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 Abstract—As the aging population continues to grow, the 
exoskeleton robots are developed for assistance of rehabilitation 
and daily activities for the elderly. In this paper, we propose an 
assistive motion control system based on user intention for the 
upper-limb exoskeleton robot. The system detects user intention 
through electromyography (EMG) signal analysis first, and then 
utilizes an adaptive neural fuzzy inference system (ANFIS) to 
estimate proper torque to assist user’s motion. The experimental 
results show that the proposed system allows the users to 
manipulate the exoskeleton robot according to their intention with 
lesser effort, thus demonstrating its effectiveness. 

 Index Terms—Upper-limb exoskeleton robot, Motion 
assistance, ANFIS, EMG 

I. INTRODUCTION 
LONG with the advent of the aging society, elderly care 
has become an increasingly important issue. Elder people 

may experience upper-limb weakness or difficulty with limb 
movement to conditions such as stroke, leading to a need for 
movement support. As exoskeleton robots [1]-[6] can provide 
motion assistance for tasks related to upper limbs, it is much 
helpful for their development to provide daily assistance and 
rehabilitation for the elderly and individuals with limited 
mobility. 

Among previous research on upper limb exoskeleton robots, 
Krebs et al. [1] proposed the MANUS system to guide the 
movement of a user’s upper limb during rehabilitation. Kooren 
et al. [2] designed a 5-degree-of-freedom upper limb 
exoskeleton robot to assist individuals with muscle weakness. 
Chen et al. [3] developed a 7-degree-of-freedom upper limb 
exoskeleton robot system that effectively facilitates upper limb 
rehabilitation. Cui et al. [4] developed a cable-driven arm 
exoskeleton for dexterous motion training and assistance. 
Zeiaee et al. [5] designed a lightweight and compact 
exoskeleton for upper-limb rehabilitation. Garzo et al. [6] 
proposed a telerehabilitation platform designed to help users 
maintain upper-limb rehabilitation at home. Via the survey, the 
exoskeleton robots are in general operated in two modes: 
passive and active [7]. The passive mode allows the robot to 
govern limb movement by itself, and the user does not need to 
exert any effort for task execution. In contrast, the active mode 
enables the robot to provide assistive torque to aid the 
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movement, while users actively move their limbs according to 
their intention. It is thus very crucial on accurate detection of 
user’s intention for providing proper assistive torque.  

Electromyography (EMG) [8]-[12], electroencephalography 
(EEG) [13], and force information [14] are commonly adopted 
by the exoskeleton robot to detect user’s intention. EMG signals 
are measured from muscle activity to reflect user’s intention via 
analysis. Lotti et al. [8] introduced a myoprocessor model 
capable of predicting muscle forces based on EMG and arm 
movement data. Lenzi et al. [9] used proportional EMG control 
in a powered exoskeleton to assist the user’s elbow movement. 
Furukawa et al. [10] estimated the intended movements by 
observing EMG signals with uncertain observations taken into 
account. Koike et al. [11] estimated user’s joint torque from 
EMG using a neural network. Kiguchi et al. [12] developed a 
joint torque model based on EMG and applied a neuro-fuzzy 
modifier to adapt the model for different users. Because EMG 
signals are often motion-related and highly nonlinear, effective 
EMG-based intention detection and control remains in demand.  

In this paper, we propose an effective assistive control 
system based on the EMG to govern a two-DOF upper-limb 
exoskeleton robot by employing the Adaptive Neuro-Fuzzy 
Inference System (ANFIS) [15]. Compared to previous 
approaches, it has the advantage of combining interpretability 
through fuzzy if-then rules with parameter optimization via 
neural network learning, so that system uncertainty and 
non-linearity of the system can be well tackled. During task 
execution, the EMG signals are first measured and analyzed, 
and then sent for a torque model developed based on the ANFIS 
to estimate the assistive torque, which is further processed by 
the designed controller to generate robot motion commands. 
Finally, experiments based on applying the proposed system for 
upper-limb motion assistance are conducted for performance 
evaluation.  

The remainder of this paper is organized as follows: Section 
II describes the mechanism and dynamics of the upper-limb 
exoskeleton robot. In Section III, the proposed system is 
addressed. Experimental results are presented in Section IV. 
Finally, concluding remarks are given in Section V. 

