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Abstract—This paper presents a method for 3D modeling of 
unknown large objects using a depth camera and executing hole-
piercing operations at specified target locations on the modeled 
surface. To address the limitations of single-viewpoint perception, 
a mobile manipulator equipped with a depth camera adopts a 
multi-view point cloud acquisition strategy. The proposed method 
fuses multi-view point cloud data by using Iterative Closest Point 
(ICP) registration, combined with outlier removal and smoothing 
techniques, to generate an accurate and complete 3D model. To 
further improve segmentation and object isolation, DBSCAN 
clustering is applied. The experimental platform includes a 3D 
LiDAR installed on the mobile base for mapping the environment, 
while point clouds from the depth camera are aligned to a global 
coordinate system. Experimental result shows that the root mean 
square error (RMSE) of 3D modeling of a box-shaped object is 
7.84 mm. Based on the reconstructed model, automated piercing 
operations on two large objects have been demonstrated using the 
mobile manipulator. This multi-view 3D reconstruction 
framework allows for vision-based automated reconstructing and 
machining of large, unknown surfaces. 

Index Terms—3D modeling, point cloud, data fusion, robot 

control. 

I. INTRODUCTION 

 N modern manufacturing, automated machining of large,             
  unstructured, and previously unknown objects poses 

significant challenges, particularly in perception and modeling. 
Traditional single-viewpoint depth cameras often suffer from 
occlusions and missing data, resulting in incomplete 3D 
representation. To overcome this limitation, we propose a 
mobile robotic system that leverages multi-viewpoint point 
cloud fusion for complete object modeling and tool path 
generation. 

In the context of 3D object modeling using visual sensing, 
depth cameras are commonly employed to acquire point cloud 
data. Due to inevitable sensor noise, Gaussian distribution-based 
methods[1][2], such as those in the Point Cloud Library (PCL) 
[3], are often used to remove outliers and sparse points 
surrounding the object, thereby improving the quality of the 
point cloud. A typical denoising process involves computing the 
average distance between each point and its nearest neighbors, 

followed by calculating the global mean and standard deviation 

of all average distances. Points falling outside a user-defined 
range based on mean and standard deviation are then removed 
[1]. For more complex scenes, clustering algorithms like KD-
Tree [3] are applied to segment point clouds into meaningful 
object groups. Harintaka et al. [4] explored automated 
segmentation of point clouds acquired from low-cost terrestrial 
laser scanner. To overcome the inefficiency and inaccuracy of 
manual processing, they proposed a hybrid method combining 
RANSAC for initial planar segmentation (walls, floors, ceilings) 
and DBSCAN for refining and reassigning misclassified points. 
The resulting segmentation distinguishes structural and interior 
elements effectively. Furthermore, graph-based methods have 
been used for efficient and accurate point cloud segmentation 
[5].  

For large-scale object modeling, prior works often adopt a 
scan-then-plan strategy. Maboudi et al. [6] proposed a view 
planning method based on online reconstruction. Their approach 
incrementally reconstructs the object while continuously 
assessing model quality to identify poorly reconstructed surfaces. 
Viewpoints are planned iteratively to maximize surface 
coverage and reconstruction fidelity. This integration of online 
reconstruction and view planning addresses key limitations of 
traditional offline strategies. 

Point cloud incompleteness remains a critical issue in vision-
based 3D applications. Recent studies have leveraged deep 
learning for point cloud completion. Ben et al. [7] reviewed a 
range of approaches including point-based, view-based, 
convolution-based, graph-based, and generative model-based 
methods. These approaches aim to predict missing regions of 
incomplete 3D shapes. However, the unordered nature of point 
clouds challenges the generation of fine-grained structures. To 
address this, Xin et al. [8] reformulated the completion task as a 
deformation process, allowing the model to more accurately 
capture the geometry of the missing regions. 

