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Abstract—With the rapid advancement of large language
models (LLMs), intelligent chatbots are increasingly being
adopted for maintenance documentation, fault diagnosis, and
personnel training. This study introduces a multimodal
Retrieval-Augmented Generation (RAG) chatbot designed to
provide accurate and natural-language support for robotic arm
maintenance tasks. The system separates textual and visual
content from maintenance manuals and processes them through
two complementary pipelines. Caption RAG employs a
vision-language model (VLM) to generate contextual captions for
images, improving the retrieval of relevant documents. VLM
RAG then integrates retrieved text and associated images, using
GPT-40 to deliver more precise and context-aware answers. To
address industrial data privacy concerns, the system supports
local deployment using open-source LLaMA and Taiwan’s
TAIDE LLM models. The evaluation dataset was curated and
validated by senior experts from an industrial robotic arm
manufacturer, ensuring strong domain alignment. Experimental
results show high accuracy—96% with GPT-40, 92% with
LLaMA 8B, and 74.67% with TAIDE 8B. Incorporating visual
context via VLM RAG further improved performance to 96.67%,
highlighting the benefit of multimodal integration. In summary,
the proposed chatbot enhances maintenance efficiency and fault
resolution while preserving data privacy, making it a practical
solution for real-world industrial deployment.

Index Terms—Multimodal, RAG, Large Language Model,
Vision-Language Model, Chatbot, Maintenance Manuals, Robotic
Arm

. INTRODUCTION

ITH the rapid advancement of large language models

(LLMs) [1], companies have increasingly adopted LLMs
to manage complex internal documents [2], such as technical
manuals and operational procedures. To adapt LLMs for
enterprise-specific knowledge, two main approaches have
emerged: fine-tuning [3], [4] and retrieval-augmented
generation (RAG) [5], [6]. Fine-tuning customizing the model
parameters using domain-specific data, allowing the model to
internalize domain knowledge. In contrast, RAG integrates
external knowledge bases into the inference process, allowing
LLMs to dynamically access and retrieve relevant documents
without modifying the model parameters.

In current research, the development of chatbots using RAG
systems is more commonly seen in domains such as law [7], [8]
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and healthcare [9], while its application to robotic arm
maintenance manuals remains relatively limited.

A unique challenge in robotic arm maintenance manuals is
that the same query may produce different solutions depending
on the product model. Fine-tuning in such cases may risk
confusing the LLM, leading to ambiguous or incorrect
responses. In comparison, RAG provides strong scalability and
flexibility, as new or model-specific documentation can be
directly integrated into the retrieval database without retraining.
This property is particularly well-suited for managing robotic
arm maintenance manuals, where manuals for different product
models can be stored separately. In this way, the system avoids
the confusion that may arise from fine-tuning an LLM on
multiple models, while also reducing the likelihood of
hallucinations [10]. Therefore, this study adopts the RAG
approach to ensure accurate, scalable, and maintainable access
to enterprise knowledge.

RAG typically operates in two stages: a data pre-processing
stage and an inference stage. This architecture enables
knowledge extension without fine-tuning and supports excellent
scalability. The detailed process is illustrated in Fig. 1. During
the data pre-processing stage, the textual content of maintenance
manuals is split into multiple independent chunks. Each chunk
is transformed into a high-dimensional vector using an
embedding model to capture its semantic features. These vectors
are stored in a vector database for subsequent retrieval.

For inference stage, when a user submits a query, the system
encodes the query into a vector and computes similarity scores
with all stored passage vectors. The Top-$K$ most relevant
passages are then selected, converted back into text, and
provided to the LLM along with the query to generate a
response. This architecture enables knowledge extension
without the need for model fine-tuning and offers excellent
scalability.

However, traditional RAG frameworks are limited to textual
data and lack the ability to retrieve and interpret visual content.
In maintenance manuals, visual information, such as assembly
diagrams, component layouts, and procedural illustrations, often
plays a critical role in helping engineers. Without image
processing capabilities, RAG-based systems may produce
incomplete or inaccurate answers, limiting their utility in
multimodal documentation.

