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Multi-View 3D Modeling of Large Objects for
Robotic Piercing on Unknown Free-Form Surfaces
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Abstract—This paper presents a method for 3D modeling of
unknown large objects using a depth camera and executing hole-
piercing operations at specified target locations on the modeled
surface. To address the limitations of single-viewpoint perception,
a mobile manipulator equipped with a depth camera adopts a
multi-view point cloud acquisition strategy. The proposed method
fuses multi-view point cloud data by using Iterative Closest Point
(ICP) registration, combined with outlier removal and smoothing
techniques, to generate an accurate and complete 3D model. To
further improve segmentation and object isolation, DBSCAN
clustering is applied. The experimental platform includes a 3D
LiDAR installed on the mobile base for mapping the environment,
while point clouds from the depth camera are aligned to a global
coordinate system. Experimental result shows that the root mean
square error (RMSE) of 3D modeling of a box-shaped object is
7.84 mm. Based on the reconstructed model, automated piercing
operations on two large objects have been demonstrated using the
mobile manipulator. This multi-view 3D reconstruction
framework allows for vision-based automated reconstructing and
machining of large, unknown surfaces.

Index Terms—3D modeling, point cloud, data fusion, robot
control.

I. INTRODUCTION

N modern manufacturing, automated machining of large,

unstructured, and previously unknown objects poses
significant challenges, particularly in perception and modeling.
Traditional single-viewpoint depth cameras often suffer from
occlusions and missing data, resulting in incomplete 3D
representation. To overcome this limitation, we propose a
mobile robotic system that leverages multi-viewpoint point
cloud fusion for complete object modeling and tool path
generation.

In the context of 3D object modeling using visual sensing,
depth cameras are commonly employed to acquire point cloud
data. Due to inevitable sensor noise, Gaussian distribution-based
methods[1][2], such as those in the Point Cloud Library (PCL)
[3], are often used to remove outliers and sparse points
surrounding the object, thereby improving the quality of the
point cloud. A typical denoising process involves computing the
average distance between each point and its nearest neighbors,
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followed by calculating the global mean and standard deviation

Fig. 1. System set up for multi-view point cloud sampling.

of all average distances. Points falling outside a user-defined
range based on mean and standard deviation are then removed
[1]. For more complex scenes, clustering algorithms like KD-
Tree [3] are applied to segment point clouds into meaningful
object groups. Harintaka et al. [4] explored automated
segmentation of point clouds acquired from low-cost terrestrial
laser scanner. To overcome the inefficiency and inaccuracy of
manual processing, they proposed a hybrid method combining
RANSAC for initial planar segmentation (walls, floors, ceilings)
and DBSCAN for refining and reassigning misclassified points.
The resulting segmentation distinguishes structural and interior
elements effectively. Furthermore, graph-based methods have
been used for efficient and accurate point cloud segmentation

[5].

For large-scale object modeling, prior works often adopt a
scan-then-plan strategy. Maboudi et al. [6] proposed a view
planning method based on online reconstruction. Their approach
incrementally reconstructs the object while continuously
assessing model quality to identify poorly reconstructed surfaces.
Viewpoints are planned iteratively to maximize surface
coverage and reconstruction fidelity. This integration of online
reconstruction and view planning addresses key limitations of
traditional offline strategies.

Point cloud incompleteness remains a critical issue in vision-
based 3D applications. Recent studies have leveraged deep
learning for point cloud completion. Ben et al. [7] reviewed a
range of approaches including point-based, view-based,
convolution-based, graph-based, and generative model-based
methods. These approaches aim to predict missing regions of
incomplete 3D shapes. However, the unordered nature of point
clouds challenges the generation of fine-grained structures. To
address this, Xin et al. [8] reformulated the completion task as a
deformation process, allowing the model to more accurately
capture the geometry of the missing regions.

This work aims to address the needs of hole-piercing on large
free-form objects where visual modeling must be robust to
environmental complexity and surface irregularity. The multi-
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Fig. 2. Proposed system architecture.

view fusion process is divided into two stages: (1) multi-angle
point cloud sampling and (2) registration and segmentation to
extract usable geometry. Through this approach, we construct
high-fidelity models that form the basis for reliable, vision-
guided robotic piercing operations. The system is built around a
mobile manipulator with a depth camera mounted in an eye-in-
hand configuration as shown in Fig. 1. A 3D LiDAR sensor is
fixed to the mobile base to build a global 3D map of the
environment. All acquired point clouds are transformed into a
unified global coordinate frame to facilitate localization and
consistent data integration. The core of our system lies in fusing
point clouds captured from multiple views using Iterative
Closest Point (ICP) [9] registration, enhanced by noise removal
and smoothing techniques. This process mitigates occlusion
effects and data loss.