This work aims to address the needs of hole-piercing on large 
free-form objects where visual modeling must be robust to 
environmental complexity and surface irregularity. The multi-
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Fig. 1. System set up for multi-view point cloud sampling. 
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view fusion process is divided into two stages: (1) multi-angle 
point cloud sampling and (2) registration and segmentation to 
extract usable geometry. Through this approach, we construct 
high-fidelity models that form the basis for reliable, vision-
guided robotic piercing operations. The system is built around a 
mobile manipulator with a depth camera mounted in an eye-in-
hand configuration as shown in Fig. 1. A 3D LiDAR sensor is 
fixed to the mobile base to build a global 3D map of the 
environment. All acquired point clouds are transformed into a 
unified global coordinate frame to facilitate localization and 
consistent data integration. The core of our system lies in fusing 
point clouds captured from multiple views using Iterative 
Closest Point (ICP) [9] registration, enhanced by noise removal 
and smoothing techniques. This process mitigates occlusion 
effects and data loss. 

To ensure segmentation of the target object from the 
environment, we apply Density-Based Spatial Clustering of 
Applications with Noise (DBSCAN). The reconstructed point 
cloud model is then used to generate piercing paths tailored to 
the object's geometry. In our experimental validation, AprilTag 
markers are employed to localize targets on the modeled surface, 
ensuring alignment between the virtual model and the physical 
object. 

The rest of the paper is organized as follows. Section II 
introduces the architecture of the proposed multi-view 3D 
modeling and task path planning system. Section III describes 
the method for multi-view point cloud fusion. Section IV details 
the point cloud-based robotic hole-piercing tasks. Section V 
presents several experiments conducted to verify the 
effectiveness of the proposed system. Finally, the conclusions 
are given in Section VI. 

II. PROPOSED SYSTEM ARCHITECTURE 

The system architecture of the proposed multi-view 3D 
modeling and task-path generation method is illustrated in Fig. 
2. The system consists of two main layers: the perception layer 
and the task execution layer. In the perception layer, a 3D 
LiDAR sensor is employed to capture large-scale environmental 
point cloud data. This data is fed into a 3D SLAM (Simultaneous 
Localization and Mapping) module, which constructs a map of 
the environment and continuously estimates the pose of the 
mobile platform. This ensures accurate localization and global 
spatial awareness for the robotic system. 

 In parallel, an RGB-D camera mounted on the end-effector of 
a robotic manipulator is utilized to capture high-resolution, 
object-focused depth images from multiple viewpoints. These 
multi-view depth data are converted into partial point clouds, 
which are then registered through a point cloud alignment 
pipeline to form a unified and complete 3D model of the target 
object. This reconstruction process accounts for occlusions and 
sensor noise, enabling accurate representation of the object 
geometry. Based on the reconstructed 3D model, a path planning 
module generates piercing trajectories tailored to the geometry 
of the object. These paths are specifically designed to support 
robotic hole-piercing operations. The computed trajectories are 
then transmitted to the robot controller, which executes the 
piercing operation and completes the automated task.  

III. MULTI-VIEW POINT CLOUD FUSION 

 The modeling process is divided into two parts: multi-view 
point cloud sampling and object model extraction. Multi-view 
point cloud sampling uses the eye-in-hand camera on the mobile 
robot to obtain the current observation point cloud, and samples 
it in the same coordinate system through coordinate conversion. 
After obtaining multiple frames of point clouds sampled from 
different perspectives, object model extraction overlaps the 
point clouds of different perspectives in each frame to obtain a 
complete observation point cloud, and then segments the object 
to extract the target model. 

A. Multi-View Point Cloud Sampling: 

 During the point cloud sampling stage, the mobile 
manipulator is manually teleoperated to move around the target 
object, capturing a series of point clouds from different 
viewpoints along with the corresponding pose information, as 
illustrated in Fig. 3. The recorded transformation matrices of 
each sampling pose are used to provide initial alignment for 
subsequent ICP-based registration.  