Previous studies have explored various approaches to
enhance RAG systems for handling visual content. For example,
Yu et al. proposed VIRAG [11], a method that converts
full-page document images into embeddings for retrieval and
passes them into a vision-language model (VLM) to generate
responses. Although this simplifies the document parsing
pipeline, it heavily depends on the OCR and layout
understanding capabilities of VLM, which may lead to
hallucinations and misinterpretations, especially when the
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image quality is low or the document structure is complex.
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Fig 1. Architecture of RAG [5]

Wang et al. introduced ViDoRAG [12], a hybrid multimodal
retrieval framework that constructs separate embedding spaces
for text and images, and dynamically determines the number of
top k retrieved segments using a Gaussian Mixture Model
(GMM).  Additionally, they employ a three-agent
architecture—Seeker, Inspector, and Answer Agent—to
simulate human reasoning and perform iterative refinement.
Nonetheless, the framework still relies on OCR-dependent
VLMs, which remain susceptible to conversion errors and
inconsistencies in semantic interpretation.

Zhang et al. proposed OHRBench [13], a benchmark that
reveals how semantic and formatting noise introduced by OCR
substantially deteriorates both retrieval accuracy and answer
generation. Their findings show that even state-of-the-art VLMs
struggle to overcome hallucination problems, confirming that
OCR-based interpretation continues to be a key bottleneck in
multimodal RAG systems.

To address these limitations, we propose two multimodal
RAG frameworks: Caption RAG and VLM RAG. Both
approaches are based on document-level text-image separation.
In Caption RAG, the image context and the image itself are
input into a VLM to generate a descriptive caption, which is
then inserted back into the document for retrieval. In VLM RAG,
the retrieved text segments that reference images are used to
locate the corresponding images from a repository, and both text
and images are fed into a VLM for answer generation. Our
experimental results demonstrate that both approaches
significantly improve visual-semantic comprehension in RAG
systems.

Moreover, we deploy the Caption RAG framework in a local
environment using the LLaMA [14] and TAIDE [15] models.
The results show that our system maintains strong accuracy
even without relying on cloud-based computational resources.

The major contributions of our study are as follows.

* We design two approaches — Caption RAG and VLM
RAG — to enable effective multimodal RAG retrieval in
mixed text-image documents. These methods are specifically
validated in robotic arm maintenance manuals, which contain
extensive image information. Empirical evaluation
demonstrates their superior accuracy and robustness in this
real-world scenario.

¢ The evaluation data set that we used was provided by a
senior engineer from an industrial robotic arm manufacturer.
The data set was carefully designed to reflect real-world
production line issues and corresponding solutions, ensuring
both domain expertise and practical applicability.

* We successfully implemented Caption RAG in a local
setup, showing strong system performance and inference
efficiency without relying on a cloud-based model. This
confirms the practical applicability and flexibility of the
framework’s deployment under limited computational
resources.

* Caption RAG achieves a balance between accuracy and
cost by converting images into textual descriptions, making it
a good fit for resource-constrained environments. In contrast,
VLM RAG directly leverages multimodal inputs and
delivers the highest accuracy.

Il. THE PROPOSED MULTIMODAL RAG-BASED CHATBOT
SYSTEM

To effectively solve the conversion errors and hallucination
issues caused by OCR processes in VLM, this study proposes
two RAG-based retrieval methods for handling mixed
text-image documents. Caption RAG and VLM RAG. The key
innovation of these methods is based on the application of
text-image separation, which processes text and images
independently. This approach significantly reduces conversion
errors and hallucinated content that may arise during OCR
conversion. The complete architecture is shown in Fig. 2.

A. Text-image separation

This paper applies the pymupdf [16] tool to implement the
text-image separation technique. The tool extracts all copyable
text blocks from the document and independently extracts all
embedded images, as shown in Fig. 3.

