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 Abstract—This paper proposes a novel hybrid navigation 
method, combining trackless and magnetically tracked navigation, 
for an omnidirectional AMR (OAMR), in order to achieve 
trackless navigation in the absence of no magnetic tape paths, and 
switch to tracked navigation when a magnetic tape path is 
detected. For the trackless navigation, a dynamic motion 
controller is designed by integrating a backstepping PI kinematic 
control method and a fuzzy wavelet neural network (FWNN) 
augmented by a broad learning system (BLS), or abbreviated as 
FWNN-BLS. In the dynamic controller, the FWNN-BLS is 
employed to online learn uncertain dynamic behavior of the 
OAMR and then serve as a compensator, thus resulting in better 
performance and lower tracking errors during navigation. This 
dynamic controller works with the built Gmapping SLAM and A* 
global path algorithm to accomplish trackless navigation. For 
tracked navigation, the kinematic model of the OAMR is modified 
into a differential drive mode by setting the equal speeds of both 
wheels at the same side, and a PID controller is used with the 
magnetic guide sensor to carry out tracked navigation.  The 
proposed hybrid navigation method is validated through 
simulations and experimental results, thus demonstrating its 
effectiveness and practicality. 

 Index Terms—Dynamic control, fuzzy wavelet neural network- 
broad learning system (FWNN-BLS), hybrid navigation, 
omnidirectional AMR. 

I. INTRODUCTION 
ARIOUS  navigation strategies and control laws in the field 
of mobile robots have already been proposed by many 

researchers over many past years [1], in order to carry out 
desired navigation tasks according to navigation goals or 
missions. Generally speaking, the navigation tasks of mobile 
robots can be done by three navigation strategies: tracked, 
trackless and hybrid. Tracked navigation relies on external 
sensors for guided path tracking to implement navigation and 
cooperate with some control strategy to implement a stable path 
tracking approach; this navigation is normally used for 
automatic guide vehicles (AGVs) in industry. Trackless 
navigation means to employ simultaneous localization and 
mapping (SLAM) methods [2] and global and local path 
planning for autonomous navigation, and motion control 
strategies to track planned trajectories during navigation. 
Trackless navigation can be done by either model-based 
navigation by using four modules of motion control, perception, 
SLAM and recognition for path planning, or reactive paradigm 
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[3], or using proper behaviors with respect to corresponding 
working environments [4]. Hybrid navigation strategy takes the 
advantages of tracked and trackless navigation according to 
physically operational requirements for AMRs. These three 
navigation strategies   heavily rely upon the motion controllers 
and kinematic or dynamic models of mobile robots under 
consideration. 

For trackless navigation, various algorithms have been 
proposed to plan desired navigation paths. In global path 
planning, algorithms such as A* [5] and RRT [6] were used for 
path planning. For local path planning, the dynamic window 
approach (DWA) [3] was often applied for obstacle avoidance. 
When executing path tracking, choosing the optimal control 
strategy is crucial. From PI control [7] to various modern 
intelligent control strategies, there have been a wide range of 
available methods. In terms of compensators, many intelligent 
control strategies, such as neural networks (NNs), fuzzy NNs 
and broad learning systems (BLSs) [8,9], can be used to 
optimally approximate the unknown functions or dynamics of 
the controller. The concept of BLSs can be proposed to expand 
the original two-layered neural network and optimize and 
improve parameter selection results under estimation by using 
more neurons [8,9], thus obtaining better control performance. 
In [10,11], FWNNs were utilized to achieve function or model 
approximations, or serve as compensator to improve control 
performance. However, there is still room for improvement in 
tracking error performance. This shortcoming motivates us to 
propose a novel model approximation method, dubbed as 
FWNN-BLS, by integrating fuzzy wavelet neural networks and 
broad learning systems, and investigate its application to serve 
as a compensator to compensate for the uncertainties caused by 
parameter variations of the OAMR. 

In addition to the trackless navigation control methods based 
on the existing SLAMs, there is another type of navigation 
control scheme that relies on physical tracks. This type of 
navigation often depends on sensors and trajectory tracking 
control strategies. There are various types of sensors, such as 
magnetic guide sensors (Fig. 1(b)) and infrared reflective sensor 
[12], each of which is suited to different kinds of tracks. Note 
that these sensors come with their own precision issues. This 
paper plans to use an adjustable precision magnetic guide sensor 
along with magnetic tracks. In order to ensure effective 
navigation and accurate trajectory tracking, many control 
strategies and kinematic models have been proposed for the 
AMRs. This paper will attempt to use a magnetic guide sensor 
and modify the original OAMR kinematic model into a 
differential drive configuration. Further, the modified motion 
model will be combined with a PID controller strategy to 
establish a novel control method. This method not only matches 
the characteristics of the used sensors, but also achieves the goal 
of improving tracking control performance. 
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Based on the studies in [8-12], this paper is targeted at 
proposing a hybrid navigation approach, which consists of 
trackless and tracked navigation. For trackless navigation, the  