To ensure segmentation of the target object from the
environment, we apply Density-Based Spatial Clustering of
Applications with Noise (DBSCAN). The reconstructed point
cloud model is then used to generate piercing paths tailored to
the object's geometry. In our experimental validation, AprilTag
markers are employed to localize targets on the modeled surface,
ensuring alignment between the virtual model and the physical
object.

The rest of the paper is organized as follows. Section Il
introduces the architecture of the proposed multi-view 3D
modeling and task path planning system. Section Il describes
the method for multi-view point cloud fusion. Section 1V details
the point cloud-based robotic hole-piercing tasks. Section V
presents several experiments conducted to verify the
effectiveness of the proposed system. Finally, the conclusions
are given in Section VI.

I1.PROPOSED SYSTEM ARCHITECTURE

The system architecture of the proposed multi-view 3D
modeling and task-path generation method is illustrated in Fig.
2. The system consists of two main layers: the perception layer
and the task execution layer. In the perception layer, a 3D
LiDAR sensor is employed to capture large-scale environmental
point cloud data. This data is fed into a 3D SLAM (Simultaneous
Localization and Mapping) module, which constructs a map of
the environment and continuously estimates the pose of the
mobile platform. This ensures accurate localization and global
spatial awareness for the robotic system.

In parallel, an RGB-D camera mounted on the end-effector of
a robotic manipulator is utilized to capture high-resolution,
object-focused depth images from multiple viewpoints. These
multi-view depth data are converted into partial point clouds,
which are then registered through a point cloud alignment
pipeline to form a unified and complete 3D model of the target
object. This reconstruction process accounts for occlusions and
sensor noise, enabling accurate representation of the object
geometry. Based on the reconstructed 3D model, a path planning
module generates piercing trajectories tailored to the geometry
of the object. These paths are specifically designed to support
robotic hole-piercing operations. The computed trajectories are
then transmitted to the robot controller, which executes the
piercing operation and completes the automated task.

The modeling process is divided into two parts: multi-view
point cloud sampling and object model extraction. Multi-view
point cloud sampling uses the eye-in-hand camera on the mobile
robot to obtain the current observation point cloud, and samples
it in the same coordinate system through coordinate conversion.
After obtaining multiple frames of point clouds sampled from
different perspectives, object model extraction overlaps the
point clouds of different perspectives in each frame to obtain a
complete observation point cloud, and then segments the object
to extract the target model.

MULTI-VIEW POINT CLOUD FUSION

A. Multi-View Point Cloud Sampling:

During the point cloud sampling stage, the mobile
manipulator is manually teleoperated to move around the target
object, capturing a series of point clouds from different
viewpoints along with the corresponding pose information, as
illustrated in Fig. 3. The recorded transformation matrices of
each sampling pose are used to provide initial alignment for
subsequent ICP-based registration.

In the current design, AprilTag markers are attached to the
workpiece and are used for secondary positioning in subsequent
tasks. This mechanism enables the recalibration of the relative
position between the mobile manipulator and the workpiece. In
scenarios where the distance between the workpiece and the
robot end-effector is significant, models generated purely by
point cloud fusion may exhibit alignment errors with the
physical object. By leveraging the spatial relationship between
the AprilTag and the point cloud model, the system can more
accurately estimate the pose of the workpiece. This approach
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Fig. 3. Schematic of multi-view sampling of a mobile robot, with the
target object (white cylinder) and camera poses (dashed lines).
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Fig. 4. Flow chart of point cloud modeling.

integrates feature-based referencing with point cloud spatial data,
improving the accuracy and robustness of object localization
through the use of transformation matrices.

B. Object Model Reconstruction and Segmentation

In order to build a complete point cloud model, after
obtaining multiple point cloud data and their corresponding
transformation matrices, these point clouds are fused into a
complete model. The flowchart is shown in Fig. 4. It includes
point cloud pre-processing, ICP registration, object
segmentation and model post-processing. In the point cloud pre-
processing part, voxel down sampling is first used to reduce the
point cloud density, accelerate subsequent calculations and
reduce the computational burden, while retaining the main
geometric features of the point cloud. Since point clouds often
contain noise and outliers during the sampling process, the
statistical outlier removal method is used to remove noise and
improve the accuracy of the final reconstruction. After point
cloud pre-processing, the ICP algorithm in Open3D [11] is
adopted to gradually align each point cloud to a unified
coordinate system. Since the initial transfer matrix is required to
assist in alignment when ICP registers point clouds, the point
cloud is aligned to a unified coordinate system by reading the
corresponding transfer matrix saved between the reference
marker when sampling the point cloud, and the point-to-plane
ICP method is used to accurately align the point clouds, as
shown in Fig. 5.

