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 Abstract—With the rapid advancement of large language 
models (LLMs), intelligent chatbots are increasingly being 
adopted for maintenance documentation, fault diagnosis, and 
personnel training. This study introduces a multimodal 
Retrieval-Augmented Generation (RAG) chatbot designed to 
provide accurate and natural-language support for robotic arm 
maintenance tasks. The system separates textual and visual 
content from maintenance manuals and processes them through 
two complementary pipelines. Caption RAG employs a 
vision-language model (VLM) to generate contextual captions for 
images, improving the retrieval of relevant documents. VLM 
RAG then integrates retrieved text and associated images, using 
GPT-4o to deliver more precise and context-aware answers. To 
address industrial data privacy concerns, the system supports 
local deployment using open-source LLaMA and Taiwan’s 
TAIDE LLM models. The evaluation dataset was curated and 
validated by senior experts from an industrial robotic arm 
manufacturer, ensuring strong domain alignment. Experimental 
results show high accuracy—96% with GPT-4o, 92% with 
LLaMA 8B, and 74.67% with TAIDE 8B. Incorporating visual 
context via VLM RAG further improved performance to 96.67%, 
highlighting the benefit of multimodal integration. In summary, 
the proposed chatbot enhances maintenance efficiency and fault 
resolution while preserving data privacy, making it a practical 
solution for real-world industrial deployment. 

 Index Terms—Multimodal, RAG, Large Language Model, 
Vision-Language Model, Chatbot, Maintenance Manuals, Robotic 
Arm 

I. INTRODUCTION 

ITH the rapid advancement of large language models 
(LLMs) [1], companies have increasingly adopted LLMs 

to manage complex internal documents [2], such as technical 
manuals and operational procedures. To adapt LLMs for 
enterprise-specific knowledge, two main approaches have 
emerged: fine-tuning [3], [4] and retrieval-augmented 
generation (RAG) [5], [6]. Fine-tuning customizing the model 
parameters using domain-specific data, allowing the model to 
internalize domain knowledge. In contrast, RAG integrates 
external knowledge bases into the inference process, allowing 
LLMs to dynamically access and retrieve relevant documents 
without modifying the model parameters. 

In current research, the development of chatbots using RAG 
systems is more commonly seen in domains such as law [7], [8] 
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and healthcare [9], while its application to robotic arm 
maintenance manuals remains relatively limited. 

A unique challenge in robotic arm maintenance manuals is 
that the same query may produce different solutions depending 
on the product model. Fine-tuning in such cases may risk 
confusing the LLM, leading to ambiguous or incorrect 
responses. In comparison, RAG provides strong scalability and 
flexibility, as new or model-specific documentation can be 
directly integrated into the retrieval database without retraining. 
This property is particularly well-suited for managing robotic 
arm maintenance manuals, where manuals for different product 
models can be stored separately. In this way, the system avoids 
the confusion that may arise from fine-tuning an LLM on 
multiple models, while also reducing the likelihood of 
hallucinations [10]. Therefore, this study adopts the RAG 
approach to ensure accurate, scalable, and maintainable access 
to enterprise knowledge. 

RAG typically operates in two stages: a data pre-processing 
stage and an inference stage. This architecture enables 
knowledge extension without fine-tuning and supports excellent 
scalability. The detailed process is illustrated in Fig. 1. During 
the data pre-processing stage, the textual content of maintenance 
manuals is split into multiple independent chunks. Each chunk 
is transformed into a high-dimensional vector using an 
embedding model to capture its semantic features. These vectors 
are stored in a vector database for subsequent retrieval. 

For inference stage, when a user submits a query, the system 
encodes the query into a vector and computes similarity scores 
with all stored passage vectors. The Top-$K$ most relevant 
passages are then selected, converted back into text, and 
provided to the LLM along with the query to generate a 
response. This architecture enables knowledge extension 
without the need for model fine-tuning and offers excellent 
scalability. 

However, traditional RAG frameworks are limited to textual 
data and lack the ability to retrieve and interpret visual content. 
In maintenance manuals, visual information, such as assembly 
diagrams, component layouts, and procedural illustrations, often 
plays a critical role in helping engineers. Without image 
processing capabilities, RAG-based systems may produce 
incomplete or inaccurate answers, limiting their utility in 
multimodal documentation. 