      
(a)                                                          (b) 

 
(c)                                                          (d) 

Fig. 1.  The experimental OAMR. (a) Physical picture of the OAMR. (b) 
Picture of the used magnetic guide sensor. (c) Schematic diagram of the OAMR. 
(d) Robot pose definition in the world frame. 

adopted scheme will integrate a FWNN-BLS compensator and a 
dynamic backstepping controller incorporating a dynamic 
model of the AMR and a kinematic PI controller. This new form 
of control strategy is proposed to achieve stable trajectory.  In 
the part of tracked navigation, a new form of differential drive 
kinematics model together with a PID controller is investigated 
and applied in the OAMR. Through comparative simulations 
and experimental results, we will explore the advantages and 
merits of the control strategies for hybrid navigation. 

The rest of the paper is structured as in the following 
sections. Section II introduces some preliminaries of the 
proposed method, including Kinematic PI control, navigation, 
and details of the navigation strategy outlined in the paper. It 
also introduces the FWNN-BLS neural network, the kinematic 
and dynamic models used for the OAMR, and the auxiliary 
application strategies for object detection. In Section III, the 
novel hybrid navigation control strategies are proposed in the 
navigation process, including the dynamic controller by 
combining the FWNN-BLS compensation and PI kinematic 
control, and the PID control for the tracked navigation is also 
constructed by using the differential-drive model on the 
omnidirectional AMR. Section IV analyzes the proposed 
method through simulation results. Experimental results shown 
in Section V demonstrate the effectiveness and applicability of 
the proposed method. Section VI concludes this paper. 

II.  KINEMATIC CONTROL, DYNAMIC MODEL AND SOME 
PRELIMINARIES 

The purpose of this section is to introduce the entire system 
architecture and some preliminaries of hybrid navigation, 
including the kinematic and dynamic model, as well as how 
object detection assists navigation applications. Additionally, 
this section will also introduce the concept of FWNN-BLS 
which can be used as a compensator design. Subsequent section 

will combine this neural network with PI controllers to form a 
novel compensation framework. 

A. Kinematic PI Control 
The robot platform used in this paper is a mobile robot 

equipped with four Mecanum wheels, as shown in Fig. 1(a). 
Here, the forward kinematics of the OAMR can be defined as in 
(1), which allows the conversion of the velocity command 

( )=[ ( ) ( ) ( )]Tt x t y t tθ

 X  into the motor speed commands denoted 

as [ ]1 2 3 4= T
w w w wv v v vV . 
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and ( )=[ ( ) ( ) ( )]T
w wt x t y t tθX  represents the pose of the OAMR 

and l L+  is a half of the sum of the length and width of the 
AMR, as depicted in Fig. 1(c) . Based on the kinematic model of 
the AMR, a PI controller is applied to achieve kinematic 
trajectory tracking for the OAMR. First, the tracking error, as 
defined in (2), is determined by calculating the difference 
between the mobile robot's position and the desired trajectory 
governed by ( )=[ ( ) ( ) ( )]T

r r r rt x t y t tθX . 

[ ]( )= ( ) ( ) ( ) ( )- ( )T
e e e e rt x t y t t t tθ =X X X  (2) 

Next, by utilizing the tracking error from (2), the kinematic 
model and PI controller can be integrated, where Kp and KI are 
two symmetric and positive-definite matrices. This integration 
results in (3), enabling the robot to adjust its velocity in the 
world coordinate system through the PI controller. In Section III, 
this PI controller theory will be incorporated into the dynamic 
model to explore a more advanced and comprehensive control 
strategy. 

0

1 0
( ) ( ( )) ( ) ( ) ( )e e rt t t d tθ τ τ  = ⋅ − − +    ∫p IV J K X K X X  (3) 

B. Dynamic Model 
This subsection briefly recalls the dynamic model of the 

OAMR. The dynamic model allows for motion control through 
torque variations. Compared to the kinematic model, it 
considers more physical factors within the system, thereby 
providing better control for high-precision systems with faster 
motion speeds. Based on the dynamic model, its state equation 
is defined as in (4), which can be used to describe the entire 
system [13]. 

-1
2, ( ( ) )Rω θ= = − + +

1 2Y Y Y f J M τ   (4) 

where
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Fig. 2.  Structure of the proposed FWNN-BLS. 

 
Fig. 3.  Experimental results of the object detection using YOLOv5. 