Iterative  operations calculate the optimal rigid
transformation matrix based on the distance between the nearest
points to accurately align the point cloud; when ICP fails to
converge, it provides a mechanism to retain the initial
transformation to avoid error expansion due to failure to
converge. After the point cloud is aligned, the algorithm merges
the point cloud of each perspective with the reference point
cloud in turn. The final point cloud model contains point cloud
information from different perspectives, which can more
comprehensively describe the geometry of the target object,
thereby achieving accurate alignment and reconstruction of
multi-perspective point clouds. Finally, in order to separate the
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Fig. 5. ICP point cloud alignment algorithm.
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Fig. 6. Workflow of the piercing task using the mobile manipulator.

object model independently, DBSCAN is used for clustering,
which automatically determines the number of clusters based on
the spatial density of the points for grouping, and marks outliers
as noise points for deletion. After completing the clustering of
the point cloud, MLS [11] surface smoothing is performed, and
finally the complete point cloud model is output.

IV. POINT CLOUD-BASED ROBOTIC HOLE-PIERCING

After completing multi-view sampling and constructing the
point cloud model of the workpiece, the proposed approach
utilizes the generated point cloud as the basis for executing
piercing tasks. To ensure that the manipulator can accurately
localize and perform the subsequent piercing operations,
AprilTag technology is employed to mark the workpiece and
identify its pose. This allows the manipulator to establish the
spatial relationship with the workpiece, locate the target
positions, and carry out the piercing task accordingly. The
workflow is illustrated in Fig. 6.

During the experiment, AprilTag are utilized as reference
markers for localizing the piercing points, enabling the
manipulator to perform piercing tasks at predefined hole
locations on the workpiece model. First, hand-eye calibration is
conducted to obtain the transformation matrix T2%¢,.,, which
defines the spatial relationship between the robot base and the
camera. Next, the camera detects the AprilTag attached to the
workpiece and derives the transformation T, %77 -Additionally,
during the point cloud model generation, the positional
information of the AprilTag is integrated with the point cloud
data, resulting in the transformation Ty " 28 Based on these
transformations, the overall transformation from the point cloud
model to the robot base, denoted as T2Zs¢ can be computed,

. C model »
as shown in (1).
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Fig. 7. Multi-view point cloud sampling data at different viewing angles
for workpiece 1.

Fig. 8. Multi-view point cloud sampling data at different viewing angles
for workpiece 2.
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Using the transformationT£85¢ , 401, the pose Ppc model OF the
point cloud model can be converted into the base coordinate
frame, yielding Pp,s. , @S shown in (2). This transformation
enables the manipulator to align accurately with the point cloud
model, determine the pose of the workpiece, and carry out
piercing during the piercing task.

After obtaining the relationship between the workpiece and
the manipulator, the system first constructs a complete point
cloud model of the workpiece through multi-view sampling to
enable piercing. This model provides three-dimensional
geometric information of the workpiece, including the spatial
distribution of the point cloud coordinates. By using the 3D
coordinates of the point cloud at the workpiece's vertices,
information about the piercing plane can be obtained.

In this study, a hole-piercing experiment was conducted at
the center of the plane. By acquiring the coordinates of the four
vertices on the workpiece plane, the center point of the four
vertices is calculated to determine the 3D spatial coordinates of
the plane center for piercing purposes. When the manipulator
performs the hole-piercing operation, it must adjust its
orientation to match the posture of the workpiece plane.

To simplify the setting of rotation angles, the system uses the
normal direction provided by AprilTag as a reference, assuming
that the surface normal vector of the workpiece is aligned with
the Z-axis direction of the AprilTag. Therefore, after marker
detection and spatial calibration are completed, the posture of
the manipulator can be directly set based on the orientation
defined by the AprilTag. The direction perpendicular to the tag

= -

(a) (b)
Fig. 9. Workpiece 1 (a) original, (b) point cloud model

(@) (b)
Fig. 10. Workpiece 2 (a) original, (b) point cloud model.

(@) (b)
Fig. 11. Workpiece 1 (a) pint cloud converted from CAD model, (b)
point cloud model after ICP registration.

surface is used as the tool's piercing direction, eliminating the
need for additional estimation of the workpiece surface normal.

