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Abstract—In recent years, autonomous driving has 
continuously developed alongside daily technological 
advancements. Simultaneous Localization and Mapping (SLAM) 
is one of the significant techniques applied in this field. However, 
the adoption of autonomous driving techniques for self-driving 
cars or drones is not yet widespread. The main reason is that the 
accuracy and robustness of localization systems still need 
improvement to meet the requirements for autonomous driving 
and extended applications. This work examines the relationship 
between the observability and uncertainty of the estimation system 
and identifies the features that should be prioritized by analyzing 
their effect on system observability. Based on this analysis, the 
work aims to determine which features are not significant and can 
be temporarily excluded from the current estimation in a multi-
sensor system. Additionally, this research weighs feature points by 
their individual observability, considering the influence of each 
observed feature point to improve estimation accuracy. The study 
introduces methods to consider system observability in estimation 
and presents simulation results. Ultimately, applying this method 
to multiple datasets demonstrates better estimation results 
compared to other methods. 

 Index Terms—visual-inertial odometry, simultaneous localiza- 
tion and mapping, estimation and optimization, observability 
analysis 

I. INTRODUCTION 

A. Motivation 
 
HILE a vehicle navigates in three-dimensional (3-D) 
space, inertial navigation systems (INS) is one of the 

widely utilized methods to estimate six-degrees-of-freedom (6-
DoF) pose. However, because of the biases and noises that 
interfere the inertial measurement units (IMU) readings, simple 
integration of the local-linear acceleration and angular velocity 
measurements would bring severe drifts in a short time, 
especially, while the cheap IMU is used. In order to mitigate this 
issue, aided by additional sensors i.e., vision-aided INS is 
popular. The optical camera is one of the possible exteroceptive 
sensors, which is of energy-efficient and low cost while 
receiving abundant information from environment, are helpful 
sources for INS. Therefore, vision-aided INS (i.e., VINS) has 
recently prevailed when navigating in the GPS-denied 
environments (e.g., indoors). 
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System observability is important for state estimation [1]. 
Comprehending system observability results in a deep insight 
about the system geometric properties and determines state 
parameters needed to initialize an estimator or the minimal 
measurement modalities. Degenerate motions with additional 
unobservable directions should be prevented if possible and, in 
practice, can be identified through system observability. In [2], 
it proved that velocity, biases, and roll and pitch angles in VINS 
are observable. In [3], [4], it was analytically derived that the 
null space of observability matrix (unobservable subspace) of 
linearized VINS. In [5], [6], the observability analysis for the 
Lie-derivative-based nonlinear system was presented. 

The analysis for system observability is leveraged when 
developing the EKF-based VINS algorithms [including visual-
inertial SLAM (VI-SLAM) and visual-inertial odometry (VIO)] 
using heterogeneous geometric features. 

The environment full of features will affect the estimation 
results. Specially, the geometric distribution between features 
and vehicle is a significant factor that consists of the ob-
servability matrix of the VIO system. Therefore, this work hopes 
to develop an estimator that leverages the observability of the 
feature points measurement, namely observability-weighted 
visual-inertial system (OW-VINS). The higher the observability 
of a feature point, the greater its influence on the estimator. In 
addition, in the VIO system equipped with multiple cameras, 
dropping out the degenerated camera measurement can help 
improve the overall performance. 

B. Related Works 
Vision-aided INS is a classical research thesis with an 

important body of literature [7] and has recently been 
reemerging with the advancement of computing and sensing 
technologies. In addition, the system observability about the 
VINS is also gradually emphasized. In this section, the briefly 
review for the related literature is focused on the vision-aided 
scenarios and the analysis for the nonlinear system. 

1) Tightly-Coupled Visual-Inertial Algorithm: Scholastic 
works on vision-based state odometry/estimation/SLAM are 
daily extensive in recent years. There are plenty of noticeable 
approaches like DSO [8], PTAM [9], SVO [10], and ORB-
SLAM [11], LSD-SLAM [12]. Any attempts to supply an 
integral relevant review is obviously incomplete. Nevertheless, 
in this section, the proposed work ignores the results about 
vision-only approaches, and pay attention on the most 
corresponding discussion about monocular visual-inertial state 
estimation. To deal with the inertial and visual measurements, 
Loosely-coupled sensor fusion [13], [14] is the simplest way. In 
the method, vision-only pose estimates obtained from the visual 
structure from motion is assisted by the independent module of 
IMU. The extended Kalman filter (EKF) is usually used to fuse, 
where IMU is used for state propagation and the vision-only 
pose is used for update. Furthermore, tightly-coupled visual- 
inertial algorithms are either based on the EKF [15]– [16] or 
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graph optimization [17], [18], [19], [20]. It jointly optimizes 
camera and IMU measurements from the raw measurement level. 
In practice, the data rate of IMUs usually is acquired much 
higher than the data rate of the camera. Different approaches 
have been provided to deal with the high rate IMU 
measurements. Utilizing the IMU for state propagation in EKF-
based approaches [13], [15] is the most straightforward 
approach. In a graph optimization formulation, it proposes an 
efficient technique called IMU pre-integration in order to avoid 
repeated IMU re-integration. This technique parametrizes 
rotation error using Euler angles, which was first introduced in 
[21]. An on-manifold rotation formulation for IMU pre-
integration was developed in [17]. This work derived the 
covariance propagation using continuous-time IMU error state 
dynamics. In addition, [22] introduced a closed-form solution to 
the monocular visual-inertial initialization problem. However, 
the proposed works are vulnerable to degenerated environment. 
Especially, the light of the environment has significant influence 
on the images captured by cameras. In addition, the far objects 
have small change in the image view while the camera moves in 
a short time. Those reasons cause the idea-less estimation results, 
which this work would like to consider and deal with to enhance 
the accuracy of the estimation. 

2) VINS Observability Analysis: With the correspondence 
between the system observability and the consistent estimation, 
the observability analysis of VINS is significant research 
devoted efforts. With the concept of continuous symmetries 
provided in [23], Martinelli [2] identified that IMU biases, 3-D 
velocity, and global pitch and roll angles are observable and 
analytically derived the closed-form solution of VINS. System 
observability with degenerate motions [24], unknown inputs 
[25], [26], and minimum available sensors [27] are also 
examined. Recently, the analytic solutions with observability 
analysis for cooperative VIO [28] is provided by him. Based on 
the Lie derivatives and observability matrix rank test [29], Hesch 
et al. [6] analytically derived that the monocular VINS has four 
unobservable directions, i.e., the global position of the 
exteroceptive sensor and the global yaw. In [5], [30], [31], the 
similar studies for the observability of IMU-camera (monocular, 
RGBD) calibration were developed. In addition, generic 
motions cause the extrinsic calibration between the IMU and 
camera observable. More importantly, as in practice, VINS 
estimators are built upon the linearized system, it needs to 
perform the observability analysis for the linearized VINS 
whose observability properties can be developed when 
designing an estimator. For instance, the observability analysis 
for the linearized VINS (without considering biases) is 
performed in [32] and [33]. Analogously, in [3], [4],[34], they 
conducted observability analysis for the linearized VINS with 
full states (including IMU biases) and found the right null space 
of the observability matrix [3] by analytically deriving the 
system unobservable directions. Based on those analysis, the 
observability-constrained (OC)-VINS algorithm was developed. 
In addition, two degenerate motions (constant acceleration and 
translation) are identified in [35] which could cause more 
unobservable directions for monocular camera-aided INS. 
Those proposed works consider the relationship between the 
observability and the VINS estimation result, and even consider 
the relationship to improve the estimation results. However, 
those works do not thoroughly analyze the relationship between 
the observed environment and the system observability. In more 
detail, every feature points observed by cameras should have 

different observability, which means they have various influence 
on the estimation system. This work pay attention on the 
observability of observed feature points and consider their effect 
with the estimation system to enhance the accuracy of estimation 
results. 

Problems to be resolved: in this work, the key challenge in 
autonomous navigation is the insufficient accuracy and 
robustness of localization systems, which hinders the 
widespread adoption of self-driving technologies in vehicles 
and drones. Although SLAM techniques are central to 
autonomous navigation, current multi-sensor estimation 
frameworks often suffer from observability limitations, leading 
to degraded performance in real-world scenarios. This research 
addresses the problem of how to improve localization accuracy 
by analyzing and prioritizing feature points based on their 
contribution to system observability, thereby enabling more 
reliable and efficient state estimation for autonomous 
navigation systems. 

Strengths: 

1) Observability-Aware Feature Selection: The method 
introduces a novel perspective by prioritizing feature 
points based on their contribution to the observability of 
the estimation system. This principled approach enhances 
both robustness and accuracy. 

2) Adaptive Feature Weighting: By assigning weights to 
feature points based on their individual observability 
scores, the method dynamically emphasizes more 
informative observations, improving estimation precision. 

3) Efficiency through Feature Reduction: The approach 
allows the temporary exclusion of less significant features, 
reducing computational burden without compromising 
estimation quality. 

4) General Applicability: The method is validated across 
multiple datasets, demonstrating its effectiveness in 
various scenarios, suggesting strong generalization ability. 

5) Theoretically Grounded Cost Function: The use of the 
trace of the observability matrix as a cost function provides 
a clear, mathematically sound criterion for evaluating and 
selecting feature points. 

Limitations: 

1) Dependence on Accurate System Modeling: The 
effectiveness of the observability analysis depends on an 
accurate system and sensor model. Modeling errors could 
lead to misjudged feature significance. 