Moreover, w w=[ ]Tx y θ1Y  represents the pose of OAMR 
in the world coordinate system. The vector f is a compensation 
control quantity that will be approximated using the 
FWNN-BLS system introduced later. Parameter Rω  represents 
the radius of the wheels. Matrix ( )θ+J  represents the 
transformation matrix of OAMR, and matrix M represents the 
specific matrix constructed based on the robot's mass. The 
vector τ  represents the torque output of the robot's motors. For 
details of the dynamic model, please refer to [13]. 

C. FWNN-BLS 
The subsection is aimed to describe the FWNN-BLS 

framework which combines fuzzy wavelet neural network 
(FWNN) and broad learning system (BLS). For detailed 
description of the BLS, the reader is referred to [8], where the 
BLS was proposed as a two-layer flat and feedforward neural 
network for which the first layer is with several mapped feature 
nodes, and the second layer is with many enhancement nodes, 
and all the outputs of the nodes in both layers are connected to 
the final output. Worthy of mention is that all the parameters of 
the BLS in [8] are found by using the well-known least-squares 
method.   Fig. 2 shows the proposed FWNN-BLS structure, 
where the original FWNN architecture integrates fuzzy logic 
with wavelet analysis techniques, thus improving better 
function approximation and unknown model dynamics 
approximation, and optimizing numerical prediction.  Note that  
hi1, i=1,..,m, denotes the fuzzy wavelet function defined in [11]. 
The fuzzy logic can help process nonlinear related data or more 
complex applications with noise to help optimize the entire 
system. The FWNN can be integrated with the BLS system to 
enhance overall numerical prediction performance. Using the 
FWNN network as the primary framework, it is logically 
reasonable to integrate the BLS system to online learn the 

unknown dynamic model of the AMR, and then serve as a 
relevant compensator, thus achieving better high- performance 
OAMR tracking control. 

D. Object Detection 
This subsection briefly introduces the object detection 

method for object or place recognition [14]. In addition to the 
precise localization system and tracking control strategy 
required during the navigation process, additional tools can also 
be used to assist us in identifying places. Furthermore, the 
image recognition strategy is the mainstream to let the OAMR 
recognize some surrounding landmarks, in order to fuse 
multi-sensor readings to obtain better robot localization 
accuracy. In this paper, YOLOv5 model [15] is used to perform 
object or landmark detection work. It is expected to achieve the 
effect of assisting navigation by matching with iconic scenery 
or landmarks in the environment, allowing for better 
determination of the current location of the objects and 
landmarks as shown in Fig. 3. Overall, the measured landmark 
information using YOLOv5 model can be fused with the 2D 
LiDAR readings and odometry of the OAMR, thereby 
obtaining better robot localization [16]. 

E. Differential Drive Model 
The purpose of this subsection is to introduce a new 

differential-drive kinematic model applied to the four-wheeled 
OAMR that achieves tracked navigation with the magnetic 
guide sensor. This model enables the robot itself to more 
conveniently control wheel movement. To do so, let us 
set 1w 3w 2w 4w and L Rv v v v v v= = = = in (1) where Lv  represents 
the speed of the two wheels on the left side of OAMR, and Rv  
represents the speed of the two wheels on the right side of 
OAMR. Thus, (1) turns out 
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where  
( ) / 2 g L Rv v v= +  (6) 

and  
1

2( ) ( )g R LL l v vω += −  (7) 

Note that the linear velocity, gv , is expressed as the average of 
the left and right wheel speeds and the angular velocity, gω , is 
produced by the difference between speeds of the right and left 
wheels. As can be seen in (5), the forward kinematic model of 
the OAMR with the four Mecanum wheels is reduced to its 
differential drive forward kinematic one. 

III. PROPOSED HYBRID NAVIGATION 
This section aims to present the hybrid navigation and its 

tracking control methods used in navigation. The first method 
is for tracked navigation, where the original OAMR kinematic 
model is modified into a two-wheeled differential mode 
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combined with a PID controller. This method not only  

 

Fig. 4. Simple hierarchical structure of the proposed hybrid navigation. 

enhances system stability but also provides a simpler method 
for motor control. The second method utilizes a novel control 
strategy that integrates a dynamic model of the OAMR, the 
backstepping PI control method, and FWNN-BLS for trackless 
navigation. This approach offers better performance compared 
to traditional FWNN compensators. 

A. Hybrid Navigation 
This subsection introduces the working principle of the 

hybrid navigation strategy. Fig. 4 depicts the simple 
hierarchical structure of the proposed hybrid navigation which 
is divided into two parts. The first part is to carry out trackless 
navigation on OAMR. Here, the trackless navigation first uses 
SLAM and applies the A* algorithm for global path planning 
from the starting point to the target point in the environment. 
After planning the global path, the paper considers the mobile 
robot performance in trajectory tracking. This section aims to 
propose a novel dynamic model control strategy to achieve path 
tracking and stable control. The second part of hybrid 
navigation uses tracked navigation and control, where the 
magnetic guide sensor will be used. This part uses the sensors 
and magnetic tape to track the path and implement an improved 
differential kinematic model based on the OAMR combined 
with a PID controller. Combining both strategies to achieve 
hybrid navigation goals will facilitate more efficient tracking 
control in navigation. In hybrid navigation, it is expected to first 
process trackless navigation to steer the AMR to reach a target 
point near a magnetic tape path, and then use the magnetic 
guide sensor in conjunction with a PID control and the 
magnetic tape path to proceed with tracked navigation. 