II. UPPER-LIMB EXOSKELETON ROBOT 
The developed two-DOF upper-limb exoskeleton robot [16] 

is as shown in Fig. 1. The robot is fixed on a base to provide 
assistive torques to support the user’s upper-limb movement. Its 
design includes forearm and upper arm links, fixed base, elbow 
and shoulder joint motors, the encoders, and a controller. The 
shoulder joint is a single-axis mechanism that allows the arm to 
move vertically, with the motor providing the joint torque to 
assist in raising and lowering the arm. The elbow 

Shao-Fu Jiang, Hsin-Chieh Chien, Po-Hsiang Lin, Kuu-Young Young, and Chun-Hsu Ko  

An Intelligent ANFIS-Based Control System for 
Upper-limb Exoskeleton Robot 

 

A 



Jiang et. al.  
An Intelligent ANFIS-Based Control System for Upper-limb Exoskeleton Robot 

2 

joint is also a single-axis mechanism, with the motor providing 
torque to assist the extension and flexion of the upper arm and 
forearm. The encoders measure joint rotation angles, and the 
controller computes the necessary assistive torques. To ensure 
consistency between the upper-limb exoskeleton and the human 
arm, the position and length of the links can be adjusted 
according to user’s demand.  

 

The configuration of the upper-limb exoskeleton robot is as 
shown in Fig. 2, which illustrates a biaxial model of the shoulder 
and elbow joints. The origin o is the position of the shoulder 
joint, (xel, yel) that of the elbow joint, and (x, y) the end point 
position of the robot. The x-axis represents the direction of the 
arm when it is vertically lowered, and the y-axis that of the arm 
when raised horizontally. m1 and m2, I1 and I2 ,  and l1 and l2 are 
the masses, moments, and lengths of the upper arm and forearm, 
respectively, lc1 and lc2 the distances between the centers of mass 
of the upper arm and forearm and the axis position, respectively, 
and g the gravity. 

The joint angle θ of the exoskeleton robot is given by  

[ ]T21 θθθ =  (1) 

where θ1 is the raising angle of the upper arm relative to x-axis, 
and θ2 that of the forearm relative to the upper arm. With the 
torque  

 
[ ]T21 τττ =  (2) 

where τ1 and τ2 are the shoulder and elbow joint torque, 
respectively, the dynamic equation of the upper-limb 
exoskeleton robot is derived as 

( ) ( ) ( ) τθθθθθ =++ GVM ,  (3) 
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where M is the inertia matrix, V the centripetal Coriolis and 
viscosity, and G the gravity term.  

With the user conducting arm movement under robot 
assistance, the dynamic equation can be expressed as 

( ) ( ) ( ) rhGVM ττθθθθθ +=++ ,  (5) 

where τh and τr are the torques applied by the user and robot, 
respectively. With the dynamic equation of the upper limb 
exoskeleton robot available, the proposed assistance control 
system is derived as follows. 

III. PROPOSED CONTROL SYSTEM 
The proposed control system is as shown in Fig. 3. The user 

wears the exoskeleton robot for upper limb movement. The 
EMG measurement device detects EMG signals generated by 
muscle activity. The signals are then processed through EMG 
feature analysis to extract relevant features. Using these features 
along with the robot’s biaxial angles, the ANFIS torque model 
estimates user’s torque. Consequently, the assistance controller 
derives the necessary torque to drive the exoskeleton robot to 
support limb movement. The procedure will be repeated until 
the task is completed. The realization of EMG feature extraction, 
torque model building, and assistance control are described as 
follows. 

 
 
Fig. 3. The proposed motion control system. 

 
Fig. 2. Configuration of the upper-limb exoskeleton robot. 

 
 

Fig. 1. The photo of the developed upper-limb exoskeleton robot. 
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A. EMG Feature Extraction 

First, the electrode patches placed on the surface of the skin 
are utilized to measure the EMG signals from arm muscles. For 
the shoulder joint, the anterior and posterior deltoid muscles are 
responsible for the lifting and lowering actions, respectively. 
The biceps brachii muscle is primarily responsible for elbow 
flexion, while that of the triceps brachii facilitates elbow 
straightening. As the arm muscles are activated, the 
measurement equipment detects time-varying EMG signals, 
which are then processed using a band-pass filter between 3 Hz 
and 2 kHz to reduce noise and improve signal quality.  

Since the frequency band of the detected EMG signals 
ranges from 10 to 500 Hz, a fourth-order Butterworth band-pass 
filter with a range of 40 to 400 Hz was applied to remove 
interference noise. To obtain the relationship between signal 
amplitude and muscle activation, a full-wave rectifier was 
adopted, which converted the oscillating EMG signals into 
positive amplitudes by taking their absolute values. The Kalman 
filter was applied to further reduce noise. Finally, by computing 
the mean absolute value (MAV) [17], the EMG feature can then 
be obtained:  

∑
=

=
sn

i
i

s

x
n 1

1MAV  (6) 

where ns is the total number of EMG signal samples, and xi 
represents the amplitude of the i-th sample.  