2) Computational Overhead in Observability Evaluation: 
Calculating the observability trace and updating feature 
weights may introduce computational complexity, 
especially in real-time or resource-constrained 
applications. 

3) Feature Dependence: The performance of the method is 
still inherently tied to the availability and quality of visual 
features. Poor lighting, textureless surfaces, or occlusion 
could degrade performance despite the observability-
based selection. 
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C. Contributions: 

The present study has developed the data fusion from various 
measurement sensors. However, the accuracy of the result has 
no positive correlation with the number of sensors. Bad 
measurements may degrade the estimation performance. Thus, 
there is no definitely positive correlation between the accuracy 
of the result and the number of sensors. By considering the 
influence of system observability, the proposed method in this 
work is able to autonomously choose the better sensor to use 
and further reduce the affection of bad feature points in camera 
measurements. In spite of more process time, this method 
results in more accurate and reliable estimation results. The 
main contributions of this study are summarized as follows: 

1) Choosing a better sensor measurement as inputs in the 
multi-camera perception system will enhance the 
estimation accuracy by using the observability as a weight 
for a tightly coupled problem. 

2) With consideration of the influence of different visual 
feature points in the state estimator, the estimation results 
are more reliable and consistent. 

II. PROBLEM FORMULATION 
A. Tightly-Coupled Visual-Inertial Algorithm 

The method this work used is a sliding window-base tightly-
coupled monocular VIO to enforce the accuracy of the robot 
state estimation. 

 
Fig. 1: Visual-Inertial Bundle Adjustment 

1) Formulation: The state vector in the sliding window 
contains the IMU state 𝑥𝑥𝑛𝑛 and the feature state 𝜆𝜆𝑚𝑚 as Figure 1: 

𝜒𝜒 = [𝑥𝑥0, 𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛, 𝑥𝑥𝑐𝑐𝑏𝑏 , 𝜆𝜆0 ⋯𝜆𝜆𝑚𝑚] (1) 

𝑥𝑥𝑘𝑘 = �𝑝𝑝𝑏𝑏𝑘𝑘
𝑤𝑤 , 𝑣𝑣𝑏𝑏𝑘𝑘

𝑤𝑤 , 𝑞𝑞𝑏𝑏𝑘𝑘
𝑤𝑤 , 𝑏𝑏𝑎𝑎, 𝑏𝑏𝑔𝑔�, 𝑘𝑘 ∈ [0,𝑛𝑛] (2) 

𝑥𝑥𝑐𝑐𝑏𝑏 = [𝑝𝑝𝑐𝑐𝑏𝑏 , 𝑞𝑞𝑐𝑐𝑏𝑏] (3) 

In the expression, 𝑥𝑥𝑘𝑘 is the IMU state at the time when the 
𝑘𝑘𝑡𝑡ℎ  image is captured. 𝑝𝑝𝑏𝑏𝑘𝑘

𝑤𝑤  and 𝑣𝑣𝑏𝑏𝑘𝑘
𝑤𝑤  denote the IMU position 

and velocity in the world frame. 𝑞𝑞𝑏𝑏𝑘𝑘
𝑤𝑤  is the unit quaternion 

which represents the rotation from the IMU frame to the world 
frame. 𝑏𝑏𝑎𝑎  and 𝑏𝑏𝑔𝑔  represent the accelerometer and gyroscope 
biases, respectively. 𝑝𝑝𝑐𝑐𝑏𝑏 and 𝑞𝑞𝑐𝑐𝑏𝑏are the transformation from the 
camera frame to the IMU frame. 𝜆𝜆𝑚𝑚 is the inverse depth of the 
𝑚𝑚𝑡𝑡ℎ feature from its first observation. 𝑛𝑛 is the total number of 
key frames, and 𝑚𝑚 is the total number of features in the sliding 
window. 

The sum of prior and the Mahalanobis norm of all 
measurement residuals are minimized to obtain a maximum 
posterior estimation: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥

��𝑟𝑟𝑝𝑝 − 𝐻𝐻𝑝𝑝𝑥𝑥�
2 + ��𝑟𝑟𝐵𝐵 �𝓏̂𝓏𝑏𝑏𝑘𝑘+1

𝑏𝑏𝑘𝑘 , 𝑥𝑥��
2

𝑘𝑘∈𝐵𝐵

+ � 𝜌𝜌
(𝑙𝑙,𝑗𝑗)∈𝐶𝐶

��𝑟𝑟𝐶𝐶�𝓏̂𝓏𝑙𝑙
𝑐𝑐𝑗𝑗 , 𝑥𝑥��

2
�� 

(4) 

where the Huber norm is defined as: 

𝜌𝜌(𝑠𝑠) = � 1 𝑠𝑠 ≥ 1
2√𝑠𝑠 − 1 𝑠𝑠 < 1� (5) 

𝑟𝑟𝐵𝐵 �𝓏̂𝓏𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘 , 𝑥𝑥� and 𝑟𝑟𝐶𝐶�𝓏̂𝓏𝑙𝑙

𝑐𝑐𝑗𝑗 , 𝑥𝑥� are the residuals for IMU and 
visual measurements respectively. The detailed definition of 
those residuals will be represented as (14) in section II-A2 and 
(15) in Section II-A3. B is the set of all IMU measurements and 
C is the set of features that have been observed at least twice in 
the current sliding window. 𝑟𝑟𝑝𝑝and 𝐻𝐻𝑝𝑝 are the prior information 
from marginalization with the detailed definition is described in 
[36]. 

2) IMU Measurement Residual: The two continue-time  
states corresponding to position, velocity, orientation are able 
to be propagated by IMU information during the continuous 
time interval. 

𝑝𝑝𝑏𝑏𝑘𝑘+1
𝑤𝑤 = 𝑝𝑝𝑏𝑏𝑘𝑘

𝑤𝑤 + 𝑣𝑣𝑏𝑏𝑘𝑘
𝑤𝑤 𝛿𝛿𝛿𝛿 +

1
2
�𝑅𝑅𝑏𝑏𝑘𝑘

𝑤𝑤 �a�𝑘𝑘 − 𝑏𝑏𝑎𝑎𝑘𝑘� − 𝑔𝑔𝑤𝑤�𝛿𝛿𝑡𝑡2  

𝑣𝑣𝑏𝑏𝑘𝑘+1
𝑤𝑤 = 𝑣𝑣𝑏𝑏𝑘𝑘

𝑤𝑤 + �𝑅𝑅𝑏𝑏𝑘𝑘
𝑤𝑤 �a�𝑘𝑘 − 𝑏𝑏𝑎𝑎𝑘𝑘� − 𝑔𝑔𝑤𝑤�𝛿𝛿𝛿𝛿 (6) 

𝑞𝑞𝑏𝑏𝑘𝑘+1
𝑤𝑤 = 𝑞𝑞𝑏𝑏𝑘𝑘

𝑤𝑤 ⊗ �
1

1
2
�ω�𝑘𝑘 − 𝑏𝑏𝑤𝑤𝑘𝑘�𝛿𝛿𝛿𝛿

�  

Because the propagation of IMU state contains variables in 
the states, so this work adopts pre-integration algorithm to 
avoid re-propagation problem as following equation. Through 
transforming the world frame to the local frame, preintegrating 
the parts only corresponding to IMU measurements a�𝑘𝑘 and ω�𝑘𝑘 
as 8. 

𝑅𝑅𝑤𝑤
𝑏𝑏𝑘𝑘𝑝𝑝𝑏𝑏𝑘𝑘+1

𝑤𝑤 = 𝑅𝑅𝑤𝑤
𝑏𝑏𝑘𝑘 �𝑝𝑝𝑏𝑏𝑘𝑘

𝑤𝑤 + 𝑣𝑣𝑏𝑏𝑘𝑘
𝑤𝑤 𝛿𝛿𝛿𝛿 −

1
2
𝑔𝑔𝑤𝑤𝛿𝛿𝑡𝑡2� + 𝛼𝛼𝑏𝑏𝑘𝑘+1

𝑏𝑏𝑘𝑘   

𝑅𝑅𝑤𝑤
𝑏𝑏𝑘𝑘𝑣𝑣𝑏𝑏𝑘𝑘+1

𝑤𝑤 = 𝑅𝑅𝑤𝑤
𝑏𝑏𝑘𝑘�𝑣𝑣𝑏𝑏𝑘𝑘

𝑤𝑤 − 𝑔𝑔𝑤𝑤𝛿𝛿𝛿𝛿� + 𝛽𝛽𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘  (7) 

𝑞𝑞𝑤𝑤
𝑏𝑏𝑘𝑘 ⊗ 𝑞𝑞𝑏𝑏𝑘𝑘+1

𝑤𝑤 = 𝛾𝛾𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘   

where the three pre-integration terms are: 

𝛼𝛼𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘 = � 𝑅𝑅𝑡𝑡

𝑏𝑏𝑘𝑘�a�𝑡𝑡 − 𝑏𝑏𝑎𝑎𝑡𝑡 − 𝑛𝑛𝑎𝑎�𝑑𝑑𝑡𝑡2
𝑡𝑡∈[𝑡𝑡𝑘𝑘,𝑡𝑡𝑘𝑘+1]

  

𝛽𝛽𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘 = � 𝑅𝑅𝑡𝑡

𝑏𝑏𝑘𝑘�a�𝑡𝑡 − 𝑏𝑏𝑎𝑎𝑡𝑡 − 𝑛𝑛𝑎𝑎�𝑑𝑑𝑑𝑑
𝑡𝑡∈[𝑡𝑡𝑘𝑘,𝑡𝑡𝑘𝑘+1]

 (8) 