Previous studies have explored various approaches to 
enhance RAG systems for handling visual content. For example, 
Yu et al. proposed ViRAG [11], a method that converts 
full-page document images into embeddings for retrieval and 
passes them into a vision-language model (VLM) to generate 
responses. Although this simplifies the document parsing 
pipeline, it heavily depends on the OCR and layout 
understanding capabilities of VLM, which may lead to 
hallucinations and misinterpretations, especially when the 
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image quality is low or the document structure is complex.  

 

Fig 1. Architecture of RAG [5] 

 

 
Wang et al. introduced ViDoRAG [12], a hybrid multimodal 

retrieval framework that constructs separate embedding spaces 
for text and images, and dynamically determines the number of 
top k retrieved segments using a Gaussian Mixture Model 
(GMM). Additionally, they employ a three-agent 
architecture—Seeker, Inspector, and Answer Agent—to 
simulate human reasoning and perform iterative refinement. 
Nonetheless, the framework still relies on OCR-dependent 
VLMs, which remain susceptible to conversion errors and 
inconsistencies in semantic interpretation. 

Zhang et al. proposed OHRBench [13], a benchmark that 
reveals how semantic and formatting noise introduced by OCR 
substantially deteriorates both retrieval accuracy and answer 
generation. Their findings show that even state-of-the-art VLMs 
struggle to overcome hallucination problems, confirming that 
OCR-based interpretation continues to be a key bottleneck in 
multimodal RAG systems. 

To address these limitations, we propose two multimodal 
RAG frameworks: Caption RAG and VLM RAG. Both 
approaches are based on document-level text-image separation. 
In Caption RAG, the image context and the image itself are 
input into a VLM to generate a descriptive caption, which is 
then inserted back into the document for retrieval. In VLM RAG, 
the retrieved text segments that reference images are used to 
locate the corresponding images from a repository, and both text 
and images are fed into a VLM for answer generation. Our 
experimental results demonstrate that both approaches 
significantly improve visual-semantic comprehension in RAG 
systems. 

Moreover, we deploy the Caption RAG framework in a local 
environment using the LLaMA [14] and TAIDE [15] models. 
The results show that our system maintains strong accuracy 
even without relying on cloud-based computational resources. 

The major contributions of our study are as follows. 

 We design two approaches — Caption RAG and VLM 
RAG — to enable effective multimodal RAG retrieval in 
mixed text-image documents. These methods are specifically 
validated in robotic arm maintenance manuals, which contain 
extensive image information. Empirical evaluation 
demonstrates their superior accuracy and robustness in this 
real-world scenario. 

 The evaluation data set that we used was provided by a 
senior engineer from an industrial robotic arm manufacturer. 
The data set was carefully designed to reflect real-world 
production line issues and corresponding solutions, ensuring 
both domain expertise and practical applicability. 

 We successfully implemented Caption RAG in a local 
setup, showing strong system performance and inference 
efficiency without relying on a cloud-based model. This 
confirms the practical applicability and flexibility of the 
framework’s deployment under limited computational 
resources. 

 Caption RAG achieves a balance between accuracy and 
cost by converting images into textual descriptions, making it 
a good fit for resource-constrained environments. In contrast, 
VLM RAG directly leverages multimodal inputs and 
delivers the highest accuracy. 

II.  THE PROPOSED MULTIMODAL RAG-BASED CHATBOT 

SYSTEM 

To effectively solve the conversion errors and hallucination 
issues caused by OCR processes in VLM, this study proposes 
two RAG-based retrieval methods for handling mixed 
text-image documents. Caption RAG and VLM RAG. The key 
innovation of these methods is based on the application of 
text-image separation, which processes text and images 
independently. This approach significantly reduces conversion 
errors and hallucinated content that may arise during OCR 
conversion. The complete architecture is shown in Fig. 2. 

A. Text-image separation 

This paper applies the pymupdf [16] tool to implement the 
text-image separation technique. The tool extracts all copyable 
text blocks from the document and independently extracts all 
embedded images, as shown in Fig. 3. 

During the image separation process, each image is assigned 
a unique identifier (e.g., image_1, image_2, etc.), and a 
corresponding image tag is inserted into the original text content 
to preserve the positional relationship between images and text 
within the document. 

Our approach leverages text-image separation to effectively 
overcome conversion errors and hallucinations typically 
induced by VLM during the OCR process. 
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Fig 2. Architecture of our system. (a) Text-image separation; (b) The proposed methods: Caption RAG and VLM RAG; (c) Generator: Usage of different LLMs, 

VLMs, and experimental results; (d) Interface with feedback system (Web and App versions); (e) Retrieval process. 