   In what follows the dynamic controller with the FWNN-BLS 
compensator is designed by the use of backstepping, where 
such dynamic motion controller is proposed to steer the OAMR 
to follow desired trajectories with appropriate actuation 
commands given by the PID path tracking controller in Section 
III.B or the kinematic controller in Section II.A. For such a 
backstepping controller design, an appropriate Lyapunov 
function is adopted to not only ensure the closed-loop stability 
of the AMR with the proposed dynamic controller, but also find 
the parameter adjustment rules of the FWNN-BLS 
compensator simultaneously. These parameter updating rules 
are then employed to renew all the parameters of the 
FWNN-BLS compensator, in order to guarantee the 
closed-loop stability of the overall control system. 

B. PID Control for Tracked Navigation 
In magnetically guided tracked navigation, the PID control 

strategy is employed to adjust the mobile robot's angular 
velocity, indirectly regulating the wheel speeds. This enables 

the robot to accurately track along the magnetic tape path. 
Below is a more comprehensive detail of the controller. First, 
define the PID controller as shown in (8), which can utilize the 
central deviation measured by the magnetic guide sensor to 
correct the angular velocity gω  of the OAMR through the 
controller, where KP, ,KI and KD are the three-term parameters of 
the controller. By combining (7) and (8), the rearranged result 
of (9) can be obtained. 

1
2( ) 0

( )( ) (t) e( ) +
t

g R L P I DL l
de tv v K e K d K

dt
ω τ τ+= − = + ∫  (8) 

where 

2(L ) , 2R L g L R gv v l v v vω− = + + =  (9) 

Finally, based on the set speed gv  and gω  adjusted by the PID 
controller, the speeds, Lv  and Rv , of the left and right wheels 
can be obtained by (10), respectively. 

( ) , ( )R g g L g gv v L l v v L lω ω= + + = − +  (10) 

Next, let us move to discuss the stability of the controller. In 
doing so, we first assume that the PID controller operates well. 
Thus, it is easy to find the closed-loop transfer function as in 
(12). Once the PID gains, KP, ,KI and KD, have been chosen to 
stabilize the system in (13), it easily shows that the tracking 
errors tend to zero as shown in (14). In doing so, one uses the 
Laplace transform to obtain from (8) 

1 1( ) ( + ) ( ), (s) ( )g p I D gs K K K s E s s
s s

ω θ ω= + =  (11) 

which leads to the closed-loop transfer function T(s) as   
2

2

( )( )
( ) (1+ )

D P I

r D P I

K s K s KsT s
s K s K s K

θ
θ

+ +
= =

+ +
 (12) 

where ( )r sθ means the desired robot heading. Next, let its 
characteristic equation be stabilized by  

2(1+ ) 0D P IK s K s K+ + =  (13) 

such that the tracking error approaches zero if ( )r sθ is a step 
command, i.e., 

( )= ( ) ( ) 0, as .re t t t tθ θ− → → ∞  (14) 

Worthy of mention is that, if KD is set by zero, then the PI 
controller can be used to accomplish path tracking if 
appropriate KP and ,KI gains are real and positive. 

C. Dynamic Control Using FWNN-BLS 
In trackless navigation based on the state equation (4) of the 

OAMR’s dynamic model from Section II, this subsection 
focuses on the proposed novel dynamic control strategy with 
the FWNN-BLS compensator. First, the tracking error vector 
(15) is defined, where =[  y  ]T

r r rx θrY  represents the position 
state vector of the tracking reference. 

,=1e 1 r 2e 1 rY Y -Y Y = Y -Y   (15) 
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The PI control used in the kinematic model can be imported 
into the dynamic model, and the time differential results of (15) 
can be rewritten into (16) and (17). 

= ( )dτ τ= − − ∫1e 1 r p 1e I 1eY Y -Y K Y K Y    (16) 

-1
2 = ( ( ) )Rω θ= − + −+

e 1 r rY Y -Y f J M τ Y     (17) 

The Lyapunov function 1V  is selected as in (18) in this part.  