𝛾𝛾𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘 = �

1
2𝑡𝑡∈[𝑡𝑡𝑘𝑘,𝑡𝑡𝑘𝑘+1]
Ω�ω�𝑡𝑡 − 𝑏𝑏𝑤𝑤𝑡𝑡 − 𝑛𝑛𝜔𝜔�𝛾𝛾𝑡𝑡

𝑏𝑏𝑘𝑘𝑑𝑑𝑑𝑑  

Since the measurement noises 𝑛𝑛𝑎𝑎 and 𝑛𝑛𝜔𝜔 are unknown, the 
pre-integration terms are formulated as following. 
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�
𝛼𝛼�𝑖𝑖+1
𝑏𝑏𝑘𝑘

𝛽̂𝛽𝑖𝑖+1
𝑏𝑏𝑘𝑘

𝛾𝛾�𝑖𝑖+1
𝑏𝑏𝑘𝑘

� =

⎣
⎢
⎢
⎢
⎢
⎡𝛼𝛼�𝑖𝑖

𝑏𝑏𝑘𝑘 + 𝛽̂𝛽𝑖𝑖
𝑏𝑏𝑘𝑘𝛿𝛿𝛿𝛿 +

1
2
𝑅𝑅�𝛾𝛾�𝑖𝑖

𝑏𝑏𝑘𝑘��𝑎𝑎�𝑖𝑖 − 𝑏𝑏𝑎𝑎𝑖𝑖�𝛿𝛿𝑡𝑡
2

𝛽̂𝛽𝑖𝑖
𝑏𝑏𝑘𝑘 + 𝑅𝑅�𝛾𝛾�𝑖𝑖

𝑏𝑏𝑘𝑘��𝑎𝑎�𝑖𝑖 − 𝑏𝑏𝑎𝑎𝑖𝑖�𝛿𝛿𝛿𝛿

𝛾𝛾�𝑖𝑖
𝑏𝑏𝑘𝑘 ⊗ �

1
1
2

(ω�𝑖𝑖 − 𝑏𝑏𝑤𝑤𝑤𝑤)𝛿𝛿𝛿𝛿
�

⎦
⎥
⎥
⎥
⎥
⎤

 (9) 

where 𝑖𝑖  is the discrete moment corresponding to a IMU 
measurement within[𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘+1]. 𝛿𝛿𝛿𝛿 is the time interval between 
the two IMU measurements 𝑖𝑖  and 𝑖𝑖  + 1. 𝑎𝑎�𝑖𝑖  and ω�𝑖𝑖  are the 
acceleration and the angular velocity of IMU at time 𝑖𝑖 . 
Therefore, a continuous-time linearized dynamics of error 
terms can be derived: 

The covariance matrix 𝑃𝑃𝑏𝑏𝑏𝑏+1𝑏𝑏𝑏𝑏 and the Jacobian 𝐽𝐽𝑏𝑏𝑘𝑘+1 can be 
computed as following: 
𝑃𝑃𝑡𝑡+𝛿𝛿𝛿𝛿
𝑏𝑏𝑘𝑘 = (𝐼𝐼 + 𝐹𝐹𝑡𝑡𝛿𝛿𝛿𝛿)𝑃𝑃𝑡𝑡

𝑏𝑏𝑘𝑘(𝐼𝐼 + 𝐹𝐹𝑡𝑡𝛿𝛿𝛿𝛿)𝑇𝑇 + (𝐺𝐺𝑡𝑡𝛿𝛿𝛿𝛿)𝑄𝑄(𝐺𝐺𝐺𝐺𝐺𝐺)𝑇𝑇 (11) 

𝐽𝐽𝑡𝑡+𝛿𝛿𝛿𝛿 = (𝐼𝐼 + 𝐹𝐹𝑡𝑡𝛿𝛿𝛿𝛿)𝐽𝐽𝑡𝑡 , 𝑡𝑡 ∈ [𝑘𝑘, 𝑘𝑘 + 1] (12) 

where 𝑃𝑃𝑡𝑡
𝑏𝑏𝑘𝑘 and 𝑄𝑄 are the covariance of 𝛿𝛿𝓏𝓏𝑡𝑡𝑏𝑏𝑏𝑏 and noise 𝑛𝑛𝑡𝑡. 

Eventually, α�𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘 , β�𝑏𝑏𝑘𝑘+1

𝑏𝑏𝑘𝑘 , γ�𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘  can be updated with 𝛿𝛿𝑏𝑏𝑎𝑎 

and 𝛿𝛿𝑏𝑏𝜔𝜔 by using 𝐽𝐽𝑡𝑡+𝛿𝛿𝛿𝛿. 

⎣
⎢
⎢
⎢
⎡𝛼𝛼�𝑏𝑏𝑘𝑘+1

𝑏𝑏𝑘𝑘

𝛽𝛽�𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘

𝛾𝛾�𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎡𝛼𝛼�𝑏𝑏𝑘𝑘+1

𝑏𝑏𝑘𝑘 + 𝐽𝐽𝑏𝑏𝑎𝑎
𝛼𝛼 𝛿𝛿𝑏𝑏𝑎𝑎k + 𝐽𝐽𝑏𝑏𝜔𝜔

𝛼𝛼 𝛿𝛿𝑏𝑏𝜔𝜔k
𝛽̂𝛽𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘 + 𝐽𝐽𝑏𝑏𝑎𝑎

𝛽𝛽 𝛿𝛿𝑏𝑏𝑎𝑎k + 𝐽𝐽𝑏𝑏𝜔𝜔
𝛽𝛽 𝛿𝛿𝑏𝑏𝜔𝜔k

𝛾𝛾�𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘 ⊗ �

1
1
2
𝐽𝐽𝑏𝑏𝜔𝜔
𝛾𝛾 𝛿𝛿𝑏𝑏𝜔𝜔k

�
⎦
⎥
⎥
⎥
⎥
⎤

 (13) 

where 𝐽𝐽𝑏𝑏𝑎𝑎
𝛼𝛼  , 𝐽𝐽𝑏𝑏𝜔𝜔

𝛼𝛼  , 𝐽𝐽𝑏𝑏𝑎𝑎
𝛽𝛽  , 𝐽𝐽𝑏𝑏𝜔𝜔

𝛽𝛽 , and 𝐽𝐽𝑏𝑏𝜔𝜔
𝛾𝛾  are the subblock of 𝐽𝐽𝑏𝑏𝑏𝑏+1 . 

The details can be found in [37]. 
The IMU residual is defined as  

𝑟𝑟𝐵𝐵 �𝓏̃𝓏𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘 , 𝑥𝑥� = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑅𝑅𝑤𝑤

𝑏𝑏𝑘𝑘 �𝑝𝑝𝑏𝑏𝑘𝑘+1
𝑤𝑤 − 𝑝𝑝𝑏𝑏𝑘𝑘

𝑤𝑤 +
1
2
𝑔𝑔𝑤𝑤Δ𝑡𝑡𝑘𝑘2 − 𝑣𝑣𝑏𝑏𝑘𝑘

𝑤𝑤 Δ𝑡𝑡𝑘𝑘� − α�𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘

𝑅𝑅𝑤𝑤
𝑏𝑏𝑘𝑘�𝑣𝑣𝑏𝑏𝑘𝑘+1

𝑤𝑤 + 𝑔𝑔𝑤𝑤Δ𝑡𝑡𝑘𝑘 − 𝑣𝑣𝑏𝑏𝑘𝑘
𝑤𝑤 � − β�𝑏𝑏𝑘𝑘+1

𝑏𝑏𝑘𝑘

2 ��𝑞𝑞𝑤𝑤
𝑏𝑏𝑘𝑘�

−1
⊗ 𝑞𝑞𝑏𝑏𝑘𝑘+1

𝑤𝑤 ⊗ �𝛾𝛾�𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘 �

−1
�
𝑥𝑥𝑥𝑥𝑥𝑥

𝑏𝑏𝑎𝑎𝑎𝑎𝑘𝑘+1 − 𝑏𝑏𝑎𝑎𝑎𝑎𝑘𝑘
𝑏𝑏𝜔𝜔𝜔𝜔𝑘𝑘+1 − 𝑏𝑏𝜔𝜔𝜔𝜔𝑘𝑘 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 
(14) 

where [∙]𝑥𝑥𝑥𝑥𝑥𝑥 denotes extracting the vector part of a quaternion. 
𝛼𝛼�𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘 , 𝛽𝛽�𝑏𝑏𝑘𝑘+1

𝑏𝑏𝑘𝑘  , and 𝛾𝛾�𝑏𝑏𝑘𝑘+1
𝑏𝑏𝑘𝑘  denote the IMU terms only 

preintegrating the noisy acceleration and gyroscope 
measurements within the time interval between two continuous 
camera measurements. 

3) Visual Measurement Residual: The landmarks are 
detected and tracked as image features. In addition, this work 
defines the vision residual that considers the 𝑙𝑙𝑡𝑡ℎ feature in the 
𝑗𝑗𝑡𝑡ℎ image as the reprojaction error in Figure 2. 