 
In subsequent processing stages, this image tag information 

enables quick localization of the corresponding images, serving 
as the foundation for Caption RAG generation or VLM RAG 
multimodal processing. 

B. The Proposed Methods 

1)  Caption RAG: In this method, based on the results of 

text-image separation, we extract image tag information (e.g., 

image_1) and retrieve 100 contexts of text both before and 

after the tag as the prompt. This prompt, along with the 

separated image (e.g., image_1), is input into the VLM 

(GPT-4o) [17], which is then asked to generate a description 

of the image, as shown in Fig. 4. 

Since the prompt includes the contextual text 

surrounding the image, GPT-4o can understand how the 

image is described within the document. The generated 

caption is then inserted back into the original position of the 

image tag. Using this approach, all images in the maintenance 

manuals are progressively converted into the corresponding 

textual descriptions, ultimately constructing a fully text-based 

version of the document. Following the above procedure, we 

proceed with RAG-based retrieval to identify the correct 

answer to the given query. 

2) VLM RAG: This method further extends the processing 

results of the text-image separation step. The RAG algorithm 

is applied directly to the textual portion of the document, 

including image tags. During the retrieval process, the system 

identifies text fragments containing image tags and uses these 

references to locate the corresponding images from a 

preprocessed image repository.  

Once the relevant text and associated images are retrieved, 

they are jointly entered into a VLM -GPT-4o is adopted in 

this study. This model can simultaneously process both text 

and several images within a single context, integrating 

semantic text with visual information from the images. As a 

result, it generates contextually enriched and semantically 

comprehensive responses. 

This approach significantly improves the model's ability 

to interpret complex technical documents, making it 

particularly suitable for applications such as maintenance 

manuals, where visual elements, such as assembly diagrams, 

component schematics, or procedural illustrations, often carry 

critical additional information. These visuals effectively 

compensate for the limitations in textual descriptions. The 

complete system architecture of VLM RAG is illustrated in 

Fig. 5. 

C. Generator 

In terms of generator selection strategy, we differentiate and 

optimize the input format to LLMs based on the distinct data 

processing characteristics of the Caption RAG and VLM RAG 

methods. 

In the Caption RAG method, we first perform 

pre-processing on the images. The system uses VLMs to 

generate semantic descriptions of each image, effectively 

converting the images into the corresponding textual content. 
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TABLE I 

MODELS USED IN THE DIFFERENT RAG METHODS 

Method Image Description Generator 

  GPT-4o (Cloud) 
TAIDE 8B (Local) 

LLaMA3.1 8B (Local) 

Caption RAG GPT-4o (cloud) 

  

VLM RAG Not required GPT-4o (Cloud) 

 

 

Fig 3. Text-image separation 

 

In this method, we use the GPT-4o VLM model to generate 

semantic descriptions of the images. As a result, all the images 

in the document are transformed into text descriptions. 

Therefore, the generator in the Caption RAG pipeline receives 

only textual input, without any image content. We select three 

models with strong generative capabilities as generators: 

GPT-4o, LLaMA 8B, and TAIDE 8B. Among them, GPT-4o 

utilizes OpenAI's cloud-based inference resources, while 

TAIDE 8B and LLaMA3.1 8B can be executed locally, offering 

flexibility in deployment and cost advantages. 

In contrast, the VLM RAG method does not pre-process the 

images in advance. During the RAG retrieval process, the 

system retrieves not only relevant text fragments but also their 

corresponding image tags. These retrieved text-image pairs are 

then input jointly into the generator. Consequently, the 

generator for the VLM RAG method must support image input 

and possess multimodal semantic understanding capabilities. 

To meet this requirement, we adopt GPT-4o as the generator for 

the VLM RAG approach, leveraging its ability to process both 

images and text simultaneously for integrated generation and 

semantic fusion. 

However, current publicly available VLMs such as LLaMA 

Vision [18], Qwen-VL [19] do not support batch input of 

multiple images. Therefore, in this project, GPT-4o is 

exclusively used as the cloud-based VLM for system 

validation. 

Table I summarizes the methods utilized each stage of the 

proposed approaches. 

D. Retrieval Process 

The retrieval process proposed in this study is based on the 

traditional RAG framework. We employ LangChain’s [20] 

 

Fig 4. Caption RAG 

 
Fig 5. VLM RAG 

RecursiveCharacterTextSplitter function to segment the 

document, where the text is divided into chunks based on a 

predefined chunk size and overlap. Each chunk is then 

converted into a vector representation using OpenAI’s 

embedding model [21] and stored in a FAISS [22] vector 

database. 