During the image separation process, each image is assigned
a unique identifier (e.g., image 1, image 2, etc.), and a
corresponding image tag is inserted into the original text content
to preserve the positional relationship between images and text
within the document.

Our approach leverages text-image separation to effectively
overcome conversion errors and hallucinations typically
induced by VLM during the OCR process.
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Fig 2. Architecture of our system. (a) Text-image separation; (b) The proposed methods: Caption RAG and VLM RAG; (c) Generator: Usage of different LLMs,
VLMs, and experimental results; (d) Interface with feedback system (Web and App versions); (e) Retrieval process.

In subsequent processing stages, this image tag information
enables quick localization of the corresponding images, serving
as the foundation for Caption RAG generation or VLM RAG
multimodal processing.

B. The Proposed Methods

1) Caption RAG: In this method, based on the results of
text-image separation, we extract image tag information (e.g.,
image_1) and retrieve 100 contexts of text both before and
after the tag as the prompt. This prompt, along with the
separated image (e.g., image 1), is input into the VLM
(GPT-40) [17], which is then asked to generate a description
of the image, as shown in Fig. 4.

Since the prompt includes the contextual text
surrounding the image, GPT-40 can understand how the
image is described within the document. The generated
caption is then inserted back into the original position of the
image tag. Using this approach, all images in the maintenance
manuals are progressively converted into the corresponding
textual descriptions, ultimately constructing a fully text-based
version of the document. Following the above procedure, we
proceed with RAG-based retrieval to identify the correct
answer to the given query.

2) VLM RAG: This method further extends the processing
results of the text-image separation step. The RAG algorithm
is applied directly to the textual portion of the document,
including image tags. During the retrieval process, the system
identifies text fragments containing image tags and uses these

references to locate the corresponding images from a
preprocessed image repository.

Once the relevant text and associated images are retrieved,
they are jointly entered into a VLM -GPT-40 is adopted in
this study. This model can simultaneously process both text
and several images within a single context, integrating
semantic text with visual information from the images. As a
result, it generates contextually enriched and semantically
comprehensive responses.

This approach significantly improves the model's ability
to interpret complex technical documents, making it
particularly suitable for applications such as maintenance
manuals, where visual elements, such as assembly diagrams,
component schematics, or procedural illustrations, often carry
critical additional information. These visuals effectively
compensate for the limitations in textual descriptions. The
complete system architecture of VLM RAG is illustrated in
Fig. 5.

C.Generator

In terms of generator selection strategy, we differentiate and
optimize the input format to LLMs based on the distinct data
processing characteristics of the Caption RAG and VLM RAG
methods.

In the Caption RAG method, we first perform
pre-processing on the images. The system uses VLMs to
generate semantic descriptions of each image, effectively
converting the images into the corresponding textual content.
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Query: ..........

TABLE |
MODELS USED IN THE DIFFERENT RAG METHODS
Method Image Description Generator
GPT-40 (Cloud)
Caption RAG GPT-40 (cloud) TAIDE 8B (Local)
LLaMAZ3.1 8B (Local)
VLM RAG Not required GPT-40 (Cloud)

» <image 1> </image 1> _I_

{ d

Fig 3. Text-image separation

In this method, we use the GPT-40 VLM model to generate
semantic descriptions of the images. As a result, all the images
in the document are transformed into text descriptions.
Therefore, the generator in the Caption RAG pipeline receives
only textual input, without any image content. We select three
models with strong generative capabilities as generators:
GPT-40, LLaMA 8B, and TAIDE 8B. Among them, GPT-40
utilizes OpenAl's cloud-based inference resources, while
TAIDE 8B and LLaMAZ3.1 8B can be executed locally, offering
flexibility in deployment and cost advantages.