𝑟𝑟𝑐𝑐�𝓏̂𝓏𝑙𝑙
𝑐𝑐𝑗𝑗 ,𝜒𝜒� = 𝜋𝜋𝑐𝑐−1 ��

𝑢𝑢�𝑙𝑙
𝑐𝑐𝑗𝑗

𝑣𝑣�𝑙𝑙
𝑐𝑐𝑗𝑗�� −

𝑃𝑃𝑙𝑙
𝑐𝑐𝑗𝑗

�𝑃𝑃𝑙𝑙
𝑐𝑐𝑗𝑗�

 (15) 

𝑃𝑃𝑙𝑙
𝑐𝑐𝑗𝑗 = 𝑅𝑅𝑏𝑏𝑐𝑐 �𝑅𝑅𝑤𝑤

𝑏𝑏𝑗𝑗 �𝑅𝑅𝑏𝑏𝑖𝑖
𝑤𝑤 �𝑅𝑅𝑐𝑐𝑏𝑏

1
𝜆𝜆𝑙𝑙
𝜋𝜋𝑐𝑐−1 ��

𝑢𝑢𝑙𝑙
𝑐𝑐𝑖𝑖

𝑣𝑣𝑙𝑙
𝑐𝑐𝑖𝑖�� + 𝑝𝑝𝑐𝑐𝑏𝑏� + 𝑝𝑝𝑏𝑏𝑖𝑖

𝑤𝑤 − 𝑝𝑝𝑏𝑏𝑗𝑗
𝑤𝑤� − 𝑝𝑝𝑐𝑐𝑏𝑏� 

(16) 

Where �𝑢𝑢�𝑙𝑙
𝑐𝑐𝑗𝑗 𝑣𝑣�𝑙𝑙

𝑐𝑐𝑗𝑗� is the observation of the 𝑙𝑙𝑡𝑡ℎ feature in the 𝑗𝑗𝑡𝑡ℎ 
image, and �𝑢𝑢𝑙𝑙

𝑐𝑐𝑖𝑖 𝑣𝑣𝑙𝑙
𝑐𝑐𝑖𝑖� is the same feature observed in the𝑗𝑗𝑡𝑡ℎ 

image. 𝜋𝜋𝑐𝑐−1 is a back projection function which projects a pixel 
location into a unit vector. This residual can be viewed as a re-
projection error in the field of computer vision as Figure 1. 

 

Fig. 2: Reprojection Error of The Feature Observation 

B. Observability Analysis for VIO 

In this section, to simplify the process of analyzing the 
observability properties of the VIO system, this work considers 
the situation that only one single point feature is observed by the 
camera measurement. Specifically, this work first study and find 
out that there are four unobservable directions of the ideal VIO 
system. Instead of directly using the above states, this work 
examines the observability of the system with a new definition 
of the state vector to more easily analyze the property. 

1) System State: The state vector for observability analysis is 
defined as 

𝑥𝑥 = �𝑞𝑞𝑤𝑤
𝑏𝑏𝑘𝑘, 𝑏𝑏𝑔𝑔, 𝑣𝑣𝑏𝑏𝑘𝑘

𝑤𝑤 , 𝑏𝑏𝑎𝑎 , 𝑝𝑝𝑏𝑏𝑘𝑘
𝑤𝑤 , 𝑓𝑓𝑚𝑚𝑤𝑤� (17) 

Where 𝑝𝑝𝑏𝑏𝑘𝑘
𝑤𝑤  ,𝑣𝑣𝑏𝑏𝑘𝑘

𝑤𝑤  , 𝑞𝑞𝑤𝑤
𝑏𝑏𝑘𝑘, 𝑏𝑏𝑎𝑎  , 𝑏𝑏𝑔𝑔 are mentioned in the Section II-

A1. 𝑓𝑓𝑚𝑚𝑤𝑤  is the 3-D position of the 𝑚𝑚𝑡𝑡ℎ  feature in the world 
frame, corresponding the 𝑚𝑚𝑡𝑡ℎ feature in Section II-A1. 

2) System Dynamic Model: The dynamics model of the VIO 
system is described as follows. 

𝑞̇𝑞𝑤𝑤
𝑏𝑏𝑘𝑘 =

1
2
𝛺𝛺(𝜔𝜔)𝑞𝑞𝑤𝑤

𝑏𝑏𝑘𝑘  

𝑏𝑏𝑔̇𝑔 = 𝑛𝑛𝑏𝑏𝑏𝑏 

𝑣̇𝑣𝑏𝑏𝑘𝑘
𝑤𝑤 = 𝑎𝑎 

𝑏𝑏𝑎̇𝑎 = 𝑛𝑛𝑏𝑏𝑏𝑏 

𝑝̇𝑝𝑏𝑏𝑘𝑘
𝑤𝑤 = 𝑣𝑣𝑏𝑏𝑘𝑘

𝑤𝑤  

𝑓𝑓𝑚𝑚𝑤𝑤 = 03×1 

(18) 

where 𝑎𝑎 and 𝜔𝜔 are the acceleration and rotation velocity of the 
IMU, respectively. In addition, 

Ω(𝜔𝜔) = �−[𝜔𝜔 ×] 𝜔𝜔
−𝜔𝜔𝑇𝑇 0

� , [𝜔𝜔 ×] = �
0 −𝜔𝜔3 𝜔𝜔2
𝜔𝜔3 0 −𝜔𝜔1
−𝜔𝜔2 𝜔𝜔1 0

� 

From the above definition, the nominal states can be derived 
as follows. 
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⎣
⎢
⎢
⎢
⎢
⎢
⎡𝛿𝛿𝛼̇𝛼𝑡𝑡

𝑏𝑏𝜅𝜅

𝛿𝛿𝛽̇𝛽𝑡𝑡
𝑏𝑏𝜅𝜅

𝛿𝛿𝜃̇𝜃𝑡𝑡
𝑏𝑏𝜅𝜅

𝛿𝛿𝑏̇𝑏𝑎𝑎𝑎𝑎
𝛿𝛿𝑏̇𝑏𝜔𝜔𝜔𝜔⎦

⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
0 𝐼𝐼 0 0 0
0 0 −𝑅𝑅𝑡𝑡

𝑏𝑏𝑘𝑘[𝑎𝑎�𝑡𝑡 − 𝑏𝑏𝑎𝑎𝑎𝑎]× −𝑅𝑅𝑡𝑡
𝑏𝑏𝑘𝑘 0

0 0 −[𝜔𝜔�𝑡𝑡 − 𝑏𝑏𝜔𝜔𝜔𝜔]× 0 −𝐼𝐼
0 0 0 0 0
0 0 0 0 0 ⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡𝛿𝛿𝛼𝛼𝑡𝑡

𝑏𝑏𝜅𝜅

𝛿𝛿𝛽𝛽𝑡𝑡
𝑏𝑏𝜅𝜅

𝛿𝛿𝜃𝜃𝑡𝑡
𝑏𝑏𝜅𝜅

𝛿𝛿𝑏𝑏𝑎𝑎𝑎𝑎
𝛿𝛿𝑏𝑏𝜔𝜔𝜔𝜔⎦

⎥
⎥
⎥
⎥
⎤

 

+

⎣
⎢
⎢
⎢
⎡

0 0 0 0
−𝑅𝑅𝑡𝑡

𝑏𝑏𝑘𝑘 0 0 0
0 −𝐼𝐼 0 0
0 0 −𝐼𝐼 0
0 0 0 −𝐼𝐼⎦

⎥
⎥
⎥
⎤

�

𝑛𝑛𝑎𝑎
𝑛𝑛𝜔𝜔
𝑛𝑛𝑏𝑏𝑏𝑏
𝑛𝑛𝑏𝑏𝑏𝑏

� 

= 𝐹𝐹𝑡𝑡𝛿𝛿𝓏𝓏𝑡𝑡
𝑏𝑏𝑘𝑘 + 𝐺𝐺𝑡𝑡𝑛𝑛𝑡𝑡 

(10) 

 

𝑞̇𝑞𝑤𝑤
𝑏𝑏𝑘𝑘 =

1
2
𝛺𝛺(𝜔𝜔�)𝑞𝑞�𝑤𝑤

𝑏𝑏𝑘𝑘  

𝑏𝑏𝑔̇𝑔 = 03×1 

𝑣̇𝑣𝑏𝑏𝑘𝑘
𝑤𝑤 = 𝐶𝐶𝑇𝑇�𝑞𝑞�𝑤𝑤

𝑏𝑏𝑘𝑘�𝑎𝑎� + 𝑔𝑔𝑤𝑤  

𝑏𝑏𝑎̇𝑎 = 03×1 

𝑝̇𝑝𝑏𝑏𝑘𝑘
𝑤𝑤 = 𝑣𝑣�𝑏𝑏𝑘𝑘

𝑤𝑤  

𝑓𝑓𝑚𝑚𝑤𝑤 = 03×1 

(19) 

where 𝑎𝑎� = 𝑎𝑎𝑚𝑚 − 𝑏𝑏�𝑎𝑎 ,  and  𝜔𝜔� = 𝜔𝜔𝑚𝑚 − 𝑏𝑏�𝑔𝑔.𝐶𝐶�𝑞𝑞�𝑤𝑤
𝑏𝑏𝑘𝑘�  is the 

rotation matrix corresponding to 𝑞𝑞�𝑤𝑤
𝑏𝑏𝑘𝑘. 

Therefore, the error state between the true state and the 
nominal state, 𝑥𝑥� = 𝑥𝑥 − 𝑥𝑥�, can be obtained as 

𝑥𝑥�̇ = � 𝐹𝐹 015×3𝑚𝑚
03𝑚𝑚×15 03𝑚𝑚

� 𝑥𝑥� + � 𝐺𝐺
03𝑚𝑚×12

� 𝑛𝑛 (20) 

where 𝑛𝑛  is the noise  𝑛𝑛 = [(𝑛𝑛𝜔𝜔)𝑇𝑇(𝑛𝑛𝑏𝑏𝑏𝑏)𝑇𝑇(𝑛𝑛𝑎𝑎)𝑇𝑇(𝑛𝑛𝑏𝑏𝑏𝑏)𝑇𝑇]𝑇𝑇 .  𝐹𝐹  is 
the errorstate transition matrix, and 𝐺𝐺  is the input noise 
matrix defined as. 