When a user query is input, the query is encoded into a 

vector using the same embedding model. The cosine similarity 

search is then performed in the FAISS database to retrieve the 

top-K most relevant chunks. Next, a re-ranking model 

(ms-marco-MiniLM-L-6-v2 [23] ) reorders these candidates so 

that the most semantically relevant passages are prioritized. 

Re-ranking is based on a cross-encoder architecture, where the 

query and document are concatenated and jointly fed into the 

model. Through the attention mechanism, the model captures 

semantic interactions between the two, ultimately outputting a 

relevance score. This approach enables a more fine-grained 

assessment of the matching degree between candidate passages 

and the query, thereby improving ranking accuracy [24]. Finally, 

inspired by the ViDoRAG [12] framework, we further 

incorporate the dynamic paragraph selection method to enhance 

the quality and semantic relevance of the information retrieved 

by the retriever. 

In traditional RAG systems, the retriever typically selects 
the top K most similar passages (top-K chunks). However, this 
method lacks flexibility and may mix in irrelevant information. 
To solve this issue, we adopt the GMM mechanism proposed by 
ViDoRAG to dynamically determine the number of passages to 
be included in each retrieval. 

The GMM takes the similarity scores is produced by the 

retriever and assumes that is  follows a mixture of two Gaussian 

distributions—one for high similarity and one for low similarity. 
The overall mixture distribution is shown in (1). Here, 

2
(s | , )i k k  denotes the k-th Gaussian component ( 0k = for 

low similarity, 1k =  for high similarity); 
k

  is the mixture 

weight of component k , and
k

 , 
k

  are the mean and standard 

deviation of that component. 

2 2

0 0 0 1 1 1( )= (s | , )+ (s | , )i i iP s         (1) 

Next, we introduce a latent variable {0,1}zi   that indicates 

whether passage i  belongs to the low-similarity component 

( 0iz = ) or the high-similarity component ( 1iz = ). The 

Expectation-Maximization (EM) algorithm is then used to 

compute the posterior probability that each passage is  belongs 

to the high-similarity component, as shown in (2). Based on a  
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Algorithm 1 Caption RAG Process 

1: 
Constants: Embedding Model embM , Generative LLM llmM , 

VLM Model vlmM  

2: Input: Document: , User Query q  

3: Output: Final Response r  

4: Data Preprocess 

5: 
( , ) SeparateDocument( )T I   Split document into text T and 

images I 

6: for each image i I do 

7: ( )vlmc Mi i  Generate caption ic for image i 

8: InsertAtOrigPos( , ),iT T c i  

9: end for 

10: text T  Obtain augmented document with text and caption 

11: Data Ingestion 

12: textChunkText( )  Split document into chunks 

13: E ( )chunks embM  Embed each chunk 

14: Store(E )vector chunksDB   

15: Query Processing 

16: While true do         Continuous query input from user 

17: UserInput()q   

18: E ( )query embM q  

19: 
*

VectorSearch(E ),query vectorDB  

20: 
*

Rerank( , )rank q  

21: GMM( )gmm rank  

22: ( , )llm gmmr M q  

23: Display(r) 

24: end While 

predefined posterior probability threshold (0.5 in this study), all 
passages classified as belonging to the high-similarity 

distribution (i.e., those satisfying ( 1 | ) 0.5i iP z s=  ) are 

retained to enable dynamic paragraph selection. 

By integrating the original RAG retrieval strategy with the 
GMM-based dynamic top-K selection mechanism, we can 
reduce the inclusion of irrelevant passages in the LLM input,  

thereby mitigating the noise that may interfere with the model's 

ability to generate accurate answers. 

2

1 1 1

2 2

0 0 1 1

(s | , )
( 1 | )

(s | , )+ (s | , )0 1

i
i i

i i

P z s
  

     


= =

 

 (2) 

E. Methodological Framework 

In this section, we present the overall methodological 
framework that integrates the components described in the 
previous subsections. Specifically, two algorithmic variants are 
summarized to illustrate the complete pipeline of our approach:  

the Caption RAG Process(Algorithm 1) and the VLM RAG 
Process (Algorithm2). 