In contrast, the VLM RAG method does not pre-process the
images in advance. During the RAG retrieval process, the
system retrieves not only relevant text fragments but also their
corresponding image tags. These retrieved text-image pairs are
then input jointly into the generator. Consequently, the
generator for the VLM RAG method must support image input
and possess multimodal semantic understanding capabilities.
To meet this requirement, we adopt GPT-40 as the generator for
the VLM RAG approach, leveraging its ability to process both
images and text simultaneously for integrated generation and
semantic fusion.

However, current publicly available VLMs such as LLaMA
Vision [18], Qwen-VL [19] do not support batch input of
multiple images. Therefore, in this project, GPT-40 is
exclusively used as the cloud-based VLM for system
validation.

Table | summarizes the methods utilized each stage of the
proposed approaches.

D.Retrieval Process

The retrieval process proposed in this study is based on the
traditional RAG framework. We employ LangChain’s [20]

=+ 7
2= &)

Fig 4. Caption RAG
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Fig 5. VLM RAG
RecursiveCharacterTextSplitter function to segment the
document, where the text is divided into chunks based on a
predefined chunk size and overlap. Each chunk is then
converted into a vector representation using OpenAl’s
embedding model [21] and stored in a FAISS [22] vector
database.

When a user query is input, the query is encoded into a
vector using the same embedding model. The cosine similarity
search is then performed in the FAISS database to retrieve the
top-K most relevant chunks. Next, a re-ranking model
(ms-marco-MiniLM-L-6-v2 [23] ) reorders these candidates so
that the most semantically relevant passages are prioritized.
Re-ranking is based on a cross-encoder architecture, where the
query and document are concatenated and jointly fed into the
model. Through the attention mechanism, the model captures
semantic interactions between the two, ultimately outputting a
relevance score. This approach enables a more fine-grained
assessment of the matching degree between candidate passages
and the query, thereby improving ranking accuracy [24]. Finally,
inspired by the VIDoRAG [12] framework, we further
incorporate the dynamic paragraph selection method to enhance
the quality and semantic relevance of the information retrieved
by the retriever.

the answer

In traditional RAG systems, the retriever typically selects
the top K most similar passages (top-K chunks). However, this
method lacks flexibility and may mix in irrelevant information.
To solve this issue, we adopt the GMM mechanism proposed by
ViDoRAG to dynamically determine the number of passages to
be included in each retrieval.

The GMM takes the similarity scores S; produced by the

retriever and assumes that S; follows a mixture of two Gaussian

distributions—one for high similarity and one for low similarity.
The overall mixture distribution is shown in (1). Here,

N (s |yk,0k2) denotes the k-th Gaussian component (k =0 for
low similarity, k =1 for high similarity); = is the mixture

weight of componentk , and Yy, o) are the mean and standard
deviation of that component.

P(s;)= 7 - N (S|4, 00 )+, - NV (5i84,0,7) 1)

Next, we introduce a latent variable z; €{0,1} that indicates
whether passage | belongs to the low-similarity component
(z;=0) or the high-similarity component ( z; =1). The
Expectation-Maximization (EM) algorithm is then used to
compute the posterior probability that each passage S; belongs
to the high-similarity component, as shown in (2). Based on a



International Journal of iRobotics 11
Vol. 8, 2025

Algorithm 1 Caption RAG Process

Algorithm 2 VLM RAG Process

Constants: Embedding Model M Generative LLM M,

1: emb’
VLM Model M

2: Input: Document: 72, User Query q
3:  Output: Final Response I
4: Data Preprocess
5. (T, 1) < SeparateDocument(2) > Split document into text T and

" images |
6: foreachimage i € | do
7: ¢ < My, (i) > Generate caption c; for image i

T « InsertAtOrigPos(T, ¢;, i)

9:  end for
10: D < T > Obtain augmented document with text and caption

11:  Data Ingestion

12:  C « ChunkText(D

text) > Split document into chunks

13: Echunks < Memp (C) > Embed each chunk

14: D BVECtOI'

15:  Query Processing
16:  While true do

<« Store(E chunks)

> Continuous query input from user

17: g < Userlnput()

18: Equew <~ Mg (9)

19: C « VectorSearch(Equery, DB, ector )
20: Crank < Rerank(q,C )

21: Cgmm < GMM(C, )

22: I < M”m(qycgmm)

23: Display(r)

24:  end While

predefined posterior probability threshold (0.5 in this study), all
passages classified as belonging to the high-similarity

distribution (i.e., those satisfying P(z; =1|s;)>05) are
retained to enable dynamic paragraph selection.

