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 Abstract—Previously, drones have relied on special markers 
like H patterns, QR codes, or AprilTags for visual guidance and 
positioning. While effective for quick positioning, larger marker 
areas were frequently required at higher altitudes to ensure 
precise positioning. However, carrying these large markers, 
especially in emergencies like mountain rescue operations, was 
impractical for victims. To address this, this study suggests using 
a flashing light as an alternative solution. Flashing light guidance 
allows drones to assist rescue personnel in locating and descending 
near victims to provide clearer environmental information, and 
land to offer essential supplies when needed. This approach is 
more convenient than conventional markers and demonstrates 
practicality during emergencies. 

 Index Terms—Drone, Flashing Light Detection, Autonomous 
Landing, Fast Fourier Transform, Human Machine Interaction, 
Object Detection. 

I. INTRODUCTION 
ESEARCH on autonomous rescue missions using drones 
can be divided into three key stages: area search, target 

localization, and autonomous landing. In the area search stage, 
drones navigate autonomously to survey disaster-stricken areas 
quickly [1]. In the target localization stage, they use various 
sensors and imaging technologies to identify and locate stranded 
individuals, transmitting real-time information for prompt 
assistance. The landing stage involves calculating optimal 
landing points and showcasing autonomous landing capabilities, 
enabling drones to deliver emergency supplies near stranded 
individuals. Integrating these stages enhances the efficiency of 
rescue work efforts by enabling rapid and autonomous rescue 
operations. 

In the past, visual guidance and precise positioning tasks for 
drones have primarily relied on special artificial markers such as 
H-shaped patterns [2], QR codes [3], or AprilTags [4]. While 
these markers are effective, they necessitate a relatively large 
surface area when used at high altitudes, making them 
cumbersome and impractical, especially in emergency situations 
such as mountain rescues. It is unrealistic to expect victims to 
carry large markers in such scenarios. 

In search and rescue missions, many studies have utilized 
deep learning models to enable drones to detect people from 
high altitudes [5][6]. However, in practical applications, the 
wide field of view from a high altitude makes it difficult to 
confirm whether the detected person is the target of the search 
and rescue mission. Detection results may include ordinary 
civilians or rescue teams, necessitating the drone to lower its 
altitude for ground station personnel to confirm the target. This 
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approach not only wastes drone power but may also delay 
critical rescue time. 

Chen et al. [7] demonstrated that green flashing lights can 
effectively enhance fire escape efficiency in cinemas. For 
climbers, it is common to carry a mobile phone with a flashing 
light or a bicycle flashing light. Therefore, this study proposes 
the use of a flashing flashlight as an alternative solution, utilizing 
the blinking light to guide the drone's visual positioning. 
Compared to traditional markers, a flashing flashlight offers 
greater adaptability and flexibility. Using a flashlight as a 
marker requires no additional equipment just a flashlight. 
Moreover, the flashing light is a distinctive feature that is easily 
detected and recognized in natural environments. Rescued 
individuals can guide the drone through the flashing light, 
facilitating human-machine interaction and assisting the drone 
in accurately identifying those in need of rescue  

This study integrates technologies from various fields to 
establish a drone system specifically designed for search and 
rescue operations. Through effective human-machine 
collaboration, this system enhances the efficiency of search and 
rescue missions, leading to more successful outcomes. Unlike 
methods primarily evaluated in simulated environments, we 
focus on real-world validation through onsite experiments. Our 
innovative approach replaces traditional markers with flashing 
lights for target localization, allowing more flexible and efficient 
search and rescue missions. This expansion of drone 
applications offers a simpler and more practical alternative, 
ensuring successful rescue operations across various scenarios. 
The study aims to enhance drone efficiency and flexibility in 
disaster missions by integrating technologies and introducing 
flashing lights.  