For verification of the proposed method, we measured the 
biceps EMG signal by moving the elbow upward by a certain 
distance, as shown in Fig. 4(a), with the corresponding MAV 
shown in Fig. 4(b). It can be observed that the noise in the 
measured biceps EMG has been properly filtered through the 
signal processing procedure, and the resulting smooth 

MAV signal effectively reflects the muscle activity. We 
therefore apply it to derive the corresponding MAV from the 
anterior deltoid, posterior deltoid, biceps brachii, and triceps 
brachii muscles during arm movements for exoskeleton robot 
governing. 

B. ANFIS Torque Model Building 
To determine the torque applied during user’s upper-limb 

movements, the torque models based on ANFIS are built for the 
shoulder and elbow joints. The inputs are the EMG features 
derived from arm muscle activities, along with the biaxial 
angles of the exoskeleton robot, and the output is the 
corresponding torque.  Because the relationship between input 
and output is nonlinear, we employed ANFIS [15] for model 
building. ANFIS integrates adaptive learning with interpretable 
modeling, enabling it to effectively model complex systems, 
which well serves our purpose. Its structure is as shown in Fig. 
5, which consists of five layers:   

Layer 1: The layer determines the membership degree of the 
input in the fuzzy set using the Gaussian membership function:  
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Layer 2: The firing strengths of the fuzzy rules are calculated 
using product operations: 
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Layer 3: This layer normalizes the firing strengths of the rules: 
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Layer 4: This layer performs the inference operations for each 
fuzzy rule: 

6622110)( xpxpxppxf iiiii ++++= 

 (10) 

where pi0, pi1, …, pi6 are the parameters of the inference part. 

Layer 5: The results of the fourth layer are summed to produce 
the output:  

 
Fig. 5. The ANFIS structure. 
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Fig. 4. Biceps EMG signals: (a) measured signal and (b) MAV.  
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Training data was collected with the users conducting 
single-axis movements of the elbow and shoulder, as well as 
dual-axis ones involving both joints simultaneously, which were 
commonly associated with upper-limb motions in daily 
activities. It was not obtained by measurement, but calculated 
based on the robot’s dynamic model and detected joint 
trajectory. As the goal of the training is to let the exoskeleton 
robot provide gravity compensation and suitable torques to 
assist the user during motions, the data recorded includes EMG 
features, biaxial angles, and assistive torques. Among these, the 
EMG features and biaxial angles serve as inputs to the torque 
model, and the output is the user’s torque τh, which can be 
calculated as 
 

( ) ( ) ( ) rth GVM τθθθθθτ −++= ,  (12) 

where τrt is the torque exerted by the robot for training data 
collection. To obtain the parameters for the model, the Fuzzy 
C-Means clustering algorithm is first applied to divide the 
training data into groups. Fuzzy rules and their initial 
parameters are then generated based on the data from each 
group. The ANFIS training method [15] is used to learn and 
adjust the parameters of the antecedent and inference parts of 
the fuzzy rules based on input and output training data. 

  

 
C. Assistance Control 

The assistance controller should provide certain assistive 
torque, so that the user may exert less effort during task 
execution. It can be regarded as that the user and robot jointly 
share the forces necessary for the movement. Therefore, the user 
may feel experiencing a lighter robot system, with the dynamic 
equation [18] expressed as 

hddd GVM τθ =++  (13) 

where Md, Vd, and Gd are calculated from Eq. (4) using the 
reduced mass of the system that the user experiences. From Eq. 
(5) and Eq. (13), the robot assistive torque τr can be expressed as 

)()()( dddr GGVVMM −+−+−= θτ   (14) 

From Eq. (13), the angular acceleration can be obtained as 

)(1
ddhd GVM −−= − τθ  (15) 

Substituting Eq. (15) into Eq. (14), τr can be calculated as 

ddddhddr GGVVGVMMM −+−+−−−= − )()( 1 ττ  (16) 

With the above control law, the robot’s control torque can be 
determined using the user’s applied torque estimated 
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Fig. 8. Experiment results for shoulder-lifting motion: (a) shoulder EMG 
signal, (b) shoulder angle, and (c) shoulder torques. 

 
Fig. 7. The experimental scene. 

 
Fig. 6. The experimental setup. 
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by the ANFIS model. 

Note that, because the measured EMG signals may contain 
noise, to avoid abrupt change of τr, we came up with a 
procedure via checking the statuses of both the current and 
previous EMG signals. When they implicate the opposite 
movement direction, the newly derived τr will be adopted only 
when it occurred twice, otherwise, previous τr was maintained. 
As for the case with the same implication, the derived τr is used 
directly. By applying this procedure, the assistive torque will 
not vary significantly, leading to stable movement. 