𝐹𝐹 =

⎣
⎢
⎢
⎢
⎢
⎡ −[ω� ×] −𝐼𝐼3 03 03 03

03 03 03 03 03
−𝐶𝐶𝑇𝑇�𝑞𝑞�𝑤𝑤

𝑏𝑏𝑘𝑘�[𝑎𝑎� ×] 03 03 −𝐶𝐶𝑇𝑇�𝑞𝑞�𝜔𝜔
𝑏𝑏𝑘𝑘� 03

03 03 03 03 03
03 03 𝐼𝐼3 03 03⎦

⎥
⎥
⎥
⎥
⎤

 (21) 

𝐺𝐺 =

⎣
⎢
⎢
⎢
⎢
⎡
−𝐼𝐼3 03 03 03
03 𝐼𝐼3 03 03
03 03 −𝐶𝐶𝑇𝑇�𝑞𝑞�𝜔𝜔

𝑏𝑏𝑘𝑘� 03
03 03 03 𝐼𝐼3
03 03 03 03⎦

⎥
⎥
⎥
⎥
⎤

 (22) 

 
3) Discrete-Time Implementation: Because the IMU 

measurements are received at a sample time, they are sampled 
at a constant rate 1 ∕ 𝛿𝛿𝑡𝑡 , where 𝛿𝛿𝑡𝑡 = 𝑡𝑡𝑘𝑘+1 − 𝑡𝑡𝑘𝑘 . The state 
estimation is propagated using numerical integration, so the 
discrete-time state transition matrix Φ𝑘𝑘

𝑘𝑘+1 from time-step 𝑡𝑡𝑘𝑘 to 
𝑡𝑡𝑘𝑘+1 is desired. 

Φ̇𝑘𝑘
𝑘𝑘+1 = 𝐹𝐹Φ𝑘𝑘

𝑘𝑘+1 

Φ0 = 𝐼𝐼18 (23) 

The discrete-time system noise covariance matrix 𝑄𝑄𝑘𝑘  and 
propagation covariance matrix 𝛲𝛲k+1|k are also derived as 

𝑄𝑄𝑘𝑘 = � Φ𝜏𝜏
𝑘𝑘+1𝐺𝐺𝐺𝐺𝑐𝑐𝐺𝐺𝑇𝑇(Φ𝜏𝜏

𝑘𝑘+1)𝑇𝑇𝑑𝑑𝑑𝑑

𝑡𝑡𝑘𝑘+1

𝑡𝑡𝑘𝑘

 (24) 

𝑃𝑃𝜅𝜅+1|𝑘𝑘 = Φ𝑘𝑘
𝑘𝑘+1𝑃𝑃𝑘𝑘|𝑘𝑘�Φ𝑘𝑘

𝑘𝑘+1�𝛵𝛵 + 𝑄𝑄𝑘𝑘  (25) 

where 𝑄𝑄𝑐𝑐 depends on the IMU noise characteristics. 

4) Measurement Model：During motion, the camera observes 
plenty of visual features, and the motion and feature position are 
estimated by utilizing the camera measurements. For 
simplification, this work considers the camera residual with only 
one feature point 𝑓𝑓𝑖𝑖 . The camera measurement 𝓏𝓏𝑖𝑖  is the 
projection of the 3-D point 𝑓𝑓𝑖𝑖𝑏𝑏, expressed in the IMU frame as 

𝓏𝓏𝑖𝑖 =
1
𝓏𝓏
�
𝑥𝑥
𝑦𝑦� + 𝜂𝜂𝑖𝑖  (26) 

�
𝑥𝑥
𝑦𝑦
𝓏𝓏
� = 𝑓𝑓𝑖𝑖𝑏𝑏 = 𝐶𝐶(𝑞𝑞𝑤𝑤𝑏𝑏 )(𝑓𝑓𝑖𝑖𝑤𝑤 − 𝑝𝑝𝑏𝑏𝑤𝑤) (27) 

where 𝜂𝜂𝑖𝑖 is the measurement noise. Therefore, the error state of 
the measurement model is: 

𝓏̃𝓏𝑖𝑖 = 𝓏𝓏𝑖𝑖 − 𝓏̂𝓏𝑖𝑖  

= 𝐻𝐻𝑖𝑖𝑥𝑥� + 𝜂𝜂𝑖𝑖  
(28) 

where 𝑥𝑥� is the nominal measurement computed by (26)-(27), 
and the measurement Jacobian 𝐻𝐻𝑖𝑖 is defined as 

𝐻𝐻𝑖𝑖 = 𝐻𝐻𝑐𝑐�𝐻𝐻𝑞𝑞 03×9 𝐻𝐻𝑝𝑝| 03 ⋯  𝐻𝐻𝑓𝑓𝑖𝑖 ⋯  03�, (29) 

where 
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𝐻𝐻𝑐𝑐 =
1
𝓏𝓏2
�𝓏𝓏 0 −𝑥𝑥
0 𝓏𝓏 −𝑦𝑦� 

𝐻𝐻𝑞𝑞 = [𝐶𝐶(𝑞𝑞𝑤𝑤𝑏𝑏 )(𝑓𝑓𝑖𝑖𝑤𝑤 − 𝑞𝑞𝑏𝑏𝑤𝑤) ×] 

𝐻𝐻𝑝𝑝 = −𝐶𝐶(𝑞𝑞𝑤𝑤𝑏𝑏 ) 

𝐻𝐻𝑓𝑓𝑖𝑖 = 𝐶𝐶(𝑞𝑞𝑤𝑤𝑏𝑏 ) 

While a new feature is observed by the camera, this work 
initializes it into the state vector. Since one feature observation 
does not provide enough information to resolve the 3-D position 
of the feature point, this work utilize multiple observations to 
recover the features. In order to compute the initial feature 
position estimation, uncertainty, and cross-correlation with the 
current state, this work use a bundle-adjustment method to solve 
it over a sliding window. 

5) Observability Analysis: To simply understand the 
observability property of the VIO system, this work considers 
the case when only one feature point is observed. If the 
observability matrix 𝛭𝛭(𝑥𝑥) is full column rank, this work can say 
that the VIO system would be observable, vice versa. 

The observation matrix 𝛭𝛭 is defined as [38]: 

𝛭𝛭(𝑥𝑥) = �

𝐻𝐻1
𝐻𝐻2Φ1

2

⋮
𝐻𝐻𝑘𝑘Φ1

𝑘𝑘

� (30) 

where Φ1
𝑘𝑘 is the state transition matrix from time-step 1 to time-

step 𝑘𝑘, and 𝐻𝐻𝑘𝑘 is the linearized measurement model at time-step 
𝑘𝑘. 

Therefore, the nullspace 𝑁𝑁 of the observability matrix can be 
derived, which is the span of the unobservability direction for 
the VIO system. 

𝑁𝑁1 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡03
03
03
03
𝐼𝐼3
𝐼𝐼3

𝐶𝐶�𝑞𝑞𝑤𝑤
𝑏𝑏1�𝑔𝑔𝑤𝑤

03×1

−�𝑣𝑣𝑏𝑏1
𝑤𝑤 ×�𝑔𝑔𝑤𝑤

03×1

−�𝑝𝑝𝑏𝑏1
𝑤𝑤 ×�𝑔𝑔𝑤𝑤

−[𝑓𝑓𝑤𝑤 ×]𝑔𝑔𝑤𝑤⎦
⎥
⎥
⎥
⎥
⎥
⎤

= � 𝑁𝑁𝑡𝑡,1|  𝑁𝑁𝑟𝑟,1� (31) 

The detailed derivation and proof can refer to [3]. The 18 × 3 
block column 𝑁𝑁𝑡𝑡,1  corresponding to the global translation 
motion, i.e., amount of vehicle translation is same with the 
feature point translation. The 18 × 1  column 𝑁𝑁𝑟𝑟,1 
corresponding to the global rotation motion of vehicle and the 
feature about the gravity vector. In conclusion, the VIO system 
has four unobservable direction corresponding 3-D global 
translation and 1-D global rotation about the gravity vector. 

III. ESTIMATION BASED ON VISUAL OBSERVABILITY 
To enforce the robustness and consistence of the VIO result, 

his work take observability into account during the estimation 
process in (46). The feature points with higher observability 
values will improve the estimation result. In this paper, this work 
visualizes the observability of every feature point in the image 
and redesign the estimation formula based on the observability. 

 
Fig. 3: A block diagram illustrating the pipeline of the visual-
inertial odometry weighted by observability 

A. Overview 

The architecture of the visual-inertial state estimator weighted 
by the observability is shown in Figure 3. First, in the 
measurement preprocessing stage, the system receives the 
information from the IMU and the two cameras, and it pre-
integrates the IMU measurement between two consecutive 
frames and extracts the individual feature points to track. In 
order to get the observability of each feature point, the three-
dimension pose of the feature point is required. Secondly, this 
work temporally uses the state estimation proposed from [37] to 
get the 3D pose of all feature points. Therefore, this work can 
calculate the observability for feature points with the 3D pose. 
With the observability information, the camera chooser 
determines which camera is better as the visual input based on 
their image observability. In addition, this work finds that the 
more number the features in the image with low observability, 
the more possibility the estimation is wrong. Thirdly, during the 
outlier filtering process, the feature point which has an 
observability value of three times larger than the standard 
deviation is not considered in the estimator. Since, the 
observability value represents how important the feature point is 
for the estimator. Finally, the estimator weighted by 
observability (46) is modified from (4), which weighs every 
camera residual by their individual feature observability value. 
Theoretically, the more feature points with high observability, 
the more accurate the estimation result is. 