II.  RELATED WORK 

A. Flashing light detection 
Previous research on light detection [8][9] for recognizing 

traffic lights in autonomous vehicles focused on color spaces and 
circular shapes to extract signal candidates. Commonly, traffic 
light signals have circular and arrow-shaped lights, making the 
detection of circular objects effective. Yoneda et al. research [10] 
proposed an alternative algorithm that identifies areas with high 
luminance and saturation, generating highlighted images. This 
method estimates the likelihood of illuminated objects, reducing 
false detections from surrounding illuminated objects. In the 
context of drones for mountain rescue scenarios, where 
flashlight styles vary, this approach aligns better with our 
requirements.  
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B. Autonomous landing system 
Traditional landing methods heavily rely on the Global 

Positioning System (GPS), but research [11] has emphasized 
limitations and risks associated with GPS, such as susceptibility 
to interference from buildings, terrain, electromagnetic 
interference, and adverse weather conditions. 

This can lead to positioning errors or signal loss. Given the 
current meter-level accuracy of GPS signals, developing a visual 
guidance landing mechanism offers a more resilient and precise 
alternative. 

Vision-based autonomous landing for drones provides real-
time awareness of changes in the surrounding environment, 
enhancing landing safety by enabling swift responses to 
unexpected situations. Xin et al. research [12] synthesized past 
studies on autonomous drones, categorizing landing sites into 
static, dynamic, and complex scenes. Static scenes are 
subdivided into artificial markers and natural landmarks, while 
dynamic scenes encompass vehicle-mounted and ship-mounted 
platforms. This study will focus on relevant technologies and 
applications in static scenes. 

The Extended Kalman Filter (EKF) serves as a widely 
adopted approach in the control system for autonomous drone 
landing, offering the advantage of integrating sensor information 
for estimating target position and motion state [13]. This 
estimation enables real-time motion control, allowing the drone 
to achieve the landing mission. Another proposed method is 
staged execution [14], which divides the landing mission into 
sequential stages, enhancing resilience by organizing tasks 
based on distance to the target and conducting correction stages 
to narrow the error range. This approach exhibits stronger 
resilience compared to previous methods. 

III. FLASHING LIGHT DETECTION 
This phase of the study lies in the detection of flashing lights 

with fixed frequency. Drones adhere to pre-designed flight paths, 
momentarily halting in the air after traversing a specific distance 
to capture images over a designated time frame. Following this, 
we isolate regions from each image exhibiting elevated 
luminance and notable changes, designating them as potential 
candidate areas for flashing lights. Further analysis is performed 
on all candidate areas by segmenting the images into multiple 
sections and concurrently calculating the brightness variations 
within each area. These variations are then transformed into the 
frequency domain using the Fourier transform, and the 
consistency of frequencies within the same area segments is 
compared. 

Upon confirmation of the flashing light, CSRT tracking [15] 
technology is utilized to match the surrounding area of the 
flashing light, enabling subsequent flashing light tracking. This 
method amalgamates multiple aspects such as brightness, 
variation, and frequency analysis to augment the accuracy and 
reliability of detecting flashing lights. 

A. Detection 
For identifying flashing light sources with a fixed frequency. 

the process is primarily divided into three stages: cumulative 
image, frequency matching, and final operator confirmation. 
Compared to other area, the flashing light source area exhibits 
higher brightness variation. Incorporating attention to the 
overall change magnitude aids in distinguishing whether the 

alteration is continuous and stable. 

The flowchart depicting the cumulative image stage is 
demonstrated in Fig. 1. 

 
Fig. 1.  Flowchart of the cumulative image stage 

When the image is received, the luminance channel is 
extracted, and the luminance values are updated to eliminate 
background noise. The luminance value is normalized using the 
following equation: 

𝐿𝐿𝑚𝑚(𝑢𝑢, 𝑣𝑣) = 𝑎𝑎𝑙𝑙𝐿𝐿� + 𝜎𝜎𝐿𝐿
𝜎𝜎
�𝐿𝐿(𝑢𝑢, 𝑣𝑣) − 𝐿𝐿��     (1) 

where 𝐿𝐿(𝑢𝑢, 𝑣𝑣)  and 𝐿𝐿𝑚𝑚(𝑢𝑢,𝑣𝑣)  represent the original 
luminance from the HSL image and the modified luminance 
value at pixel (𝑢𝑢, 𝑣𝑣) , respectively. 𝐿𝐿�  denotes the average 
luminance of the original luminance image 𝐿𝐿. 𝜎𝜎 is the standard 
deviation for 𝐿𝐿, and 𝜎𝜎𝐿𝐿 is the modified standard deviation for 
the updated image 𝐿𝐿𝑚𝑚, 𝑎𝑎𝑙𝑙 is a constant parameter that increases 
the average luminance. 

