

bottle is lifted, and the following three amplitudes are ignored. 
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At time 
1

t , the first slip signal is detected, as shown in Fig. 

11(a). The period during 
1 2

~t t  represents the first force 

compensation. Due to the instability of the contact area, two 

further slip signals are detected, and compensations take place 

during 
3 4

~t t  and 
5 6

~t t . Fig. 11(c) illustrates that the sensor 

readings increase during the force compensation stages. 

 

(a) Slip signal 

 

(b) Correlation coefficient 

 

(c) Sensor value 

Fig. 11.  Force compensation experiment (bottle) 

IV. EXPERIMENTS OF OBJECT PICKUP 

In this section, grasp pose estimation algorithms and force 

compensation system are integrated and tested on the Lite 6. 

Fig. 12 demonstrates the grasping experiment of the ball in 

which Figs. 12(a), 12(b), and 12(c) show the ball mask, object 

point cloud, and the calculated suitable area for vacuum gripper, 

respectively. And Fig. 12(d) displays the processes to pick up 

the ball that is individually placed at random position inside the 

white rectangle area and move it to the yellow circle area. All 

objects used in this study follow the same process. One success 

is defined as the robot completing the entire operation without 

objects slipping off or being damaged. 

The estimated area has a diameter of 2.54 cm, suggesting 

using parallel gripper. Hence, a grasp pose was predicted by 

PointNet++. Fig. 12(d) also demonstrates the five states of the 

robotic arm at initial, waypoint, grasping, lift-up and final 

drop-down positions, respectively. It can be seen in Fig. 12(f) 

that the forces remain stable throughout the entire operation. 

Therefore, no slip signals are detected, as shown in Fig. 12(e). 

  
 

(a) Mask (b) Point cloud (c) Suitable area 

 

(d) States of the robotic arm 

 

(e) Slip signal 

 

(f) sensor value 

Fig. 12.  Robot grasping experiment (ball) 

Fig. 13 demonstrates the grasping experiment of a rectangle 

box, in which Figs. 13(a), 13(b), and 13(c) show the box mask, 

object point cloud, and the calculated suitable area for vacuum 

gripper, respectively. As shown in Fig. 13(c), the estimated area 

of a diameter is 8.68 cm, suitable for the vacuum gripper 

according to the evaluation in previous section. The states of 

the robotic arm during the operation are shown in Fig. 13(d). 

Consequently, a grasp pose was generated by conducting PCA. 

A vacuum pressure sensor, CFSensor XGZP6847, is integrated 

onto the vacuum gripper to measure the pressure. As illustrated 

in Fig. 13(e), when the pressure exceeds -60 kPa as the robotic 

arm approaching from the way point to the grasping position, it 

indicates that the gripper has contacted the object. Therefore, 

the robot will halt its approach and proceed to lift the object. In 

the experiments, each object was executed on 20 times. The 

system achieved a success rate of 92% over 100 experiments. 

 



    International Journal of iRobotics         

Vol. 6, No. 4, 2023 

13 

  
 

(a) Mask (b) Point cloud (c) Suitable area 

 

(d) States of the robotic arm 

 

(e) Pressure value 

Fig. 13.  Robot grasping experiment (box) 

V.    CONCLUSIONS 

In this work, we have successfully developed an object 
pick-and-place system for a six-DOF robotic arm that integrates 
algorithms for object detection, grasp pose estimation, and 
gripping force compensation. By implementing geodesic 
distance as a loss function on PointNet and PointNet++ with 
some dataset, we are able to converge the model with smaller 
errors of 13.2° and 6.9°, compared to those using Euclidean 
distance. Furthermore, we propose an approach for 
manipulating datasets using quaternions to ensure a 
non-negative real part. This method achieved convergence for 
both PointNet and PointNet++ with minimal errors of 5.8°, 
regardless of the employed loss function. Additionally, by 
implementing slip detection and the proposed force 
compensation mechanism, the system demonstrates the 
capability to detect slippages or unstable states and to 
compensate for gripping force. Lastly, we present the results of 
grasping experiments on various objects, showing that the 
system successfully picks up objects without dropping or 
damage, achieving a success rate of 92% in 100 experiments. 
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