1 1 1
1 1+ ( ) ( )
2 2

T T
e eV dτ τ τ= ∫ 1e I 1eY Y Y K Y  (18) 

By introducing the results of (15) and (16) into (18), the result 
of (19) can be obtained by differentiating 1V with respect to 
time, thus leading to find  
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Barbalat's lemma and LaSalle's theorem imply 
that 1 0  as  te → → ∞Y . Furthermore, since e ≡1Y 0  and  IK  
is symmetric and positive-definite, then we have   



1

0

( ( ) ) ( ) ( ) .e P e I e I e e Id d dτ τ τ τ τ τ −≡ = − + ⇒ ≡ ⇒ ≡ =∫ ∫ ∫1 1 1 1 1Y 0 K Y K Y K Y 0 Y K 0 0

 

Continuing from the backstepping control, the method 
introduces the concept of virtual control and defines 
backstepping error ξ  as shown by (20) 

( ) ( )e P e I e dφ τ τ= − = + + ∫2 1e 2 1 1ξ Y Y Y K Y K Y  (20) 

With the backstepping control, 1e
Y  can be rewritten as  

1 ( ( ) )P e I e dτ τ= = − + ∫

e 2e 1 1Y Y ξ K Y K Y  (21) 

Moreover, the time differentiation of backstepping error ξ  can 
be found as in (22) 

r P Ir − ++ -1
0 1e 1eξ = -f + ( J (θ)M )τ Y + K Y K Y

   (22) 

The following control law is proposed to stabilize the dynamic 
model of the backstepping error. 
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 Equation (24) shows the chosen Lyapunov function planned 
in this stability analysis.  

2 1 ( ) / 2V V= + Tξ ξ  (24) 

By taking the results of (20) and (21), the time derivative of (24) 
can be obtained. The use of LaSalle's theorem yields that 
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Furthermore, it turns out 
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Next, move to discuss the FWNN-BLS compensation. The 
FWNN-BLS will be first utilized to online approximate the 
unknown vector f. Based on an FWNN as the main architecture 
and then combined with the BLS, this FWNN-BLS is mainly 
applied to achieve a better approximation result for the 
unknown vector f. The following description will explain the 
concept and algorithm of its operation in more detail. The 
unknown vector f can be well approximated by the neural 
network using (26), where fiW  is the weight vector of the 
FWNN, eiW  is the weight vector of the BLS, (Κ )φ  is the 
regression vector of the enhancement nodes in the BLS, and 
finally iW  is the overall weight vector of the FWNN-BLS. 

ˆ ˆ ˆ ˆ( ) ( )  = ( )T T T
i ei fi iϕ= +f W Κ W x,c,ω W Φ x,c,ωφ  (26) 

Define the relevant parameters as follows, * ˆ= -ω ω ω , 
* ˆ= -φ φ φ , * ˆW = W -W . Then (26) is rewritten to form (27) 

* ˆ ˆ

ˆ ˆ ˆ

T

=  

   

* * * * T *
f f

T T T *
f

f W Φ (x,c ,ω )+ ε = (W +W) (Φ+Φ)+ ε

= f +W Φ+W Φ+W Φ+ ε
 (27) 

Based on the Taylor series expansion, Φ  can be calculated by 
(28) to obtain the result. 

ˆ ˆ
∂ ∂

= + + = + +
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Φ ΦΦ ω ω H Aω Bc H
ω ω

 



     (28) 

Continuing the result Φ  obtained from (28), which can be 
rewritten as (29), then ˆ Th = W H + ε  can be defined, and the 
compensation vector f can be rewritten as the result of (30). 

ˆ ˆ ˆ ˆ ˆT T T Tcω= + + + + +

 f f W A W B W Φ W H ε  (29) 

ˆ ˆ ˆ ˆT T Tcω= + + + +

 f f W A W B W Φ h  (30) 

With the FWNN-BLS, the approximate result of f, the vector τ  
in the dynamic model is proposed as in (31), where 

3K R h
∞

∈ > ,  and r is the wheel radius. 

3

ˆ ( )1 ( ) P P I e

I I

d
r K

τ τ
θ

 −
=  

 − 

∫r 1e 1

1e 1e

f + Y - K (ξ - K Y K Y ) -
τ MJ

K Y K ξ -Y - sgn(ξ)



 (31) 

With the approximate result of f, then ξ  turns out  
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d
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r K
r

K
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θ θ τ τ

θ θ

ϕ

+ −

+ −

= − + + −

 + − 

+ −

= − − −

∫

∫








 

1e 1 1e

r 1e 1

1e 1e

T
1e

ξ f + K (ξ - K Y K Y )) K Y Y

J M MJ f + Y - K (ξ - K Y K Y )

J M MJ -K Y K ξ -Y - sgn(ξ)

W Aω -W Bc W h - K ξ -Y - sgn(ξ)

 (32) 

The result of Tξ ξ  can be subsequently imported into the 
Lyapunov function to prove the stability of the system. 