The Caption RAG pipeline uses the vision language model 

( vlmM ) to generate textual descriptions for images, which are 

Algorithm 2 VLM RAG Process 

1: Constants: Embedding Model embM , Generative VLM vlmM  

2: Input: Document: , User Query q  

3: Output: Final Response r  

4: Data Preprocess 

5: 
( , ) SeparateDocument( )T I   Split document into text T and 

images I 
6: Data Ingestion 

7: textChunkText( )  Split document into chunks 

8: E ( )chunks embM  Embed each chunk 

9: Store(E )vector chunksDB   

10: Query Processing 

11: While true do         Continuous query input from user 

12: UserInput()q   

13: E ( )query embM q  

14: 
*

VectorSearch(E ),query vectorDB  

15: 
*

Rerank( , )rank q  

16: GMM( )gmm rank  

17: 
FindImageTags( )gmmTags    Check retrieved chunks for 

figure tags 

18: Iretrieved   

19: for each tag t Tags do 

20: GetImageByTag( , )i I t  

21: 

I I { }retrieved retrieved i    Add the retrieved image i into 

the set Iretrieved  

22: end for 

23: 
I( , , )vlm gmm retrievedr M q   Answer with both and 

images 

24: Display(r) 
25: end While 

then inserted into the document to form an augmented text-only 
representation. This enables the downstream retrieval and 
generation to be carried out purely on textual embeddings, with 
the final response produced by the generative language model 

( llmM ). 

In contrast, the VLM RAG pipeline preserves the original 
multimodal nature of the document. Text chunks are directly 
embedded and stored in the vector database, and during query 
processing, the retrieved results are examined for figure 
references. If such figure tags are detected, the corresponding 
images are extracted from the image set I. The generative 

vision-language model (
vlm

M ) then produces the final response 

by conditioning on both the retrieved text chunks and the 
associated images. 

These two algorithms show how our framework 
accommodates both caption-based augmentation and direct 
multimodal reasoning. 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Document and Evaluation Dataset 

The document used in our study is a 94-page PDF 
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maintenance manual for a robotic arm, which contains 
numerous images. After applying our text–image separation 
process, a total of 171 images were extracted. 

The evaluation dataset used in this study was provided by a 
senior engineer from a robotic arm manufacturer. It was 
carefully curated based on maintenance manuals, containing 30 
representative real-world issues and their corresponding 
standard answers, all of which were meticulously designed to 
ensure reliability and domain relevance. 

B. Evaluation Metrics 

This study adopts two evaluation metrics: BERT Score 
[25]and LLM Score [26] to assess the semantic similarity and 
correctness of the answers generated by the system. 

The BERT score metric is used primarily to quantify the 
semantic similarity between two sentences. In this study, we 

employed the BERT Score Recall ( BERTR ) to measure the 

semantic consistency between the system-generated answer 
and the reference answer, serving as a key metric of generation 
quality.  

As shown (3), ix and ˆ
jx are the vectors transformed by the 

BERT model[27]. These vectors are normalized, and we apply 
greedy matching to maximize the matching similarity score. 

ˆ ˆ

1
ˆmax

j

i

BERT x x i j

x x

R x x
x





=   (3) 

However, BERT Score is sensitive to sentence length, 
structure, and word choice. If there are significant differences 
in length or expression between the generated and reference 
answers, even semantically similar responses may result in low 
BERT Scores, thereby affecting evaluation accuracy. 

To improve consistency and objectivity in the evaluation 
process, we used a short answer mechanism as an 
intermediate step for semantic alignment prior to BERT Score 
calculation. After generating a full answer, the system is 
instructed to produce a concise answer using the LLM. This 
design addresses the issue of score distortion caused by length 
discrepancies between generated answers and reference 
answers. Since our RAG system retrieves a large amount of 
relevant information during the retrieval stage, the LLM tends 
to include additional explanations to help users better 
understand and resolve the issue. Although such supplemental 
content is useful, it may lead to significant differences in length 
and structure compared to the reference answer, potentially 
lowering the BERT Score despite high semantic similarity. 

Therefore, we evaluate BERT Score based only on the 
LLM-generated concise answer and the corresponding 
reference answer. This effectively eliminates the interference 
from verbose expressions and non-essential information, 
ensuring that BERT Score reflects the true semantic similarity 
between the system's response and the ground truth. 