The pixels with luminance lower than this value are reduced 
using the following equation: 

𝐿𝐿𝑈𝑈(𝑢𝑢, 𝑣𝑣) = 𝐿𝐿(𝑢𝑢, 𝑣𝑣) ∗ 1

�1+𝑒𝑒𝑒𝑒𝑒𝑒�−𝛽𝛽𝑙𝑙(𝐿𝐿(𝑢𝑢,𝑣𝑣)−𝛾𝛾𝑙𝑙)��
    (2) 

where 𝐿𝐿(𝑢𝑢, 𝑣𝑣)  and 𝐿𝐿𝑈𝑈(𝑢𝑢, 𝑣𝑣)  represent the original 
luminance from the HSL image and the updated luminance 
value at pixel (𝑢𝑢, 𝑣𝑣) , respectively. 𝛽𝛽𝑙𝑙  and 𝛾𝛾𝑙𝑙  are constant 
parameters of the sigmoid function to reduce the luminance 
value. 

Next, we will perform block-based mean replacement 
operations on 𝐿𝐿𝑚𝑚(𝑢𝑢, 𝑣𝑣) and 𝐿𝐿𝑈𝑈(𝑢𝑢, 𝑣𝑣) respectively. Due to the 
influence of wind on the hovering drone, slight movements may 
occur in the image. In such scenarios, averaging operations can 
effectively mitigate the impact of camera shaking and the loss 
of image stabilization. The calculation is as follows: 

𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛(𝑢𝑢, 𝑣𝑣) = 1
𝑘𝑘2
∑ ∑ 𝐼𝐼(𝑢𝑢 + 𝑖𝑖, 𝑣𝑣 + 𝑗𝑗)𝑘𝑘

𝑗𝑗=1
𝑘𝑘
𝑖𝑖=1     (3)  

where 𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛(𝑢𝑢, 𝑣𝑣)  represents the pixel value at position 
(𝑢𝑢,𝑣𝑣) in the replaced image, and 𝐼𝐼(𝑢𝑢 + 𝑖𝑖,𝑣𝑣 + 𝑗𝑗) represents the 
pixel value at position (𝑢𝑢 + 𝑖𝑖, 𝑣𝑣 + 𝑗𝑗) in the original image. 

Subtract the previous frame from the current frame, 
calculate the absolute value, and record these changes. Once a 
sufficient number of images have been accumulated (set to five 
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seconds in this study), the system will proceed to the frequency 
matching stage to verify if the frequency is consistent and 
continuous. The flowchart depicting the frequency comparison 
stage is demonstrated in Fig. 2. 

 
Fig. 2.  Flowchart of the frequency comparison stage 

Extract information from the previously saved changes and 
brightness variation. Eq. (4) calculates the sum of all changes. 
Next, scale the original pixel values to the range of 0 to 255 
using linear mapping. Identify the regions with the highest 
change and the highest brightness variation. Then, determine 
the intersection of these two regions. 

𝐼𝐼𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑢𝑢, 𝑣𝑣) = ∑ 𝐼𝐼𝑖𝑖(𝑢𝑢, 𝑣𝑣)𝑛𝑛
𝑖𝑖=1       (4) 

The Morphology-Closing method is applied to bridge-
disconnected but closely located blocks while removing noise. 
Subsequently, all candidate regions undergo further analysis by 
segmenting the image into sections and simultaneously 
computing the brightness variations within each region. These 
change data are then transformed into the frequency domain 
using Fourier transformation. Matching is subsequently 
conducted to assess the consistency of frequencies within the 
same regions.  

 
Fig. 3. Triangle Wave and Its Peaks 

In the frequency matching stage, the signal variations 
collected are divided into equal parts, with the video data 
segmented into 5 equal intervals of 1 second each. The flashing 
light signals typically exhibit a waveform resembling a 
triangular wave, characterized by distinct rising and falling 
edges. Initially, peak detection is performed on the first second 
of the signal to determine its period and calculate the 
fundamental frequency. This frequency serves as the baseline 
for subsequent signal analysis. For triangular waveforms, a 
common method to estimate the period is by detecting the 
waveform’s peaks, which represent the local maximum points. 
These peaks are then used to calculate the period and the 
fundamental frequency, as shown in Fig. 3. 