V.EXPERIMENTAL RESULTS

A. Multi-View 3D Modeling Experiment

In order to verify the effectiveness of the proposed method
for modeling point cloud objects, a box-shaped workpiece was
selected and its actual length, width and height were measured
to draw a CAD model. The point cloud images of workpiece 1,
captured from different camera perspectives, are shown in Fig.
7. Similarly, the point cloud images of workpiece 2 from
various viewpoints are presented in Fig. 8. The reconstructed
model of workpiece 1 is illustrated in Fig. 9, while the model of
workpiece 2 is shown in Fig. 10. Finally, the two are aligned
through the ICP method to match the error, and the registration
result is shown in Fig. 11. Fig. 11(a) is the established CAD
model, and Fig. 11(b) is the registration result of the two models.
The blue part in Fig. 11(b) shows the point cloud model of
multi-perspective modeling, and the green part shows the CAD
model and calculates the registration error of the two models.
The root mean square error (RMSE) after registration is 7.84
mm. Since workpiece 2 does not have a CAD model, no error
analysis was performed for this workpiece.

B. Experimental Result of Robotic Piercing Task

In the experiment, the manipulator uses its end-effector
gripper to grasp a tool and perform piercing actions at the holes
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(@ (b)
Fig. 13. Workpiece 2: (a) lying flat, (b) tilted 30 degrees.

Table 1. Piercing Accuracy for Workpiece 1 of Fig. 12(a)

Test

GT Estimation Error
No.
x(em) y(em) z(em) x(em) y(cm) z(cm) x(cm) y(em) z(em) Distance(cm)
1 2425 24.00 0.00 2479 2433 021 0.54 0.33 0.21 0.67
2 2425  24.00 0.00 25.14 2451 -0.03 0.89 0.51 0.03 1.03
3 2425  24.00 0.00 2491 2441 -0.09 0.66 0.41 0.09 0.78
4 2425 2400 0.00 2406 2417 -017 0.19 0.17 0.17 031
5 2425 2400 0.00 2497 2446 0.08 0.72 0.46 0.08 0.86
6 24.25 24.00 0.00 25.04 2425 021 0.79 0.25 0.21 0.85
7 2425  24.00 0.00 2482 2436 -0.19 0.57 0.36 0.19 0.70
8 2425 24.00 0.00 2503 2422 -007 0.78 0.22 0.07 0.81
9 2425 2400 000 2502 2431 -0.15 0.77 031 0.15 0.84
10 2425 2400 0.00 2514 2446 -0.12 0.89 0.46 0.12 1.01
Avg Er. 0.79
Std. Dev. 0.19
Table II. Piercing Accuracy for Workpiece 1 of Fig. 12(b)
Test
GT Estimation Error
No.
x(em) y(em) z(em) x(em) y(em) z(em) =x(em) y(em) z(cm) Distance(em)

1 2425 24.00 0.00 2501 2421 -021 0.76 0.21 0.21 0.82
2 2425  24.00 0.00 2492 2432 014 0.67 0.32 0.14 0.76
3 2425 2400 000 2503 2415 -027 0.78 0.15 027 0.84
4 2425 2400 000 2463 2431 -0.09 0.38 0.31 0.09 0.50
5 2425 2400 0.00 251 2427 015 0.85 0.27 0.15 0.90
6 2425 2400 000 2483 2431 0.21 0.58 0.31 0.21 0.69
7 2425 2400 000 2502 2446 -022 0.77 0.46 0.22 0.92
8 2425 2400 000 2511 2422 -0.14 086 0.22 0.14 0.90
9 2425 24.00 0.00 2498 2451 -027 0.73 0.51 0.27 0.93
10 24.25 24.00 0.00 25.04 2441 0.09 0.79 0.41 0.09 0.89
Avg. Err. 0.82
Std. Dev. 0.13

on the workpiece, with the piercing positions recorded
accordingly. The piercing experiments in this study are divided
into four parts, involving two types of workpieces: a box-
shaped workpiece and a robot body shell. Each workpiece is
tested in two orientations—Ilying flat and tilted at a 30-degree
angle.