As for the LLM Score, we use an LLM to evaluate the 
accuracy of the generated answers. The study by Arjun 
Panickssery, Samuel R. Bowman, and Shi Feng [28] 
demonstrates that a language model, with self-recognition 
capability, may tend to give higher scores to the responses it 

generated itself. To avoid potential bias caused by the GPT-4o 
recognizing its own generated response, we use an additional 
model-Gemini 2.0 Flash-Lite [29] as the evaluation tool. The 
prompt includes the question, the reference answer, and the 
generated answer. Gemini is instructed to judge whether the 
generated answer is correct, using the reference answer as the 
primary reference. 

Formally, for each item we construct a triple 

( , , )ref gen

i i i iu q a a= , (4) 

where iq  is the question, 
ref

ia is the reference answer, and 

gen

ia  is our RAG system generated answer.  

The LLM judge ( )llmM   returns a binary correctness label 

( )
{0,1},

t

i llmMs =      1, ...,t T= , (5) 

where 
( )

=1
t

is  if the generated answer is judged correct at trial t, 

and 0 otherwise.  

The per-trial accuracy is define as 

( ) ( )

1
Acc

1 Nt tsi
iN
=
=

.  (6) 

To reduce potential randomness and instability, we adopt a 
multi-evaluation strategy by repeating the judging process T 
times (with 5T =  in our experiments). The final LLM Score is 

then computed as the mean accuracy across trials: 

( )

1

1
LLM-Score

T
t

t

Acc
T =

=  . (7) 

This approach provides a quantitative measure of response 
correctness and allows for statistical analysis of the system's 
overall accuracy. 

C. Impact of Prompt Language on Model Performance 

Our study conducts a comparative analysis of different LLM 
and their respective performance under varying prompt 
languages. Using the Caption RAG approach, we evaluate the 
performance of TAIDE 8B, LLaMA 8B, and GPT-4o by testing 
each model with both Chinese and English prompts. The 
evaluation metric adopted is the LLM Score. 

The experimental results, as shown in the Table II, TAIDE 
is trained by the National Science and Technology Council 
(NSTC) on a large-scale Traditional Chinese dataset, exhibits 
strong proficiency and alignment with Traditional Chinese 
prompts. In contrast, LLaMA 8B shows significantly stronger 
performance when prompted in English compared to Chinese, 
revealing a marked sensitivity to prompt language. We 
speculate that this is due to the relatively small model size of 
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LLaMA (8 billion parameters) and its lack of training on 
multilingual datasets. On the other hand, while GPT-4o also  
performs better with English prompts, its sensitivity to 
language differences is noticeably lower than that of LLaMA. 

 To maximize answer accuracy in subsequent experiments, 
we adopt specific prompt language: TAIDE will use 
Traditional Chinese prompts, while LLaMA and GPT-4o will 
be prompted in English. 

TABLE II 

COMPARISON OF LLM PERFORMANCE UNDER DIFFERENT LANGUAGES 

 TAIDE 8B LLaMA 8B GPT 4o 

Chinese prompt (%) 74.67 64.67 80 

English prompt (%) 70 92 96 

D. Result 

Table III presents the experimental results of our proposed 
methods compared to the baseline Naive RAG architecture. 
Three system variants are evaluated: (1) Naive RAG, the 
original RAG system which only supports pure text retrieval 
without image processing capability; (2) Caption RAG, and (3) 
VLM RAG, both of which are proposed in this study. All three 
systems use GPT-4o as the generator to ensure consistency. 

As shown in the results, when evaluating answer similarity 
using BERT Score, Caption RAG (4o) achieves the highest 
similarity score of 76.4%, followed by VLM RAG (4o) at 76%. 
In terms of answer correctness evaluated via LLM Score, VLM 
RAG (4o) achieves the best performance with an accuracy of 
96.67%, while Caption RAG (4o) reaches 96%. 

These results indicate that the proposed image-enhanced 
retrieval strategies can effectively improve response 
correctness. Compared to Naive RAG, both Caption RAG and 
VLM RAG show significant improvements in both accuracy 
and semantic similarity, demonstrating the practical 
effectiveness of our methods. 

It is also worth noting that BERT Score tends to be affected 
by response length. Since VLM RAG is capable of leveraging 
both visual and textual input simultaneously, its generated 
responses are often more detailed. This may lead to lower 
BERT Scores despite high accuracy, resulting in a divergence 
between BERT and LLM Score metrics. 