B. Relation between Estimation Uncertainty and System 
Observability 

To improve the accuracy of estimation problem, the system 
observability [39] is considered. 

The time derivative of system output y up to order 𝑛𝑛 − 1: 

𝑌𝑌 = �

𝑦𝑦
𝑦𝑦(1)

⋮
𝑦𝑦(𝑛𝑛−1)

� = 𝑔𝑔�𝑥𝑥,𝑢𝑢, … ,𝑢𝑢(𝑛𝑛−𝑟𝑟−1)� (32) 

where 𝑥𝑥  represents the system states, 𝑢𝑢  represents the system 
input. The superscript denotes the order of the time derivative. 
𝑛𝑛 and 𝑟𝑟 are the degree of states and the relative degree of system, 
respectively. 

This work gets a linear approximation of the system output by 
computing the first-order Taylor series expansion. 

𝑌𝑌 ≈ 𝑔𝑔(𝑥𝑥0,𝑢𝑢0) + 𝑑𝑑𝑑𝑑(𝑥𝑥0)Δ𝑥𝑥 (33) 

 



Chen et. al.  
Observability-Weighted Visual-Inertial Navigation System 

14 

where 𝑥𝑥0  and 𝑢𝑢0  are the linearization point. 𝑑𝑑𝑌𝑌  (𝑥𝑥0 ) is the 
derivative of 𝑌𝑌  with respect to the state at point 𝑥𝑥0 . Δ𝑥𝑥 
represents the deviation of states from the linearization point. 

Through the least-square estimator [40], this work can get an 
approximate solution for Δ𝑥𝑥 , if the measurements 𝑌𝑌  are 
interfered by the measurement noise with covariance 𝑅𝑅. 

Δ𝑥𝑥 = (𝑑𝑑𝑌𝑌𝑇𝑇𝑅𝑅−1𝑑𝑑𝑑𝑑)−1𝑑𝑑𝑌𝑌𝑇𝑇𝑅𝑅−1(𝑌𝑌 − 𝑔𝑔) (34) 

and state covariance [40] 

𝑃𝑃 = (𝑑𝑑𝑌𝑌𝑇𝑇𝑅𝑅−1𝑑𝑑𝑑𝑑)−1 (35) 

Therefore, citing Cramer-Rao lower bound from [41], the 
state covariance 𝑃𝑃  is inversely proportional to the value of 
𝑑𝑑𝑌𝑌𝑇𝑇𝑅𝑅−1𝑑𝑑𝑑𝑑  . By the way, the measurement Jacobian 𝑑𝑑𝑑𝑑  is 
equivalent to the observability matrix 𝑀𝑀 in (30). Thus, in order 
to improve the performance of estimation, the trace of the 
observability matrix is considered as a metric. 

C. Estimation with Observability 

In order to quantify the observability matrix, a scalar value of 
the observability matrix needs to be evaluated. The quantitative 
method used is to take the trace value of the observability matrix, 
which means the inverse of average estimation uncertainty [39]. 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇(𝑀𝑀𝑇𝑇𝑀𝑀) (36) 

Specially, there are several features received by camera, 
which means the row number of the measurement model 𝐻𝐻 in is 
larger than the number of the states, so the observability matrix 
is 

𝑀𝑀(𝑥𝑥) = [𝐻𝐻] 

𝐻𝐻 =
𝜕𝜕𝑟𝑟𝑐𝑐�𝓏̂𝓏𝑙𝑙

𝑐𝑐𝑗𝑗 ,𝜒𝜒�
𝜕𝜕𝜕𝜕

 
(37) 

From the definition of tightly-couple VIO system (15) defined 
in Section II-A, the linearized measurement model is 

𝐻𝐻 = �
𝐻𝐻1
⋮
𝐻𝐻𝑙𝑙
� (38) 

𝐻𝐻𝑙𝑙 =

⎣
⎢
⎢
⎢
⎢
⎡ 1

𝓏𝓏𝑙𝑙
𝑐𝑐𝑗𝑗 0

−𝑥𝑥𝑙𝑙
𝑐𝑐𝑗𝑗

�𝓏𝓏𝑙𝑙
𝑐𝑐𝑗𝑗�

2

0
1

𝓏𝓏𝑙𝑙
𝑐𝑐𝑗𝑗

−𝑦𝑦𝑙𝑙
𝑐𝑐𝑗𝑗

�𝓏𝓏𝑙𝑙
𝑐𝑐𝑗𝑗�

2
⎦
⎥
⎥
⎥
⎥
⎤

��−𝑅𝑅𝑏𝑏
𝑐𝑐𝑅𝑅𝑤𝑤

𝑏𝑏𝑗𝑗�
𝑇𝑇

𝐻𝐻𝑙𝑙_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
� (39) 

𝐻𝐻𝑙𝑙_𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �𝑅𝑅𝑏𝑏𝑐𝑐 �𝑅𝑅𝑤𝑤
𝑏𝑏𝑗𝑗 �𝑅𝑅𝑏𝑏𝑖𝑖

𝑤𝑤𝑃𝑃𝑡𝑡𝑏𝑏 + 𝑝𝑝𝑏𝑏𝑖𝑖
𝑤𝑤 − 𝑝𝑝𝑏𝑏𝑗𝑗

𝑤𝑤� − 𝑝𝑝𝑐𝑐𝑏𝑏� ×�
𝑇𝑇

 (40) 

𝑃𝑃𝑡𝑡𝑏𝑏 = 𝑅𝑅𝑐𝑐𝑏𝑏
1
𝜆𝜆𝑙𝑙
𝜋𝜋𝑐𝑐−1 ��

𝑢𝑢𝑙𝑙
𝑐𝑐𝑖𝑖

𝑣𝑣𝑙𝑙
𝑐𝑐𝑖𝑖�� + 𝑝𝑝𝑐𝑐𝑏𝑏 (41) 

where 𝑙𝑙 is the subscript of the feature point in the sliding window. 
𝑥𝑥𝑙𝑙
𝐶𝐶𝑗𝑗 , and 𝑦𝑦𝑙𝑙

𝐶𝐶𝑗𝑗, and 𝑧𝑧𝑙𝑙
𝐶𝐶𝑗𝑗𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑙𝑙𝑡𝑡ℎ feature point in the 

world frame. 

Subsequently, the cost function can be rewritten as 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑇𝑇𝑇𝑇(𝐻𝐻𝑇𝑇𝐻𝐻) 

= 𝑇𝑇𝑇𝑇 ��−𝑅𝑅𝑏𝑏𝑐𝑐𝑅𝑅𝑤𝑤
𝑏𝑏𝑗𝑗�

𝑇𝑇
𝐴𝐴 �−𝑅𝑅𝑏𝑏𝑐𝑐𝑅𝑅𝑤𝑤

𝑏𝑏𝑗𝑗�� + 𝑇𝑇𝑇𝑇[𝑈𝑈𝑇𝑇𝐴𝐴𝐴𝐴] 
(42) 

𝐴𝐴 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1

�𝓏𝓏𝑙𝑙
𝐶𝐶𝑗𝑗�

2 0
−𝑥𝑥𝑙𝑙

𝑐𝑐𝑗𝑗

�𝓏𝓏𝑙𝑙
𝑐𝑐𝑗𝑗�

3

0
1

�𝓏𝓏𝑙𝑙
𝑐𝑐𝑗𝑗�

2
−𝑦𝑦𝑙𝑙

𝑐𝑐𝑗𝑗

�𝓏𝓏𝑙𝑙
𝑐𝑐𝑗𝑗�

3

−𝑥𝑥𝑙𝑙
𝑐𝑐𝑗𝑗

�𝓏𝓏𝑙𝑙
𝑐𝑐𝑗𝑗�

3
−𝑦𝑦𝑙𝑙

𝑐𝑐𝑗𝑗

�𝓏𝓏𝑙𝑙
𝑐𝑐𝑗𝑗�

3

𝑥𝑥𝑙𝑙
𝑐𝑐𝑗𝑗

�𝓏𝓏𝑙𝑙
𝑐𝑐𝑗𝑗�

3 +
𝑦𝑦𝑙𝑙
𝑐𝑐𝑗𝑗

�𝓏𝓏𝑙𝑙
𝑐𝑐𝑗𝑗�

3
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (43) 

𝑈𝑈 = 𝑅𝑅𝑏𝑏𝑐𝑐 �𝑅𝑅𝑤𝑤
𝑏𝑏𝑗𝑗 �𝑅𝑅𝑏𝑏𝑖𝑖

𝑤𝑤 �𝑅𝑅𝑐𝑐𝑏𝑏
1
𝜆𝜆𝑙𝑙
𝜋𝜋𝑐𝑐−1 ��

𝑢𝑢𝑙𝑙
𝐶𝐶𝑖𝑖

𝑣𝑣𝑙𝑙
𝐶𝐶𝑖𝑖��+ 𝑝𝑝𝑐𝑐𝑏𝑏�+ 𝑝𝑝𝑏𝑏𝑖𝑖

𝑤𝑤 − 𝑝𝑝𝑏𝑏𝑗𝑗
𝑤𝑤� − 𝑝𝑝𝑐𝑐𝑏𝑏 ×� 

 (44) 
Thus, the optimal control input for the position 𝑝𝑝𝑏𝑏𝑘𝑘

𝑤𝑤  and 
quaternion 𝑞𝑞𝑏𝑏𝑘𝑘

𝜔𝜔  of the system depends on the Jacobian of cost 
function. 