Assume a flashing light signal 𝑥𝑥 , where 𝑥𝑥 = {𝑥𝑥[𝑛𝑛] | 𝑛𝑛 =
0, 1, 2, … ,𝑁𝑁 − 1} , with 𝑁𝑁  representing the total number of 
signal samples. To identify the signal’s peaks, we locate the 
peak points based on changes in the slope. The set of peak 
indices 𝑃𝑃 is defined by the following condition: 

𝑃𝑃 = {𝑛𝑛 | 𝑥𝑥[𝑛𝑛] > 𝑥𝑥[𝑛𝑛 − 1]                                                    
                      𝑎𝑎𝑎𝑎𝑎𝑎 𝑥𝑥[𝑛𝑛] > 𝑥𝑥[𝑛𝑛 + 1],𝑛𝑛 = 1, 2, … ,𝑁𝑁 − 2}     (5) 

Using the peak indices 𝑃𝑃 , the time intervals ∆𝑡𝑡  between 
consecutive peaks can be calculated as: 

∆𝑡𝑡 = 𝑝𝑝[𝑖𝑖+1]−𝑝𝑝[𝑖𝑖]
𝑓𝑓𝑠𝑠

, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖 = 0, 1, … , |𝑃𝑃| − 2   (6) 

where 𝑓𝑓𝑠𝑠 is the sampling rate. Due to the periodic nature of 
the triangular wave, the period 𝑇𝑇 is derived from the mean of 
the time intervals between adjacent peaks: 

𝑇𝑇 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(∆𝑡𝑡)                            (7) 

Finally, the frequency 𝑓𝑓 is calculated as the inverse of the 
period: 

𝑓𝑓 =  1
𝑇𝑇
                                      (8) 

After determining the fundamental frequency, a Fast Fourier 
Transform (FFT) is applied to the remaining four segments of 
the signal. The FFT results are used to filter out frequency 
components with amplitudes exceeding a predefined threshold, 
and the frequency closest to the fundamental frequency is 
selected from these components. This method allows for precise 
evaluation of signal consistency across different segments and 
ensures that the FFT results align with expectations from the 
initial time-domain analysis. The FFT process is as follows: 
given a signal 𝑥𝑥[𝑛𝑛] , where 𝑛𝑛 = 0, 1, 2, … ,𝑁𝑁 − 1 , the FFT 
transforms the signal from the time domain to the frequency 
domain: 

𝑌𝑌[𝑘𝑘] = ∑ 𝑥𝑥[𝑛𝑛]𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋/𝑁𝑁𝑁𝑁−1
𝑛𝑛=0                     (9) 

From the FFT results, the frequency components with 
amplitudes exceeding a threshold (e.g., 20% of the maximum 
amplitude) are identified: 

𝑃𝑃 = {𝑘𝑘 | |𝑌𝑌[𝑘𝑘]| > 0.2 ∗ 𝑚𝑚𝑚𝑚𝑚𝑚(|𝑌𝑌|)}              (10) 

Among the identified peak frequencies, the one closest to the 
expected frequency 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  is found as: 

𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑚𝑚𝑚𝑚𝑚𝑚��𝑓𝑓[𝑃𝑃] − 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒��              (11) 
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To account for the wide range of frequencies that may occur in 
practice, a dynamic threshold based on the expected frequency 
is set. Given the identified peak 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  and the expected 
frequency 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , the acceptance condition for this peak is: 

�𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒� < 𝑚𝑚𝑚𝑚𝑚𝑚�ζ1 ∗ 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 , ζ2 �     (12) 

Where ζ1is the acceptable error ratio, and ζ2 is the maximum 
allowable frequency error. In this study, ζ1 is set to 0.3, and ζ2 
is set to 1.5 Hz. This dynamically adjusted threshold ensures 
high accuracy in the analysis and guarantees the reliability of 
the results. 