( )
3

3 1

ˆˆ ˆ

ˆˆ ˆsgn
I

I

K

h K
∞

= − −

− ≤ −

− + −

Τ T T T T T T T T

T T T T T T T T
1e

T T
1e

ξ ξ ξ W Aω - ξ W Bc - ξ W j - ξ h ξ K ξ

-ξ Y ξ (ξ) ξ W Aω - ξ W Bc - ξ W j

ξ K ξ - ξ Y ξ



 



   (33) 

In order to prove the stability of the entire system, the 
Lyapunov function 3V  is selected as in (34),  

-1 -1 -1
3 2 w cV V tr K tr K tr Kω     =     

 

   

T T T+ W W + c c + ω ω  (34) 

where ,  and w cK K Kω  are the matrices with appropriate 
dimensions. 

3

-1 -1 -1

( ( ) ) ( ))

ˆ ˆ ˆ    

( ( ) ) ( ( ) ) ( ))

T
e I

w c

T
P I e e I

V d

K K K

d d

ω

τ τ τ

τ τ τ τ τ

= +

     
     

− +

∫

∫ ∫

T T
1e 1e 1 1e

T T T

T
1e 1e 1 1 1e

Y Y + Y K Y ξ ξ

+ tr -W W + tr -c c + tr -ω ω

= Y ξ - K Y K Y Y K Y +


 



 



   

( )3 1

1 1 -1
ω

ˆˆ ˆ )

ˆ ˆ ˆ ˆˆ ˆ

I

T T T T
w c

K h

tr tr tr

∞

− −

− − −

     − + − + −     

T T T T T T T T
1e

T T T T T

(-ξ W Aω - ξ W Bc - ξ W j ξ K ξ - ξ Y ξ

W K W W Φξ c K c c B Wξ ω K ω+ω A Wξ



 



 

 

   

 (35) 

In order to prove system stability, one sets  

1 ˆˆ( ) 0T
ctr c k − − = 




Tc + B Wξ , -1
w

ˆˆk ) 0tr  − = 




T Tω ( ω+ A Wξ , 

and 1 ˆ ˆ( ) 0T Ttr kω ϕ− − + =  


W W ξ  in 3V . Here, we have 

( )3 3 31
) 0 if  P IV K h K h

∞ ∞
≤ − − ≤ >

T T
1e 1e-Y K Y - ξ K ξ ξ  (36) 

The use of LaSalle invariance theorem implies 
that  0 and 0 as  .t→ → → ∞1eY ξ The system is eventually 
shown uniformly asymptotically stable. Based on the 
aforementioned stability proof process, it can lead to the 
underlying parameter adjustment rules for the FWNN-BLS. 

ˆ ˆ ˆˆ ˆˆ ,   ,   T T
c wc k k kωω= − = − = −



TB Wξ A Wξ W φξ  (37) 

IV. SIMULATIONS AND DISCUSSION 
This section will conduct three simulations to examine the 

effectiveness of the proposed tracked navigation, dynamic 
control method and trackless navigation method. During the 
three simulations, the weight of the OAMR is 4 kg, the body 
length and width are set by L=22 cm and l=20 cm, respectively, 
and the wheel radius is r=5 cm. Moreover, Matlab programs are 
written to study the effectiveness and performance of the three 
proposed methods. 

A. Tracked Navigation 
In this subsection, the first simulation is done to verify the 

efficacy of the proposed tracked navigation method, which 
involves a two-wheeled differential-drive model combined 
with PID controller in the tracked navigation of the OAMR.  
The PID parameters, as computed in (38), by matching the 
second-order characteristic equation, 2 22 0n ns sξω ω+ + = , 
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Fig. 5.  Tracked Navigation. (a) Tracking result of the magnetic guide tracking 
where the starting point was put at the position of (0.9m,2.0m). (b) Tracking 
errors in the x and y frames, respectively. 

are determined through selecting ζ and planning the settling 
time and frequency response 𝜔𝜔 . This rule indirectly calculates 
the gains of KP, KI, and KD. 

2/(1 ) , / (1 ) 2I D P DK K K Kω ξω+ = + =  (38) 

Therefore, the controller parameters are set by selecting KD as 
0.6, KP, as 2.5, and KI as 0.9, respectively. Fig. 5(a) shows the 
effectiveness of path tracking using the PID controller, and Fig. 
5(b) respectively illustrates the tracking errors in the x and y 
frames. The convergence of tracking errors on the x-axis and 
y-axis, as well as its stable performance, can be observed and 
confirmed in Fig.5, thus verifying the effectiveness of 
implementing the PID controller in the differential-drive model 
of the OAMR. 