For the box-shaped workpiece, the piercing position is
determined based on the point cloud model obtained from
previous modeling. The coordinates of the four corner vertices
are extracted, and the center point is calculated from these
vertices to define the piercing location. In the case of the robot
shell, since the front surface of the workpiece is a curved
surface, it is not feasible to define the center point by selecting
four corners. Instead, the midpoint of a groove on the workpiece
is selected. The position of this point is measured on the model

Table I11. Piercing Accuracy for Workpiece 2 of Fig. 13(a)

GT Estimation Error
No.
x(em) y(em) z(em) =x(em) y(em) z(em) =x(em) y(em) z(em) Distance(cm)

1 22.00 2950 0.00 2238 3016 -0.07 0.38 0.66 0.07 0.76
2 22.00 2950 0.00 2264 2957 -0.21 0.64 0.07 021 0.68
3 22,00 2950 0.00 2237 29.94 0.09 0.37 0.44 0.09 0.58
4 2200 2950 0.00 2297 2954 .021 0.97 0.04 021 0.99
5 2200 2950 000 2312 2944 014 112 006 014 113
6 2200 2050 000 2231 2888 021 031 062 021 0.72
7 22.00 2950 0.00 2243 299 -0.17 0.43 0.4 0.17 0.61
8 2200 2950 0.00 2274 2973 0.15 0.74 023 0.15 0.79
9 22.00 29.50 0.00 2264 2893 -0.22 0.64 0.57 0.22 0.88
10 22.00 29.50 0.00 2287 29.17 0.31 0.87 0.33 0.31 0.98

Avg Err 0.81

Std. Dev. 0.18

Table IV. Piercing Accuracy for Workpiece 2 of Fig. 13(b)

Test
GT Estimation Error
No.
x(em) y(em) z(em) x(em) y(em) z(em) x(em) y(em) z(em) Distance(em)

1 22.00 29.50 0.00 2251 3012 -0.19 0.51 0.62 0.19 0.82
2 22.00 29.50 0.00 22.63 2997 -0.07 0.63 047 0.07 0.79
3 2200 2950 0.00 2125 2976 -0.15 0.75 0.26 0.15 0381
4 22.00 29.50  0.00 229 2054 -0.21 0.9 0.04 0.21 0.93
5 22,00 29.50 0.00 2245 2932 -0.14 045 0.18 0.14 0.50
6 22.00 29.50 0.00 2244 2955 -0.36 0.44 0.05 0.36 0.57
7 22.00 29.50 0.00 2293 2887 -0.17 0.93 0.63 0.17 1.14
8 22.00 2950 0.00 2245 2988 0.38 0.45 0.38 0.38 0.7
9 2200 2950 0.00 2272 2964 -0.89 0.72 0.14 0.89 115
10 22.00 2950 0.00 22.69 30.08 -0.46 0.69 0.58 0.46 101
Avg. Emr. 0.84
Std. Dev. 022

and designated as the target point for the manipulator to
perform the piercing operation.

In this study, the aforementioned method is used to calculate
the coordinates of the piercing point in the robot base frame,
enabling the execution of the piercing operation. As shown in
Fig. 12, the manipulator performs the piercing task on
workpiece 1 based on predefined target points. Fig. 13
illustrates the manipulator executing a similar task on
workpiece 2. The piercing experiment is repeated ten times, and
the position of each piercing point is measured to calculate the
positioning error.

Fig. 12(a) shows a screenshot of the experiment with
Workpiece 1 in a flat position, while Fig. 12(b) presents the
experiment with Workpiece 1 tilted 30 degrees. The
corresponding experimental data are summarized in Tables |
and II, respectively. Fig. 13(a) shows a screenshot of the
experiment with Workpiece 2 in a flat position, while Fig. 13(b)
presents the experiment with Workpiece 2 tilted 30 degrees.
The corresponding experimental data are summarized in Tables
Il and 1V, respectively.

VI. CONCLUSIONS

In this study, we developed a 3D modeling system for
unknown large objects using a mobile robot. By equipping the
mobile manipulator with an eye-in-hand depth camera and a
base-mounted 3D LiDAR, the system is capable of performing
multi-view point cloud data acquisition and fusing the data into
a complete object model. The integration of ICP-based
registration, outlier filtering, smoothing, and DBSCAN
segmentation techniques improves the accuracy and
completeness of the resulting 3D reconstruction. To validate the
system, we conducted a hole-piercing experiment using
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AprilTag markers to verify piercing accuracy based on the
reconstructed object model. The results demonstrate the
system’s ability to effectively generate piercing paths and
perform physical operations aligned with the point cloud model.
This framework establishes a solid foundation for vision-based
robotic applications in automated manufacturing, particularly
in scenarios involving large, irregular, and previously unknown
workpiece. In the future, we will enhance the quantitative
performance of the system. Future work will also explore view
planning strategies and real-time adaptability to further enhance
modeling efficiency and robot-based machining.
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