1) Normalization of the Cost Function: When the vehicle 
moves in the environment, the number of observed feature 
points is various. The column number of (38) is same as the 
number of feature points. Thus, the normalization of the cost 
function is an unavoidable problem to deal with. Through the 
mathematical induction, the normalized cost function is derived 
as 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑇𝑇𝑇𝑇(𝐻𝐻𝑇𝑇𝐻𝐻)

𝑚𝑚
 (45) 

where 𝑚𝑚 is the number of feature points. 
2) Camera Chooser: Unmanned vehicle moving in a de-

generated environment will result in degraded estimation. 
Typically, the camera measurement has low system 
observability in those degenerated environments. In other words, 
the higher the system observability is, the more accurate the 
estimated result is. Hence, in the two-camera case, this work 
choose which camera should be used in the current estimation 
and the other camera will temporary drop out, according to their 
individual observability from (45). In the experiments, the 
camera measurements with higher observability values will be 
reserved, and those with lower observability values are not 
included in the system. 

After getting the observability of every feature point (39), this 
work found that the estimation result is severely affected by the 
outlier feature points. In order to enforce the consistence of the 
estimation, filtering out the outlier feature points is a significant 
pre-process before estimation. If the observability value of the 
feature point is three times larger than the standard deviation, the 
feature point will be filtered out from the estimation process. 
Therefore, the estimation result with the pre-processing will be 
more robust and consistent. 

3) Estimation With Observability: The observability value 
represents the influence of the measurement with the estimated 
states. As mentioned earlier, considering the observability value 
in the estimation process will improve the accuracy. Focusing 
on more observable measurement will increase the estimation 
reliability. Therefore, the observability of each feature point is 
considered in the estimation process as (46). 
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𝑚𝑚𝑚𝑚𝑚𝑚
𝑥𝑥

��𝑟𝑟𝑝𝑝 − 𝐻𝐻𝑝𝑝𝑥𝑥�
2 + ��𝑟𝑟𝐵𝐵�𝓏̂𝓏𝑏𝑏𝑏𝑏+1𝑏𝑏𝑏𝑏 , 𝑥𝑥��2

𝑘𝑘∈𝐵𝐵

+ 

                                    � 𝜌𝜌
(𝑙𝑙,𝑗𝑗)∈𝐶𝐶

��
𝑀𝑀𝑙𝑙

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑟𝑟𝐶𝐶�𝓏̂𝓏𝑙𝑙

𝑐𝑐𝑗𝑗 ,𝑥𝑥��
2

�� 
(46) 

𝑀𝑀𝑙𝑙 = 𝑇𝑇𝑇𝑇(𝐻𝐻𝑙𝑙𝑇𝑇𝐻𝐻𝑙𝑙) 

𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = �𝑀𝑀𝑙𝑙
𝑙𝑙∈𝐶𝐶

 

where 𝐻𝐻𝑙𝑙  has be early defined in (39), 𝑀𝑀𝑙𝑙  is the trace of the 
observability of the l-th feature pointy and 𝑀𝑀𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  is the total 
trace of the observability of feature points in set C. 

Remark 1: The cost function is designed to maximize the trace 
of the observability matrix. Based on equation (36), this cost can 
serve as a metric to evaluate the quality of individual feature 
points. That is, the higher the observability trace, the more 
valuable the feature point is for state estimation. Given the 
selected feature points, we further improve localization accuracy 
in equation (46) by assigning higher weights to the more 
informative features, resulting in more accurate state estimation. 

IV. SIMULATION 

To verify the estimation performance by considering the 
feature observability, two datasets are used to evaluate the 
estimation result. The first dataset, NTU VIRAL, was collected 
by an unmanned aerial vehicle equipping two cameras and the 
IMU. The main purpose of using the dataset is to confirm if the 
performance of OW-VINS is better than that of VINS-Mono. 
The second dataset, Hilti SLAM, is recorded from a handheld 
platform mounting cameras facing around and an IMU. The aim 
is to evaluate how OW-VINS improves the estimation by using 
the cameras facing the opposite directions. 

A. Individual Observability Value 

In order to evaluate the observability with the distribution of 
feature point, Figure 4 illustrates the individual observability of 
every feature point. The green circles are the observed feature 
points in the image, and the red numbers are the observability 
values of the feature points. There are two regular patterns can 
be observed in Figure 4. Firstly, the closer the feature point is to 
the camera, the larger its observability value is. Secondly, the 
closer the feature point is to the corners of the image, the bigger 
its observability value is. In fact, the laws are reasonable since 
the feature point close to the camera or close to the edge of the 
image has obvious displacement in the image during motion. 
Videos can be found in the multimedia attachment1. 

 
Fig. 4: Individual observability of every feature point 

B. NTU VIRAL Dataset 

NTU VIRAL dataset [42] is a visual-inertial-ranging-lidar 
dataset for autonomous aerial vehicle. It is equipped with two 
times-synchronized cameras with 10 fps and multiple inertial 
measurement units with 385 Hz. In addition, both cameras are 
facing the same direction as shown in Figure 5. The 
comprehensive sensor suite resembles that of an autonomous 
driving car but features distinct and challenging characteristics 
of aerial operations. They conducted the flight tests in a variety 
of indoor and outdoor conditions. The basic information for 
data collection is described in Table I. In eee sequences, the area 
is surrounded by tall building structures where visual features 
can be detected on nearby objects such as buildings, road 
markings, and trees, which collected at the School of EEE 
central carpark. In nya sequences, low lighting conditions are 
difficult for visual SLAM to perform, which collected inside the 
Nanyang Auditorium. Figure 7 illustrates the image captured in 
eee_01 and nya_01, which demonstrates the image in nya_01 is 
obviously darker than that of eee_01. In sbs sequences, some 
low-rise buildings with large glass surfaces surround this area, 
where visual features may only be detected on far way objects, 
which can include noisy depth. Besides, it is collected at the 
School of Bio, Science’s front square. 

 
Fig. 5: Hardware Structure of NTU VIRAL Dataset 

 

 

 
 

1 https://www.youtube.com/watch?v=42jcwil4aCg 
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TABLE I: The Information of NTU VIRAL Dataset 

Sequence Path Length (m) Duration (s) Remark 
eee_01 (Figure 8a) 237 398.7 Collected at the School of EEE central carpark 
eee_02 (Figure 8b) 171 321.1 Collected at the School of EEE central carpark 
nya_01 (Figure 9a) 160 396.3 Collected inside the Nanyang Auditorium 
nya_02 (Figure 9b) 249 428.7 Collected inside the Nanyang Auditorium 
sbs_01 (Figure 10a) 202 354.2 Collected at the School of Bio. Science’s front square 
sbs_02 (Figure 10b) 184 373.3 Collected at the School of Bio. Science’s front square 

 

 

 

  
(a) eee sequence                                          (b) nya sequence 

 
(c) sbs sequence 

Fig. 6: Environment where the NTU VIRAL datasets are 
Collected 

  
(a) Feature Points in eee_01 Dataset    (b) Feature Points in nya_01 Dataset 

Fig. 7: Feature Points in Different Datasets 
 

In the datasets, this work utilizes them to check whether 
switching cameras as input based on its observability is better 
than consistently using the same camera as input. VINS-MONO 
always use the left camera as its image input. Instead, OW-VINS 
firstly determines which camera should be used by computing 
their observability value, and secondly estimates the states by 
considering every feature point’s observability in the image. In 
Table II, it is clear that OW-VINS is almost much better than 
VINS-Mono at least 10 percentages. In eee sequences, OW-
VINS improves the estimation accuracy about 10 percentages, 
which means it is suitable for these outside environments. In nya 
sequences, there is no significant difference between both 
methods. The reason is that the inside environment has few 
visual features since it lacks in enough light to identify 
surrounding object. In sbs sequences, although the environment 
is full of far visual features that cause noisy depth, OW-VINS is 
able to filter those noisy feature points to improve the estimation 
accuracy by at least 35 percentage. Unfortunately, there is no 

obvious improvement in RPE in Table III. The estimated 
trajectories by VINS-Mono and OW-VINS are illustrated from 
Figure 8a to Figure 10b. The estimated trajectory using OW-
VINS fits the ground truth better than the that of VINS-Mono. 