B. Proposed Dynamic Controller 
The second simulation compares the circular trajectory 

tracking results of the proposed dynamic controller with the 
FWNN-BLS compensator and the traditional FWNN 
compensator in trackless navigation. In the FWNN-BLS 
controller parameter settings, the damping ratio is set to one, 
and the controller parameters pK  is set by 30*I2 and IK  is 
tuned to 16*I2. The simulation results presented in Fig. 5 show 
the circular trajectory tracking results for both compensators, 
and Fig. 6 shows the time evolutions of the tracking errors for 
both compensators. It can be concluded that the result of the 
FWNN-BLS compensator in Fig. 6(b) and Fig. 7(b) 
demonstrates better tracking and error convergence 
performance compared to the result of the FWNN 
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compensators in Fig. 6(a) and Fig. 7(a). This simulation further 
discusses the impact of settling time on trajectory tracking. As 
can be seen in Fig. 8, the result in Fig. 8(a) has a shorter settling 
time of 0.5 seconds and smaller tracking errors by comparing to 
the results in Fig. 8(b) which has a longer settling time of one 
second. Finally, the performance analyses of the dynamic 
controller with the FWNN and FWNN-BLS compensators are 
evaluated using the control performance indexes such as IAE  
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(b) 

Fig. 6.  Trajectory tracking simulation of the proposed dynamic controller 
where the starting point was put at the origin. (a) The simulation result of the 
controller with the FWNN compensator. (b) The simulation result of the 
controller with the FWNN-BLS compensator. 
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(b) 

Fig. 7.  Time evolutions of the trajectory tracking errors of the proposed 
dynamic controller the starting point was put at the origin. (a) The error plot of 
using the FWNN compensator. (b) The error plot of using the FWNN-BLS 
compensator. 

TABLE I 

PERFORMANCE COMPARISON OF THE PROPOSED DYNAMIC CONTROLLER WITH 
FWNN AND FWNN-BLS  IN TERMS OF IAE AND ITAE (UNIT: M). 

 IAE X IAE Y ITAE X ITAE Y 
FWNN 0.1922 0.3572 0.5725 0.6259 
FWNN-BLS 0.07759 0.1996 0.08543 0.1222 
 

and ITAE in Table I. The comparative results indicate that the 
proposed dynamic controller with the FWNN-BLS 
compensator demonstrates better tracking control performance 
than that with the FWNN compensator does. 
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(b) 

Fig. 8.  Trajectory tracking of the second simulation where the starting point 
was set at the origin. (a) The tracking result of using the FWN-BLS with the  
settling time of  0.5 sec. (b) The tracking result of using the FWNN-BLS with 
the  settling time of  1  sec. 

C. Trackless Navigation 
This subsection aims to carry out the third simulation to 

show the effectiveness of the proposed trackless navigation. 
During the simulation, the known Gmapping SLAM is utilized 
to build a map for the simulation environment as in Fig. 9(a). 
Once the environment map has been obtained, then A* 
algorithm is used for global path planning and the AMCL will 
be adopted for robot localization based on the built map. 
Furthermore, the previous dynamic controller is employed to 
track desired planned trajectories. Regarding parameter 
selection for the PI controller in (16) in trackless navigation 
simulation, the damping ratio is set by one, the settling time is 
set about 4.2 seconds. The proportional gain KP is then 
computed as 1.9, while the integral gain KI is found by 0.9. 
Gazebo and Rviz are employed to present the simulation results 
of trackless navigation. Fig. 9(b) illustrates the navigation 
results using Rviz, showing that the OAMR successfully 
follows the trajectory and completes the mission to reach the 
target point. Through the results in Fig. 9, the proposed 
trackless navigation using the proposed dynamic controller has 
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been shown effective in steering the OAMR to achieve 
trackless navigation. 

V.  EXPERIMENTAL RESULTS AND DISCUSSION 
In this section, three experiments are conducted to examine 

the control performance and applicability of tracked and 
trackless navigation methods for the OAMR. The first 
experiment uses the magnetic guide sensor and magnetic tape to 
practice tracked navigation based on the differential drive model 
of the AMR combined with the PID controller. The first 

 
(a) 

 
(a) 

Fig. 9.  Simulation of the trackless navigation. (a) Simulation environment 
using Gazebo. (b) Trackless navigation shown using Rviz. 

     
(a)                                       (b)                                       (c) 

Fig. 10.  Still experimental pictures of tracked navigation from the beginning to 
the destination. (a) to (c) Robot movements from its beginning to destination 
during the tracked navigation. 

experiment verifies the experimental results of the proposed 
dynamic controller. The first experiment presents the test results 
of trackless navigation with Gmapping SLAM and the dynamic 
controller incorporated with the FWNN-BLS compensator. 