In the current design, AprilTag markers are attached to the 
workpiece and are used for secondary positioning in subsequent 
tasks. This mechanism enables the recalibration of the relative 
position between the mobile manipulator and the workpiece. In 
scenarios where the distance between the workpiece and the 
robot end-effector is significant, models generated purely by 
point cloud fusion may exhibit alignment errors with the 
physical object. By leveraging the spatial relationship between 
the AprilTag and the point cloud model, the system can more 
accurately estimate the pose of the workpiece. This approach 

 

 

Fig. 2. Proposed system architecture. 
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integrates feature-based referencing with point cloud spatial data, 
improving the accuracy and robustness of object localization 
through the use of transformation matrices. 

B. Object Model Reconstruction and Segmentation 

In order to build a complete point cloud model, after 
obtaining multiple point cloud data and their corresponding 
transformation matrices, these point clouds are fused into a 
complete model. The flowchart is shown in Fig. 4. It includes 
point cloud pre-processing, ICP registration, object 
segmentation and model post-processing. In the point cloud pre-
processing part, voxel down sampling is first used to reduce the 
point cloud density, accelerate subsequent calculations and 
reduce the computational burden, while retaining the main 
geometric features of the point cloud. Since point clouds often 
contain noise and outliers during the sampling process, the 
statistical outlier removal method is used to remove noise and 
improve the accuracy of the final reconstruction. After point 
cloud pre-processing, the ICP algorithm in Open3D [11] is 
adopted to gradually align each point cloud to a unified 
coordinate system. Since the initial transfer matrix is required to 
assist in alignment when ICP registers point clouds, the point 
cloud is aligned to a unified coordinate system by reading the 
corresponding transfer matrix saved between the reference 
marker when sampling the point cloud, and the point-to-plane 
ICP method is used to accurately align the point clouds, as 
shown in Fig. 5.  

Iterative operations calculate the optimal rigid 
transformation matrix based on the distance between the nearest 
points to accurately align the point cloud; when ICP fails to 
converge, it provides a mechanism to retain the initial 
transformation to avoid error expansion due to failure to 
converge. After the point cloud is aligned, the algorithm merges 
the point cloud of each perspective with the reference point 
cloud in turn. The final point cloud model contains point cloud 
information from different perspectives, which can more 
comprehensively describe the geometry of the target object, 
thereby achieving accurate alignment and reconstruction of 
multi-perspective point clouds. Finally, in order to separate the 

object model independently, DBSCAN is used for clustering, 
which automatically determines the number of clusters based on 
the spatial density of the points for grouping, and marks outliers 
as noise points for deletion. After completing the clustering of 
the point cloud, MLS [11] surface smoothing is performed, and 
finally the complete point cloud model is output.  

IV. POINT CLOUD-BASED ROBOTIC HOLE-PIERCING  

After completing multi-view sampling and constructing the 
point cloud model of the workpiece, the proposed approach 
utilizes the generated point cloud as the basis for executing 
piercing tasks. To ensure that the manipulator can accurately 
localize and perform the subsequent piercing operations, 
AprilTag technology is employed to mark the workpiece and 
identify its pose. This allows the manipulator to establish the 
spatial relationship with the workpiece, locate the target 
positions, and carry out the piercing task accordingly. The 
workflow is illustrated in Fig. 6. 

During the experiment, AprilTag are utilized as reference 
markers for localizing the piercing points, enabling the 
manipulator to perform piercing tasks at predefined hole 
locations on the workpiece model. First, hand-eye calibration is 
conducted to obtain the transformation matrix 𝑇𝑐𝑎𝑚𝑒𝑟𝑎

𝑏𝑎𝑠𝑒 , which 
defines the spatial relationship between the robot base and the 
camera. Next, the camera detects the AprilTag attached to the 
workpiece and derives the transformation 𝑇𝑎𝑝𝑟𝑖𝑙𝑡𝑎𝑔

𝑐𝑎𝑚𝑒𝑟𝑎 .Additionally, 

during the point cloud model generation, the positional 
information of the AprilTag is integrated with the point cloud 

data, resulting in the transformation 𝑇PC model
AprilTag

. Based on these 

transformations, the overall transformation from the point cloud 

model to the robot base, denoted as 𝑇PC model
𝑏𝑎𝑠𝑒  , can be computed, 

as shown in (1). 