TABLE II: Position APE (m) of VINS-MONO and WO-VINS 

Sequence VINS-MONO OW-VINS Progress (%) 
eee_01 (Figure 8a) 2.912062 2.502542 14 
eee_02 (Figure 8b) 1.557913 0.856959 45 
nya_01 (Figure 9a) 1.160654 1.083436 6 
nya_02 (Figure 9b) 1.436416 1.499788 -4 
sbs_01 (Figure 10a) 6.955026 2.559598 63 
sbs_02 (Figure 10b) 3.020185 1.859777 38 

 

  
(a) eee_01                                   (b) eee_02 

Fig. 8: Trajectories of Sequence eee Generated from VINS-
Mono and OW-VINS 

TABLE III: Position RPE (m) of VINS-MONO and WO-VINS 

Sequence VINS-MONO OW-VINS Progress (%) 
eee_01 (Figure 8a) 0.113202 0.113270 -0.06 
eee_02 (Figure 8b) 0.094816 0.094236 0.6 
nya_01 (Figure 9a) 0.111705 0.096028 14 
nya_02 (Figure 9b) 0.111275 0.111755 -0.4 
sbs_01 (Figure 10a) 0.113973 0.114006 -0.02 
sbs_02 (Figure 10b) 0.117595 0.116775 0.6 
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       (a) nya_01                                       (b) nya_02 

Fig. 9: Trajectories of Sequence nya Generated from VINS-

Monoand OW-VINS 

 
(a) sbs_01                                            (b) sbs_02 

Fig. 10: Trajectories of Sequence sbs Generated from VINS-

Mono and OW-VINS 

Specifically, Figure 10a shows the estimated trajectory using 
VINS-Mono has more serious drift than that of OW-VINS in the 
red area. Figure 11 shows the image captured when the vehicle 
moves around the areas in the red circle in Figure 10a. 
Meanwhile, the feature points in the image rapidly moves when 
the cameras are rotating. That results in plenty of new feature 
points to be captured in the estimation. Because those new 
feature points are not enough to be tracked in the past, it leads to 
unconvinced estimation. In addition, the far feature points have 
few displacements in the image, which can cause unstable 
estimation. Therefore, OW-VINS will filter out those noisy 
feature points from the estimation as shown in Figure 11. Videos 
can be found in the multimedia attachment2. 

   
(a) Feature points of VINS-Mono          (b) Feature points of OW-VINS 

Fig. 11: Observed Feature Points of sbs_01 

 
The deeper the circle in red, the newer the feature point is in 

Figure 11a. The deeper the circle in blue, the more times the 
feature point is in track in Figure 11a. It is obvious that many red 
feature points and far feature point, like the clouds, are filtered 

 
2 https://www.youtube.com/watch?v=P6kWT8X7Dn4 

by OW-VINS in Figure 11b. The method of OW-VINS reduces 
the influence of those noisy feature points since their 
observability is low. Therefore, the improvement from OW-
VINS to VINS-Mono in sbs sequences is better compared to eee 
sequences and nya sequences. Similarly, there is a serious drift 
trajectory in the red area in Figure 8b, and the main reason is 
caused by the noisy feature points when the camera is rotating 
as shown in Figure 12. The UAV rotates the camera to the right, 
which results in numerous new feature points captured in the 
right-hand side of the image in Figure 12a. As mentioned above, 
the red circle denotes the feature point that is not tracked and 
also possess certain noise with estimation. Instead, OW-VINS 
filter those noisy feature points in Figure 12b, which lacks in the 
features around the corners of the image. Thus, OW-VINS 
obtains better performance than VINS-Mono in Figure 8b. 

   
(a) Feature points of VINS-Mono             (b) Feature points of OW-VINS 

Fig. 12: Trajectories of Sequence sbs Generated from VINS-

Mono and OW-VINS 

C. Hilti SLAM Challenge 

Hilti SLAM Challenge [43] is a up-to-date dataset for SLAM. 
Together with the Oxford Robotics Institute and the Robotics 
and Perception Group from University of ZÃŒrich, they have 
created benchmarks for SLAM problems in environments with 
challenging features such as ill light conditions, difficult 
geometries, and fast movements. The sensor suite consists of a 
Sevensense Alphasense Core camera head with 5 x 0.4MP 
global shutter cameras, and a Hesai PandarXT-32 as shown in 
Figure 13. All these sequences shown from Figure 14a to Figure 
16bare characterized by the featureless areas and varying 
illumination conditions that are typical real-world scenarios and 
pose great challenges to evaluate SLAM algorithms that have 
been developed in confined lab environments. The basic 
information for data collection is described in Table IV. 
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Fig. 13: Hardware Structure of Hilti Dataset 

  
(a) Basement                                           (b) Basement 4 

Fig. 14: Environment where the Hilti datasets are collected 

   
(a) Lab                                             (b) Campus 2 

Fig. 15: Environment where the Hilti datasets are collected 

   
(a) Exp04 Construction Upper Level 1 (b) Exp06 Construction Upper Level 3 
Fig. 16: Environment where the Hilti datasets are collected 
 

In the datasets, this work used two cameras C3 and C4 as 
shown in Figure 13 as our camera measurement inputs. Instead 
of the two cameras facing the same direction in Section IV-B, 
C3 and C4 face to the opposite direction as shown in Figure 19. 
The main idea is to verify that the estimated trajectory is more 
accurate by switching between the cameras when they have 
various image views in the same environment. VINS-MONO 

consistently used the right camera C3 as its image input. Instead, 
OW-VINS firstly determines which camera should be used 
based on their observability, and secondly estimates the states 
with considering every feature point’s observability in the 
remaining image. With Table V, it is obvious that OW-VINS 
performs much better than VINS-Mono for more than 40 
percentage in most datasets. However, there is no obvious 
improvement in RPE in Table VI. The local drift caused by 
frequently switching the camera input will result in big 
difference in Exp04 Construction Upper Level 1 and Exp05 
Construction Upper Level 2 in Table VI. Nevertheless, the 
global trajectory results are well estimated in Table V. 

Fig. 17 depicted the APE described in Table V, and it clearly 
shows that OW-VINS consistently achieves lower APE across 
all sequences, indicating better positioning performance. Simi-
larly, Fig. 18 illustrates the RPE results described in Table VI. 
As with the APE results, OW-VINS shows slight improve-
ments or maintains parity in most sequences. 

 
Fig. 17: The bar chart depicts the Position APE (in meters) for 
each sequence, comparing VINS-MONO and OW-VINS 
across six new sequences. 

 
Fig. 18: The bar chart illustrating Position RPE (in meters) for 
each sequence, comparing VINS-MONO and OW-VINS 
across six test sequences. 
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TABLE IV: The Information of HILTI Dataset 
Sequence Path Length (m) Duration (s) 

   Lab (Figure 20a) 267 135.6 
Basement (Figure 20b) 46 99.7 

Basement 4 (Figure 21a) 97 331.9 
Campus 2 (Figure 21b) 157 359.7 

Exp04 Construction Upper Level 1 (Figure 22a) 79 125.5 
Exp06 Construction Upper Level 3 (Figure 22b) 93 150.5 

 
TABLE V: Position APE (m) of VINS-MONO and WO-VINS 

No. Sequence VINS-Mono OW-VINS Progress (%) 
     1 Lab (Figure 20a) 0.070082 0.055219 21 
2 Basement (Figure 20b) 0.535126 0.170664 67 
3 Basement 4 (Figure 21a) 0.237276 0.103817 56 
4 Campus 2 (Figure 21b) 0.490775 0.309003 38 
5 Exp04 Construction Upper Level 1 (Figure 22a) 1.311918 0.783308 41 
6 Exp06 Construction Upper Level 3 (Figure 22b) 0.268005 0.233442 11 

 
TABLE VI: Position RPE (m) of VINS-MONO and WO-VINS 

No. Sequence VINS-Mono OW-VINS Progress (%) 
     1 Lab (Figure 20a) 0.005866 0.006110 -4 
2 Basement (Figure 20b) 12.851721 12.837234 0.1 
3 Basement 4 (Figure 21a) 8.181421 8.179194 0.1 
4 Campus 2 (Figure 21b) 12.420817 12.422723 0.01 
5 Exp04 Construction Upper Level 1 (Figure 22a) 0.031891 0.016871 66 
6 Exp06 Construction Upper Level 3 (Figure 22b) 0.013691 0.015211 -15 

 

  
(a) Camera C3 View                                (b)Camera C4 View 

Fig. 19: Camera Views at The Same Time 

 
(a) Lab                                                 (b) Basement 

Fig. 20: Trajectories Generated from VINS-Mono and OW-
VINS  

 
3https://www.youtube.com/watch?v=bDqoSY81M7k  

 

   
(a) Basement 4                                        (b) Campus 2 

Fig. 21: Trajectories Generated from VINS-Mono and OW-
VINS 

The detailed estimated trajectories VINS-Mono and OW-
VINS are illustrated from Figure 20a to Figure 22b. The 
trajectory obtained by using OW-VINS fits more to the gound 
truth than the that of VINS-Mono. Especially, in the Exp04 
Construction Upper Level 1 sequence as shown in Figure 22a, 
there is a severe drift estimated by VINS-Mono in the red circle 
area. Instead, OW-VINS utilizes another image with higher 
observability value as the camera measurement to avoid drift. 
Videos can be found in the multimedia attachment3. 
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(a)Exp04 Construction Upper Level 1         (b) Exp06 Construction Upper Level 3 

Fig. 22: Trajectories Generated from VINS-Mono and OW-
VINS 

V. CONCLUSION AND FUTURE WORK 

The observability analysis and application of VIO algorithm 
have been developed and engaged in recent years. One of the 
main contributions of this work is utilizing the observability of 
the estimation system to evaluate the distribution of the feature 
points. OW-VINS has a better estimation result than VINS-
Mono by considering the observability of the feature points as 
weights in the estimator. The other contribution is finding out 
which camera is not proper for the estimation in real-time to 
avoid incredible measurement resulting in drift. 

Based on the experimental results, this work concludes that 
OW-VINS is capable of discarding failed sensors to stabilize 
and improve estimation performance. In recent years, more and 
more diverse sensor measurements, like RGBD cameras, wide-
range cameras, radar, or GPUs, are applied in the field of 
unmanned vehicles. A potential and unavoidable danger is the 
failure of sensing and localization. Obviously, the more amount 
sensors are, the higher the probability of sensor failure. 
Fortunately, OW-VINS can filter the improper camera input in 
this work, which may be able to deal with the aforementioned 
problems. Therefore, future work will find out the occurring of 
the failed sensors and drop them to reduce estimation error 
through the sensor observability. 
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