A. Experimental Results on Tracked Navigation 
In the first experiment, let the damping ratio be set as unity, 

the settling time be about 5.7 seconds, and choose the 
derivative gain KD as 0.5. Therefore, from (38), the 
proportional gain KP was calculated by 2.5, and KI was 
computed as 0.75. Fig. 10 depicts the experimental results of 
the tracked navigation with the PID path tracking controller. 
starting position. In the three still pictures from Fig.10 (a)-(c), 
the robot in Fig. 10(a) didn’t enter the range of the magnetic 
tape, and then the robot began to gradually enter the sensing 
range and reached a tracking state after a period of transient 
response to follow the center of the tape in Fig.10 (b). After a 
turning point in Fig.10(c), the robot continued to track the 
center of the tape path stably, thus demonstrating the efficacy of 
the PID path tracking controller for tracked navigation. The 

experimental results indicate the practicability of this tracked 
navigation using the PID control strategy. Note that the 
renowned AMCL for localization can be used for robot 
localization during the tracked navigation. 

B. Experiment on the Proposed Dynamic Controller 
This subsection carries out the second experiment to verify 

the performance of the proposed dynamic controller. The 
parameter settings of the proposed dynamic controller were 
identical to those in the simulation case. The designed OAMR  
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(c) 

Fig. 11.  Experimental pictures of the proposed dynamic controller during the 
experiment. (a)-(b) Two still pictures during the experiment process. (c) 
Experimental trajectory tracking result of proposed dynamic controller. 
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(d) 

Fig. 12.  Experimental results of the proposed trackless navigation method. 
(a)-(b) Two still pictures showing the OAMR movements from its starting point 
to destination during the experimental process. (c) A glimpse of the OAMR 
movement using Rviz where the green points denote the particles of the used 
Gmapping SLAM, the red line represents the planned path to be followed, and 
the red arrow stands for the destination.  (d) Experimental trajectory tracking 
result of the proposed trackless navigation method. 

was utilized to track one slanted line trajectory planned in an 
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obstacle-free environment. During the experimentation, the 
OAMR utilized the AMCL for localization and collaborated 
with the dynamic controller to reach the target position along 
the black reference trajectory shown in Fig. 11. Figs. 11(a)-(b) 
depict the two still pictures describing the trajectory tracking 
results, where the red line denotes the trajectory during the 
navigation process, and the blue line represents the reference 
trajectory generated by global path planning. Fig.11(c) shows 
the tracking results, where the errors could be reduced by using 
a multi-sensor fusing method in [10]. The results in Fig. 11 
demonstrate the effectiveness and applicability of the proposed 
dynamic controller. 

C. Experimental Results of Trackless Navigation 
In this subsection, experimental results of trackless 

navigation in the presence of unexpected static obstacle will be 
presented and discussed. Fig. 12 presents the obstacle 
avoidance environment and Fig. 12(c) shows the built map and 
AMR navigation using Gmapping SLAM in Rviz, where the 
green points denote the particles of the used Gmapping SLAM, 
the red line represents the planned path to be followed, and the 
red arrow stands for the destination. In this environment, the 
OAMR performed the global path planning using the A* 
algorithm and integrated the DWA method for obstacle 
avoidance strategy. Fig. 12(a-b) illustrates the entire process of 
obstacle avoidance and reaching the target point. In Fig. 12(d), 
the tracking trajectory of trackless navigation in the obstacle 
environment was presented, where the blue line represents the 
reference trajectory generated by global path planning, while 
the red line shows the actual trajectory during the navigation 
process. As can be seen in Fig. 12, the trackless navigation 
dynamic controller with the with the proposed FWNN-BLS 
compensator not only reached the target point in navigation but 
also achieved obstacle avoidance and trajectory tracking, 
confirming the feasibility and superiority of the strategy. 

VI. CONCLUSIONS 
In this paper, a novel hybrid navigation method for 

omnidirectional autonomous mobile robots (OAMRs) has been 
proposed by presenting a PID path controller for magnetically 
guided tracked navigation and also incorporating a 
backstepping PI dynamic controllers with a dynamic 
FWNN-BLS compensator for trackless navigation. The 
trackless navigation method has used the FWNN-BLS as the 
online compensator and the dynamic controller has been 
derived by first designing the kinematic PI controller and then 
employing backstepping to synthesize the overall dynamic 
motion controller. The tracked navigation approach has 
converted the experimental four-wheel OAMR kinematics 
model into its differential-drive model by setting the equal 
speeds of both wheels at the same side, and has adopted the PID 
controller to achieve stable path tracking with satisfactory 
tracking performance. Through simulations and experimental 
results, the proposed hybrid navigation has been demonstrated 
effective, useful and practical in fulfilling hybrid navigation of 
the experimental OAMRs. Future work would focus on 
investigate switching policy of the hybrid navigation and 
conduct more experiments to verify the superiority and 
practicability of the switching hybrid navigation. 
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