In the drone’s actual flight monitoring process, occasional 
frame drops during video transmission may compromise the 
integrity of the signal, severely affecting the drone’s ability to 
recognize flashing light sources at a fixed frequency. To address 
this issue, a sliding window mechanism is introduced in this 
study. By adding an additional second of recording time to the 
drone’s image collection system, a total of 30 frames are 
collected. If the frequency matching cannot be completed 
within the first five seconds of the candidate region, the entire 
sequence shifts backward by one frame, continuing this process 
until the additional second of footage is exhausted. This 
improvement significantly reduces the risk of missing critical 
targets and enhances the overall reliability of target detection, 
as illustrated in Fig. 4. This optimization method ensures that 
more frames are captured during the image collection process. 
Even if frame drops occur, the sliding window mechanism 
maintains the drone’s ability to effectively identify fixed-
frequency flashing light sources. In this way, the drone 
monitoring system can maintain stable target detection over a 
wider range, improving the reliability and accuracy of the entire 
monitoring process. 

  
Fig. 4.  Sliding windows mechanism. 

Upon confirmation that the frequencies segmented from the 
same candidate block are consistent, the system will annotate 
and mark that region, alerting the operator for secondary 
confirmation. Upon verification of the region's accuracy by the 
operator, a CSRT tracker will be deployed in place for 
continued flashing light tracking. 

The detailed visualization of the image processing process 
is depicted in Fig. 5. (a) shows the search for the region with 
the highest amount of change, (b) identifies the region with the 
highest amount of change in brightness, and (c) find the 
intersection regions from (a) and (b). In the figure, these 
intersecting regions are represented by several bright spots, 
such as a series of bright points in the upper-left corner, a bright 
point in the center, and other scattered bright points near the 
edges. Finally, (d) illustrates the result after applying 
Morphology-Closing, FFT, and frequency matching. The 
system confirms that the frequency in the central bright spot is 
consistent and returns this region, which is highlighted with a 
green box. 

 
Fig. 5.  Image processing results in detecting flashing light.  

(a) The region with the highest amount of change.  
(b) The region with the highest amount of change in brightness.  

(c) Find the intersection from (a) and (b).  
(d) After frequency matching, the system returns the detected region. 

B. Tracking 
CSRT (Channel and Spatial Reliability Tracker) is an 

object-tracking algorithm that improves performance by 
integrating information from both channel and spatial reliability. 
It utilizes target features across various channels and considers 
spatial correlation for enhanced tracking stability and precision. 

In a previous study by Brdjanin et al. [16], benchmark tests 
were conducted on the OTB-100 dataset, evaluating eight 
trackers available in the OpenCV library. The research used two 
evaluation methods, OPE and SRE, along with Precision and 
Success Plot, to assess the robustness of each algorithm. The 
results indicated that the CSRT tracker exhibited the most 
favorable overall performance in terms of accuracy and 
Intersection over Union (IoU) rate. 

Based on prior research, we have selected the CSRT tracker 
to achieve real-time flashing detection and tracking during the 
descending flight step of the drone. Its efficiency and stability 
enable swift adaptation to changes in the target's position in 
dynamic environments, ensuring continuous tracking. This 
real-time detection and tracking capability is pivotal for the 
drone landing operation, assisting us in precisely tracking the 
flashing light and accomplishing the mission. The benefit of the 
CSRT tracker excels in understanding target features and 
spatial relationships, adapting seamlessly to changes in lighting, 
wind speed, and target size for accurate and stable tracking. 

IV. VICTIM VERIFICATION 
The victim verification phase comprises three steps: 

flashing light confirmation, descending flight, and ground 
image capturing, represented by nodes in the Behavior Tree 
[17]. Initially, at high altitudes, the drone aligns and corrects its 
position using flashing light information from image feedback. 
The drone then descends, continuously monitoring the 
environment below through real-time imaging and sensing 
technologies, and adjusts its position continuously to ensure 
that the flashing light remains centered. Upon reaching a lower 
altitude, it enters the image collection step, rotating 
counterclockwise to capture clear low-altitude image data for 
the operator to confirm and decide whether to land. The 
corresponding Behavior Tree is demonstrated in Fig. 6. 