By integrating the original RAG retrieval strategy with the
GMM-based dynamic top-K selection mechanism, we can
reduce the inclusion of irrelevant passages in the LLM input,

thereby mitigating the noise that may interfere with the model's
ability to generate accurate answers.

2
7y - NV (siley.00)

P(z; =11s;) =

@

z 2
o - NV (Silug.og Yrmy - N (il 07 )

E. Methodological Framework

In this section, we present the overall methodological
framework that integrates the components described in the
previous subsections. Specifically, two algorithmic variants are
summarized to illustrate the complete pipeline of our approach:

the Caption RAG Process(Algorithm 1) and the VLM RAG
Process (Algorithm2).
The Caption RAG pipeline uses the vision language model

(M, ) to generate textual descriptions for images, which are

Constants: Embedding Model M.,
Input: Document: 72, User Query q

Output: Final Response I

Data Preprocess

(T, 1) < SeparateDocument(2’) > Split document into text T and
images |

Data Ingestion

Generative VLM M,

N g R R

C < ChunkText(Dyq,) ©> Split document into chunks
8: Echunks < Memp (C) > Embed each chunk

9: DBvector

10:  Query Processing
11:  While true do

<« Store(Echunks)

> Continuous query input from user

12: g < Userlnput()

13: Equery <~ Mo (9)

14: C <« VectorSearch(E query DB, ector )

15: Crank < Rerank(q, C )

16: Camm < GMM(Crgny )

17: Tags « FlndlmageTags(Cgmm) » Check retrieved chunks for
figure tags

18: Iretrieved ¢

19: for each tag t e Tags do

20: i < GetlmageByTag(l,t)

” letrieved < retrieved Y {i} > Add the retrieved image i into
the set Iretrieved

22: end for

23 r < M,n,(a, Comm> | retrieveq ) > Answer with both and
images

24: Display(r)

25: end While

then inserted into the document to form an augmented text-only
representation. This enables the downstream retrieval and
generation to be carried out purely on textual embeddings, with
the final response produced by the generative language model

(Mllm)'

In contrast, the VLM RAG pipeline preserves the original
multimodal nature of the document. Text chunks are directly
embedded and stored in the vector database, and during query
processing, the retrieved results are examined for figure
references. If such figure tags are detected, the corresponding
images are extracted from the image set I. The generative

vision-language model (M, ) then produces the final response
by conditioning on both the retrieved text chunks and the
associated images.

These two algorithms show how our framework
accommodates both caption-based augmentation and direct
multimodal reasoning.

I1l. EXPERIMENTAL RESULTS AND ANALYSIS

A. Document and Evaluation Dataset
The document used in our study is a 94-page PDF
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maintenance manual for a robotic arm, which contains
numerous images. After applying our text-image separation
process, a total of 171 images were extracted.

The evaluation dataset used in this study was provided by a
senior engineer from a robotic arm manufacturer. It was
carefully curated based on maintenance manuals, containing 30
representative real-world issues and their corresponding
standard answers, all of which were meticulously designed to
ensure reliability and domain relevance.

B. Evaluation Metrics

This study adopts two evaluation metrics; BERT Score
[25]and LLM Score [26] to assess the semantic similarity and
correctness of the answers generated by the system.

The BERT score metric is used primarily to quantify the
semantic similarity between two sentences. In this study, we

employed the BERT Score Recall ( Ry ) to measure the

semantic consistency between the system-generated answer
and the reference answer, serving as a key metric of generation
quality.