IV. EXPERIMENTS 
We conducted a series of experiments to verify the 

effectiveness of the proposed system. The experimental setup is 
illustrated in Fig. 6. When the user moves their upper limbs, 
EMG signals are detected using the electrode patches (Kendall 
Medi-Trace) and amplified by a biopotential preamplifier 
(C-ISO-255) and a biopotential amplifier (iWorx ETH-256). 
These signals are then forwarded to the computer via the data 
recorder (IX-404) for filtering and feature extraction. The 
torque model estimates user’s applied torque based on EMG 
features and detected biaxial angles. The assistance controller 
in turn computes the desired assistive torque and convert it into 
a motion command sent to the motor controller to move the 
exoskeleton robot. The experimental scene is as shown in Fig. 7, 
in which the subject wore an upper-limb exoskeleton robot to 
conduct tasks involving one- or two-joint motions. Five 
subjects, aged between 22 to 24, were invited to participate. 

Before the experiment, training data were collected from each 
subject for building the corresponding torque model in 
advance.  

The first set of experiments were intended for one-joint 
motion, including shoulder lifting and lowering and also elbow 
bending and straightening. Fig. 8 shows the experimental 
results for the shoulder joint for one of the subjects, including 
the EMG signals, arm angles, and shoulder torques, which were 
typical among others. It was observed that the EMG signal of 
anterior deltoid increased and then decreased as the shoulder 
angle increased, which well implicated user’s intention for 
shoulder lifting. Meanwhile, in addition to gravity 
compensation, the assistive torque did provide support for 
shoulder lifting, thus reducing user’s load by letting the applied 
torque smaller than the required one. Fig. 9 shows the results 
for the elbow joint. Similar phenomena were observed, 
including variations of the biceps EMG signals, elbow angle, 
and elbow torques. We continued conducting experiments for 
shoulder lowering and elbow straightening. It was found that 
variations of EMG signals for the posterior 
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Fig. 10. Experimental results for two-joint motion: (a) EMG signals, (b) arm 
angles, (c) shoulder torques, and (d) elbow torques. 
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Fig. 9. Experimental results for elbow-bending motion: (a) elbow EMG signal 
(b) elbow angle, and (c) elbow torques. 
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deltoid and triceps aligned with that of the angles during 
shoulder lowering and elbow extension. These results 
demonstrated that the proposed system has effectively detected 
user’s intention and yielded appropriate assistive torque for 
single-joint motion.  

The second set of experiments were intended to evaluate 
whether the proposed system was capable for handling 
two-joint motions, which involves coupling between the joints. 
During the experiments, the subject raised both the shoulder 
and elbow up to approximately 90 degrees and then lowered 
them back to the original position. Fig. 10 shows the 
experimental results, including the EMG signals, arm angles, 
and shoulder and elbow torques. When the arm was raised, the 
EMG signals of the anterior deltoid and biceps increased and 
then decreased; while it was lowered, that of the posterior 
deltoid and triceps increased and then decreased. With user’s 

intention well predicted and the effect of the torque model, 
appropriate assistive torques for both joints were provided, 
leading to its successful execution, even in the presence of 
coupling.  

Finally, in the third set of experiments, we asked the subject 
to conduct a ball-touching task with and without wearing the 
exoskeleton robot, which were intended to evaluate system 
performance for a reaching action that commonly occurred in 
our daily activity. As shown in Fig. 11, the subject needed to 
touch the balls following a given order. He/she should pause 
briefly upon touch. Fig. 12 shows one typical result, including 
the angles for both the shoulder and elbow, and their 
corresponding EMG signals with and without assistance. No 
matter with or without wearing the exoskeleton robot, all the 
subjects completed the task successfully, while less effort was 
demanded when it was with assistance, as implicated by 
smaller EMG signals present in Figs. 12(c)–(f). 

V. CONCLUSION 
In this paper, we have developed an intelligent control 

system based on ANFIS for the upper-limb exoskeleton robot, 
which can be used to assist the user for motions in daily 
activities. The EMG signals measured during user’s movement 
was analyzed to estimate his/her motion intention, and then sent 
for the ANFIS toque model and assistance controller to generate 
the corresponding motion commands. Experimental results have 
demonstrated its effectiveness by providing necessary support, 
and thus reducing user’s loading during task execution. The 
developed system is deemed to be suitable for users with upper 
limb weakness who can still generate detectable EMG signals. 
However, practically applying the system to help users achieve 
effective rehabilitation remains as a challenge. In future work, 
we aim to enhance system’s capability and test it for 
applications in hospitals. 
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