In the flashing light confirmation steps, the drone hovers at 
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a high altitude until it determines the flashing light coordinates 
in the image. If the flashing light is lost, the drone remains 
hovering to prevent loss of control. After obtaining the flashing 
light coordinates, the Behavior Tree checks if the current 
altitude exceeds the preset height 𝑘𝑘 meters. If it does, the drone 
enters the ground image. 

During the descending flight step, the system calculates the 
horizontal error 𝑑𝑑𝑥𝑥 and vertical error  𝑑𝑑𝑦𝑦 between the flashing 
light coordinates 𝑡𝑡  and the center point 𝑐𝑐  of the screen, as 
shown in Eq. (13): 

𝑑𝑑𝑥𝑥 = 𝑡𝑡𝑥𝑥 − 𝑐𝑐𝑥𝑥 ,𝑑𝑑𝑦𝑦 = 𝑡𝑡𝑦𝑦 − 𝑐𝑐𝑦𝑦      (13) 

Where 𝑡𝑡𝑥𝑥  and 𝑡𝑡𝑦𝑦  represent the horizontal and vertical 
positions of the flashing light in the screen coordinates, and 𝑐𝑐𝑥𝑥 
and 𝑐𝑐𝑦𝑦  represent the horizontal and vertical positions of the 
screen center point. 

 
Fig. 6.  A Behavior Tree for victim verification task. 

If either 𝑑𝑑𝑥𝑥  or 𝑑𝑑𝑦𝑦  exceeds a predefined threshold (set to 2 
meters in this study), Eq. (14) will be utilized to compute the 
drone's motion commands for alignment. If the distance is below 
the threshold, the drone will initiate a descent maneuver, setting 
∆𝑧𝑧 to -1, with a velocity of approximately 1 meter per second, 
ultimately accomplishing the entire autonomous landing task. 

∆x = −𝑑𝑑𝑥𝑥
|𝑑𝑑𝑥𝑥|

∗ 𝜃𝜃1,∆𝑦𝑦 = 𝑑𝑑𝑦𝑦
�𝑑𝑑𝑦𝑦�

∗ 𝜃𝜃2,∆z = 0     (14) 

∆x denotes the horizontal movement speed of the drone, ∆𝑦𝑦 
signifies the forward and backward movement speed of the 
drone, and ∆z  represents the descent speed. During the 
correction process, ∆z is set to 0 to indicate a pause in descent. 
𝜃𝜃1 and 𝜃𝜃2  are adjustable variables employed to regulate the 
speed, configured to 0.15 and 0.2, approximately 0.15 meters per 
second and 0.2 meters per second, respectively. 

Once the drone descends to a lower altitude (set at 4 meters 
above ground level in this study), it can commence capturing 
images of the surrounding area to evaluate the situation of the 
victim. The drone will rotate counterclockwise in place, 
gathering image data, and utilize YOLOv8 [18] for human 
identification. After identification is completed, the image data 
will be transmitted back for the operator to confirm the necessity 
for landing. 

V.  HUMAN-MACHINE INTERACTION INTERFACE 
Fig. 7. illustrates the ground station human-machine 

interaction interface during an actual flight in the experimental 
environment. The interface is divided into an upper and a lower 
part. The left side of the upper part displays the real-time live 
feed from the flight, while the middle section shows the image 
after target positioning, with a green box indicating the target 
area, a blue dot representing the center of the area, and a red 
box indicating the drone's center field of view. The mission 
objective is to align the blue dot within the red box area. The 
right side displays the current status information of the drone, 
including battery level, flight altitude, flight speed, GPS 
coordinates, and frames per second (fps). 

 
Fig. 7.  UAV HMI Panel 

The left side of the lower part contains functional buttons 
for sending control commands to the drone. These buttons 
include toggles for automatic and manual control, takeoff start, 
Return to Home (RTH), and emergency stop. In automatic 
control mode, pressing the start button will trigger the drone to 
take off and execute the mission; in an emergency, pressing the 
emergency stop button will cause the drone to halt its current 
action and hover in place. Afterward, the RTH button can be 
pressed to make the drone return home autonomously, or it can 
be switched to manual control for the operator to take over. 