TABLE III 

Compare with Naive RAG and our work 

 
Naïve RAG 

(4o) 

Caption RAG 

(4o) 

VLM RAG 

(4o) 

BERT Score (%) 75.27 76.4 76 

LLM Score (%) 86 96 96.67 

TABLE IV 
Compare with the local model and the cloud model 

 
Caption RAG 

(TAIDE 8B) 

Caption RAG 

(LLaMA 8B) 

Caption RAG 

(4o) 

Chinese prompt (%) 74.67 64.67 80 

English prompt (%) 70 92 96 

 

In addition, we conducted experiments analyzing the local 
deployment of the Caption RAG system using two local models: 
TAIDE 8B and LLaMA 8B. The results are presented in the 

Table IV. The results reveal that LLaMA significantly 
outperforms TAIDE in terms of answer accuracy, achieving an 
LLM Score of 92% compared to TAIDE’s 74.67% . This 
demonstrates that our proposed system can be effectively 
deployed on local models with relatively lower computational 
resources, showing promising potential for real-world 
applications. 

Fig. 6 is the inference time comparison in this study. We 
evaluated the local models (TAIDE, LLaMA) on a GeForce 
RTX 4090 GPU. The results reveal that the LLaMA model 
demonstrates superior inference efficiency compared to the 
TAIDE model, despite both models having a similar number of 
parameters. 

Furthermore, the Caption RAG method demonstrates 
significantly shorter inference time, since it only relies on 
textual information and can directly operate on pre-extracted 
captions without the need for complex multimodal alignment. 
In contrast, the VLM RAG method exhibits longer inference 
time. This is because it needs to check whether the retrieved 
textual content contains image tags and then process the 
identified images through the VLM. Specifically, this involves 
passing the image data through a vision encoder for alignment, 
followed by cross-modal integration, which collectively leads 
to longer inference time. 

 

Fig 6. Inference time comparison 

 

Fig 7.  Comparison of different RAG methods under two settings: without 

We also carried out experiments to assess the impact of 
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integrating the GMM module into our system, and the results 
are presented in Fig. 7. The blue lines indicate the accuracy of 
the LLM score without the GMM module (w/o GMM), while 
the orange lines represent the accuracy of the LLM score with 
the GMM module (with GMM). The results demonstrate that 
the integration of the GMM module consistently improves the 
overall accuracy. This improvement arises because the GMM 
effectively filters out irrelevant noise, thereby reducing the 
number of unrelated chunks that are passed to the LLM and 
potentially interfere with its responses. The effect of the GMM 
module is particularly evident in local models. For example, the 
difference between the Caption RAG (TAIDE) and the Caption 
RAG (LLaMA) results with and without the GMM module is 
more significant. This is because local models have a limited 
number of parameters, unlike large-scale cloud-based models 
such as GPT-4o, which possess a significantly larger parameter 
capacity. As a result, when too many noisy chunks are input 
into local models, their responses are more likely to become 
inaccurate. 

E. Cost Analysis 

In our proposed methods, since we used the cloud-based 
model GPT-4o, the use of its API leads to corresponding costs. 
Therefore, we conducted a cost analysis. At the time of our 
calculation, the pricing for GPT-4o was $2.5 per one million 
input tokens and $10 per one million output tokens. The 
results of this analysis are summarized in Table V. 

In the Caption RAG method, images are first converted into 
textual descriptions through the image description process, 
which results in an additional cost. However, this step must be 
performed only once. In contrast, the VLM RAG method 
directly feeds the retrieved images into the VLM, and thus does 
not incur such pre-processing costs. 

Regarding query processing, the Caption RAG method 
requires only textual input, leading to relatively lower API 
usage costs. On the other hand, VLM RAG directly processes 
both text and images within the VLM, resulting in significantly 
higher costs. Overall, the API usage cost of VLM RAG is 
approximately 6.8 times greater than that of Caption RAG. 

TABLE V 

Cost comparison of different RAG methods (USD) 

Method 
Image Description 

(Only one time) 
Per query 

Caption RAG (TAIDE)  $0 
Caption RAG (LLaMA) $2.36 $0 

Caption RAG (GPT 4o)  $0.0073/query 

VLM RAG $0 $0.05/query 

F. Case Study 

In Table VI, this case study presents the input question: How 
to start Snake Dance project? 

For comparison, we employed the latest web-based version 
of ChatGPT 5 [30]. In this test, we uploaded the same document 
to the ChatGPT web interface and asked the same question. 
Since the relevant instructions in the document are presented in 
image form, our system was able to correctly answer the 
question because it includes an image-processing module that 
extracts and explains visual content. 