 

 

Fig. 3. Schematic of multi-view sampling of a mobile robot, with the 

target object (white cylinder) and camera poses (dashed lines). 

 

Fig. 4. Flow chart of point cloud modeling. 

 

Fig. 5. ICP point cloud alignment algorithm. 

 

Fig. 6. Workflow of the piercing task using the mobile manipulator. 
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         𝑇PC model
𝑏𝑎𝑠𝑒 = 𝑇𝑐𝑎𝑚𝑒𝑟𝑎

𝑏𝑎𝑠𝑒 𝑇AprilTag
𝑐𝑎𝑚𝑒𝑟𝑎 𝑇PC model

AprilTag
              (1) 

          𝑃𝑏𝑎𝑠𝑒 = 𝑇PC model
𝑏𝑎𝑠𝑒 −1

𝑃PC model                      (2) 

Using the transformation𝑇PC  𝑚𝑜𝑑𝑒𝑙
𝑏𝑎𝑠𝑒 , the pose 𝑃PC model of the 

point cloud model can be converted into the base coordinate 
frame, yielding 𝑃𝑏𝑎𝑠𝑒  , as shown in (2). This transformation 
enables the manipulator to align accurately with the point cloud 
model, determine the pose of the workpiece, and carry out 
piercing during the piercing task. 

After obtaining the relationship between the workpiece and 
the manipulator, the system first constructs a complete point 
cloud model of the workpiece through multi-view sampling to 
enable piercing. This model provides three-dimensional 
geometric information of the workpiece, including the spatial 
distribution of the point cloud coordinates. By using the 3D 
coordinates of the point cloud at the workpiece's vertices, 
information about the piercing plane can be obtained.  

In this study, a hole-piercing experiment was conducted at 
the center of the plane. By acquiring the coordinates of the four 
vertices on the workpiece plane, the center point of the four 
vertices is calculated to determine the 3D spatial coordinates of 
the plane center for piercing purposes. When the manipulator 
performs the hole-piercing operation, it must adjust its 
orientation to match the posture of the workpiece plane. 

 To simplify the setting of rotation angles, the system uses the 
normal direction provided by AprilTag as a reference, assuming 
that the surface normal vector of the workpiece is aligned with 
the Z-axis direction of the AprilTag. Therefore, after marker 
detection and spatial calibration are completed, the posture of 
the manipulator can be directly set based on the orientation 
defined by the AprilTag. The direction perpendicular to the tag 

 
surface is used as the tool's piercing direction, eliminating the 
need for additional estimation of the workpiece surface normal. 

V. EXPERIMENTAL RESULTS 

A. Multi-View 3D Modeling Experiment 

In order to verify the effectiveness of the proposed method 

for modeling point cloud objects, a box-shaped workpiece was 

selected and its actual length, width and height were measured 

to draw a CAD model. The point cloud images of workpiece 1, 

captured from different camera perspectives, are shown in Fig. 

7. Similarly, the point cloud images of workpiece 2 from 

various viewpoints are presented in Fig. 8. The reconstructed 

model of workpiece 1 is illustrated in Fig. 9, while the model of 

workpiece 2 is shown in Fig. 10. Finally, the two are aligned 

through the ICP method to match the error, and the registration 

result is shown in Fig. 11. Fig. 11(a) is the established CAD 

model, and Fig. 11(b) is the registration result of the two models. 

The blue part in Fig. 11(b) shows the point cloud model of 

multi-perspective modeling, and the green part shows the CAD 

model and calculates the registration error of the two models. 

The root mean square error (RMSE) after registration is 7.84 

mm.  Since workpiece 2 does not have a CAD model, no error 

analysis was performed for this workpiece. 

B. Experimental Result of Robotic Piercing Task 

In the experiment, the manipulator uses its end-effector 

gripper to grasp a tool and perform piercing actions at the holes 

 

Fig. 7. Multi-view point cloud sampling data at different viewing angles 
for workpiece 1. 