VI. EXPERIMENTAL RESULTS 
This study presents SAR (Search and Rescue) applications 

utilizing an autonomous navigation control system that 
incorporates flashing light detection, implemented on a DJI 
Mavic 2 Zoom micro UAV. The control system is run by the 
ROS (Robot Operating System) on a notebook computer with 
AMD5900 CPU processor, RTX3070 video card, and 16GB 
memory. The data connection between the notebook computer 
and the DJI Mavic 2 Zoom is via its remote controller and a cell 
phone. 

A. Experiment Design 
 Verification in different scenarios: 

This study selected four different locations to conduct 
drone flashing light verification experiments to ensure the 
generalizability and representativeness of the experimental 
results. The experiments included six different scenarios, as 
shown in the Fig. 8. An ELOPS 300-lumen LED bicycle front 



Chen et. al. 
Vision-Guided Autonomous Drones for Search and Rescue (SAR): A Flashing Light Detection Approach 

6 

light was used as the light source in the experiments, and the 
drone's flight altitude was set at 20 meters. 

In each scenario, we recorded a 10-second video, 
totaling 300 frames. The first 5 seconds (150 frames) of footage 
were used to determine whether the flashing light source was 
detected in the next frame and to calculate the hit rate for that 
footage. All frames contained the flashing light source, so the 
hit rate was calculated as follows: 

Hit Rate = 𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓

   (7) 

 
Fig. 8.  Flashing light detection in different scenarios. 

Fig. 8. illustrates various scenarios tested to evaluate the 
effectiveness of flashing light detection in different 
environments. In Fig. 8 (a), the scenario took place on sand 
dunes beside a river, with the light source positioned on a fern-
covered path leading into the dunes. This setup primarily tested 
the detection effectiveness when the light source was obscured 
by fern plants. In Fig. 8 (b), within the same location as Fig. 8 
(a), the light source was positioned on the path, focusing on 
whether reflections from the river's surface affected the 
detection of the flashing light. Moving to Fig. 8(c), the scenario 
was set on a grassy area on the riverbank, with the light source 
positioned on the grass, testing the influence of river reflections 
on detection. In Fig. 8(d), still on the grassy riverbank, the light 
source's detection effectiveness was assessed without the 
interference of river reflections. Fig. 8(e) presented a scenario 
between two trees, with the light source positioned under them, 
testing detection effectiveness under the tree. Finally, Fig. 8(f) 
examined detection effectiveness under the shadow of a single 
tree, with the light source positioned beneath it. 

 Verification of different flashing light frequencies: 

In this experiment, our aim is to validate the 
applicability of the flashing light detection system to different 
frequencies of fixed flashing lights. To achieve this, we will use 
the iPhone 13 rear flashlight to generate flashing light sources 
with frequencies of 5, 10, 13, and 15 Hz, respectively, and place 

them on the ground. The drone will conduct tests at a flight 
altitude of 10 meters to simulate real-world scenarios. Through 
this design, we can comprehensively evaluate the system's 
detection performance for flashing light sources at different 
frequencies, thereby enhancing its reliability and practicality 
across various application scenarios. 

 Complete search and rescue experiment: 

We selected two areas near the campus for our 
experiments. The first experimental area is Daonan Riverside 
Park, located near the river. The second experimental area is 
situated in the mountainous region at the NCCU Research, 
Innovation, and Incubation Center. We thoroughly tested the 
search and rescue system proposed in this experiment, which 
includes the detection of flashing lights and the autonomous 
descent of the drone followed by a stationary counterclockwise 
rotation to search for and recognize individuals in the imagery. 

B. Experiment Results 
Since flashing lights are difficult to represent in still 

images, we have provided a video of our experimental results, 
available on YouTube at the following link: 
https://www.youtube.com/watch?v=XOFvYqqXqmk. 

 Verification of different scenarios: 

In our experimental video, the results of the 
"Verification of different scenarios" are shown from the 3rd 
second to the 38th second. Under the validation of our scenarios, 
there were no false positives observed. The performance in 
scenarios (a) ~ (d) was satisfactory, with hit rates exceeding 
80%. However, in scenarios (e) and (f), occasional gusts of 
wind causing tree branches to completely obstruct the light 
source disrupted the flashing signal, resulting in lower hit rates. 