At the same time, our system’s response also includes 
Citation Pages, which serve as direct references to the source 
document. This feature allows users who may still have doubts 

about the system’s generated explanation to trace back and 
quickly locate the exact page where the answer originates. 
Moreover, it helps prevent the LLM from introducing 
information unrelated to the document during the generation 
process. 

In contrast, the ChatGPT 5 web version returned the 
response “The document does not provide direct instructions on 
how to start the Snake Dance project.” 
This outcome highlights a key advantage of our method: by 
incorporating specialized image understanding, our system can 
accurately respond even when the necessary information 
appears as images within the original document, whereas the 
ChatGPT 5 web version’s document reading function fails to do 
this case. 

G. Cross-Platform Interface 

We designed a dedicated user interface that integrates 

seamlessly with the proposed system. Two versions of the 

interface were developed: a web-based version and a mobile 

application. In Fig. 8 (a), the web version is intended to be 

deployed alongside production machines or used in employee 

training programs. To enhance accessibility, we further 

implemented a mobile version, as illustrated in Fig. 8 (b), 

enabling users to interact with the system more conveniently on 

their personal devices. 

In addition, a feedback system was incorporated into the 

interface. Specifically, a feedback button allows users to 

evaluate the chatbot’s responses. If a user indicates 

dissatisfaction, a problem-reporting dialog is triggered, through 

which detailed feedback can be submitted. This feedback 

system provides us with clearer insights into user experiences 

and helps guide the continuous improvement of the system. 

IV. CONCLUSION 

To improve RAG systems for multimodal technical 
documents, this study introduces two methods: Caption RAG 
and VLM RAG. By separating text and images and applying 
vision-language model (VLM) pipelines, both approaches 
enhance the system's ability to understand and respond to 
documents containing visual data. Caption RAG converts 
images into contextual descriptions, while VLM RAG 
processes retrieved text and images together using GPT-4o for 
more accurate responses. Experimental results, validated on 
datasets curated by senior experts from an industrial robotic 
arm manufacturer, show that VLM RAG (GPT-4o) achieves 
the highest accuracy at 96.67%, while Caption RAG (GPT-4o) 
scores a BERT Score of 76.4%, reflecting strong semantic 
consistency. Both outperform the baseline Naive RAG in 
accuracy and coherence. Caption RAG was also tested in a 
local environment using the LLaMA model, achieving 92% 
accuracy with an average inference time of 4.37 seconds, 
demonstrating suitability for resource-limited settings. In 
summary, the proposed multimodal RAG system enhances 
image-text understanding, delivers high accuracy and 
efficiency, and supports flexible deployment—making it 
well-suited for real-world applications such as intelligent 
maintenance and enterprise knowledge management. 
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TABLE VI 

COMPARISON BETWEEN OUR SYSTEM AND CHATGPT 5 WEB VERSION 

Q: How to start Snake Dance project 

Our system (Caption RAG) 

Answer: To start the ''Snake Dance'' project for testing robotic arms, follow these detailed steps.   
1. Configuration of Nodes:   

Create two nodes with specific joint angles for six joints (J1 through J6). The angles for Node 1 and Node 2 are 

mirrored as follows:   
J1: 260, -260   

J2: 90, -90   

J3: -150, 150   
J4: 90, -90   

J5: 170, -170   

J6: 110, -110   
2. Execution of the Test: After configuring the nodes with the specified joint angle, run these nodes in a loop at 60\% 

speed for 30 minutes.   

3. Assessment: During the test, monitor the robotic arm for any abnormalities. If no abnormalities are detected, the 
robot is considered ready for use. 

This procedure ensures that the robotic arm is functioning correctly and is ready for operational tasks. The "snake 

dance" test is a critical step in verifying the robot's readiness and performance. 

Citation Pages: Techman confidential 78 (Page 79, paragraph describing the snake dance procedure).  

[Confidence: 9] 

ChatGPT 5 (OpenAI, Web version) 

The document does not provide direct instructions on how to start the Snake Dance project. However, it can be 

inferred that this is a post-calibration verification procedure. You must first complete all calibration processes and 
save the calibration data, then execute the "Snake Dance" test in Maintenance Mode to verify the motion accuracy of 

the system. If detailed operation steps are required, it is recommended to refer to Techman’s software operation 

manual or internal maintenance tool (Maintenance Mode) documentation for further guidance. 

 

 

Fig 8. User interface of the proposed system: (a) Web version with problem-reporting dialog, (b) Mobile application. 
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