 

Fig. 8. Multi-view point cloud sampling data at different viewing angles 

for workpiece 2. 

                

(a) (b) 

Fig. 9. Workpiece 1 (a) original, (b) point cloud model 

 

                

(a) (b) 

Fig. 10. Workpiece 2 (a) original, (b) point cloud model.  

 

            

(a) (b) 

Fig. 11. Workpiece 1 (a) pint cloud converted from CAD model, (b) 

point cloud model after ICP registration. 
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on the workpiece, with the piercing positions recorded 

accordingly. The piercing experiments in this study are divided 

into four parts, involving two types of workpieces: a box-

shaped workpiece and a robot body shell. Each workpiece is 

tested in two orientations—lying flat and tilted at a 30-degree 

angle. 

 For the box-shaped workpiece, the piercing position is 

determined based on the point cloud model obtained from 

previous modeling. The coordinates of the four corner vertices 

are extracted, and the center point is calculated from these 

vertices to define the piercing location. In the case of the robot 

shell, since the front surface of the workpiece is a curved 

surface, it is not feasible to define the center point by selecting 

four corners. Instead, the midpoint of a groove on the workpiece 

is selected. The position of this point is measured on the model 

 
and designated as the target point for the manipulator to 

perform the piercing operation. 

In this study, the aforementioned method is used to calculate 

the coordinates of the piercing point in the robot base frame, 

enabling the execution of the piercing operation. As shown in 

Fig. 12, the manipulator performs the piercing task on 

workpiece 1 based on predefined target points. Fig. 13 

illustrates the manipulator executing a similar task on 

workpiece 2. The piercing experiment is repeated ten times, and 

the position of each piercing point is measured to calculate the 

positioning error. 

Fig. 12(a) shows a screenshot of the experiment with 

Workpiece 1 in a flat position, while Fig. 12(b) presents the 

experiment with Workpiece 1 tilted 30 degrees. The 

corresponding experimental data are summarized in Tables I 

and II, respectively. Fig. 13(a) shows a screenshot of the 

experiment with Workpiece 2 in a flat position, while Fig. 13(b) 

presents the experiment with Workpiece 2 tilted 30 degrees. 

The corresponding experimental data are summarized in Tables 

III and IV, respectively. 

VI. CONCLUSIONS 

In this study, we developed a 3D modeling system for 

unknown large objects using a mobile robot. By equipping the 

mobile manipulator with an eye-in-hand depth camera and a 

base-mounted 3D LiDAR, the system is capable of performing 

multi-view point cloud data acquisition and fusing the data into 

a complete object model. The integration of ICP-based 

registration, outlier filtering, smoothing, and DBSCAN 

segmentation techniques improves the accuracy and 

completeness of the resulting 3D reconstruction. To validate the 

system, we conducted a hole-piercing experiment using 

     

(a) (b) 

Fig. 12. Workpiece 1: (a) lying flat, (b) tilted 30 degrees. 

 

     

(a) (b) 

Fig. 13.  Workpiece 2: (a) lying flat, (b) tilted 30 degrees. 

 
Table I. Piercing Accuracy for Workpiece 1 of Fig. 12(a) 

 

Table II. Piercing Accuracy for Workpiece 1 of Fig. 12(b) 

 

Table III. Piercing Accuracy for Workpiece 2 of Fig. 13(a) 

 

Table IV. Piercing Accuracy for Workpiece 2 of Fig. 13(b) 
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AprilTag markers to verify piercing accuracy based on the 

reconstructed object model. The results demonstrate the 

system’s ability to effectively generate piercing paths and 

perform physical operations aligned with the point cloud model. 

This framework establishes a solid foundation for vision-based 

robotic applications in automated manufacturing, particularly 

in scenarios involving large, irregular, and previously unknown 

workpiece. In the future, we will enhance the quantitative 

performance of the system. Future work will also explore view 

planning strategies and real-time adaptability to further enhance 

modeling efficiency and robot-based machining. 
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