TABLE I 

RESULTS OF FLASHING LIGHT DETECTION IN DIFFERENT 
SCENARIOS 

 Hit Rate  Hit Rate 

Scenario (a) 82.29 % Scenario (d) 85.14 % 
Scenario (b) 85.71 % Scenario (e) 40.83 % 
Scenario (c) 89.22 % Scenario (f) 46.43 % 

 
 Verification of different flashing light frequencies: 

In our experimental video, the results of the 
"Verification of different flashing light frequencies" are shown 
from the 39th second to the 1st minute and 4th second. Fig. 9. 
shows the scenarios of our experiments with different 
frequencies of flashing lights, including 5 Hz, 10 Hz, 13 Hz, 
and 15 Hz, while Fig. 10. displays the signals of the flashing 
lights at different frequencies and their waveforms after Fourier 
transformation. The experimental results indicate that flashing 
light signals with frequencies of 5 Hz, 10 Hz, and 13 Hz were 
successfully recognized. However, the flashing light signal with 
a frequency of 15 Hz was not successfully recognized. This is 
because the frame rate (fps) of the images collected by the drone 
is 30, and we performed signal analysis on a per-second basis. 
According to the sampling theorem, our maximum sampling 
frequency is 30/2, which is 15 Hz. Therefore, the actual 
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maximum frequency that can be sampled should be (30/2) - 1, 
which is 14 Hz, making the 15 Hz signal beyond the 
recognizable range. 

 

 
Fig. 9.  Different frequency verification scenarios. 

 
Fig. 10.  Flashing lights at different frequencies.  

(a) 5hz, (b) 10hz, (c) 13hz, (d) 15hz. 

 

 Complete search and rescue experiment: 

From Fig. 11., it can be observed that our flashing light 
detection system exhibits excellent applicability across various 
environments. The system functions effectively in settings such 
as wilderness or suburban areas, making it adaptable to 
different search and rescue scenarios. This holds significant 
importance in enhancing the efficiency and success rate of 
rescue operations. 

From Fig. 12., it is evident that the drone guided by 
flashing lights successfully descends autonomously to the 
preset appropriate altitude for capturing higher resolution 

images. Subsequently, through counterclockwise rotation, 
clearer image data is obtained. We have successfully utilized 
YOLOv8 to identify individuals in need of rescue. These image 
data are then transmitted back to the operator to assist in 
subsequent rescue operations. This outcome demonstrates the 
reliability of our system across different environments, 
providing substantial support and assistance for search and 
rescue missions. 

 
Fig. 11.  Flashing light in different environments.  

(a) Areas for the first experiment. (b) Areas for the second experiment. 

 
Fig. 12.  Victim detection in different environments. 

(a) Victim detection on first experiment. 
(b) Victim detection on second experiment. 

VII. CONCLUSION 
This study presents a human-machine collaboration system 

designed for Search and Rescue (SAR) applications utilizing 
drones. Our system utilizes flashing light sources instead of 
traditional markers, enabling drones to accurately descend to the 
vicinity of trapped individuals and collect clearer image data to 
provide rescue personnel with more comprehensive information, 
and land to deliver emergency supplies when necessary. Real-
world validations showcase the efficacy of our system across 
diverse scenarios. In addition to testing with the iPhone’s 
flashing light, we conducted experiments using an ELOPS 300-
lumen LED bicycle front light, further demonstrating the 
system's capability to detect and respond to various light sources. 
Moving forward, we aim to enhance the system’s robustness by 
extending its detection capabilities beyond fixed frequency 
patterns, allowing it to reliably identify other human-generated 
signals such as hand waves, moving tree branches, or even 
torches. 

To further enhance the robustness and applicability of the 
system, we plan to conduct comprehensive validations under 
various environmental conditions, including nighttime and 
foggy weather. We will also evaluate its performance with 
different types of light sources,  particularly in scenarios where 
the light source may be in motion. Additionally, further 
development of simulation methods will ensure a thorough and 
precise evaluation of our approach. 

In summary, while this study has made significant 
contributions to SAR applications using drones, addressing 
these areas of improvement will future refine and expand the 
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system’s capabilities. Future endeavors will also explore 
additional application domains, including logistics delivery or 
inspection tasks. 
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