As shown (3), x;and X jare the vectors transformed by the

BERT model[27]. These vectors are normalized, and we apply
greedy matching to maximize the matching similarity score.

1 Te
Reerr = _Z ma‘xﬁjeixi X; ®)

X &=

However, BERT Score is sensitive to sentence length,
structure, and word choice. If there are significant differences
in length or expression between the generated and reference
answers, even semantically similar responses may result in low
BERT Scores, thereby affecting evaluation accuracy.

To improve consistency and objectivity in the evaluation
process, we used a short answer mechanism as an
intermediate step for semantic alignment prior to BERT Score
calculation. After generating a full answer, the system is
instructed to produce a concise answer using the LLM. This
design addresses the issue of score distortion caused by length
discrepancies between generated answers and reference
answers. Since our RAG system retrieves a large amount of
relevant information during the retrieval stage, the LLM tends
to include additional explanations to help users better
understand and resolve the issue. Although such supplemental
content is useful, it may lead to significant differences in length
and structure compared to the reference answer, potentially
lowering the BERT Score despite high semantic similarity.

Therefore, we evaluate BERT Score based only on the
LLM-generated concise answer and the corresponding
reference answer. This effectively eliminates the interference
from verbose expressions and non-essential information,
ensuring that BERT Score reflects the true semantic similarity
between the system's response and the ground truth.

As for the LLM Score, we use an LLM to evaluate the
accuracy of the generated answers. The study by Arjun
Panickssery, Samuel R. Bowman, and Shi Feng [28]
demonstrates that a language model, with self-recognition
capability, may tend to give higher scores to the responses it

generated itself. To avoid potential bias caused by the GPT-40
recognizing its own generated response, we use an additional
model-Gemini 2.0 Flash-Lite [29] as the evaluation tool. The
prompt includes the question, the reference answer, and the
generated answer. Gemini is instructed to judge whether the
generated answer is correct, using the reference answer as the
primary reference.

Formally, for each item we construct a triple

u =(q,a™,a8""), @)

f

where 0 is the question, &, is the reference answer, and

a %"

i~ isour RAG system generated answer.

The LLM judge M, () returns a binary correctness label

IIm

sV =M, {013 t=1..T, )

where si(t) =1 if the generated answer is judged correct at trial t,
and 0 otherwise.

The per-trial accuracy is define as

N
Acc® - = 3 ) . ©)

1
N i=1

To reduce potential randomness and instability, we adopt a
multi-evaluation strategy by repeating the judging process T
times (with T =5 in our experiments). The final LLM Score is
then computed as the mean accuracy across trials:

13 ,e®
LLM-Score = T > Acct. @)
t=1

This approach provides a quantitative measure of response
correctness and allows for statistical analysis of the system's
overall accuracy.

C. Impact of Prompt Language on Model Performance

Our study conducts a comparative analysis of different LLM
and their respective performance under varying prompt
languages. Using the Caption RAG approach, we evaluate the
performance of TAIDE 8B, LLaMA 8B, and GPT-40 by testing
each model with both Chinese and English prompts. The
evaluation metric adopted is the LLM Score.

The experimental results, as shown in the Table 1I, TAIDE
is trained by the National Science and Technology Council
(NSTC) on a large-scale Traditional Chinese dataset, exhibits
strong proficiency and alignment with Traditional Chinese
prompts. In contrast, LLaMA 8B shows significantly stronger
performance when prompted in English compared to Chinese,
revealing a marked sensitivity to prompt language. We
speculate that this is due to the relatively small model size of
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LLaMA (8 billion parameters) and its lack of training on
multilingual datasets. On the other hand, while GPT-40 also
performs better with English prompts, its sensitivity to
language differences is noticeably lower than that of LLaMA.

To maximize answer accuracy in subsequent experiments,
we adopt specific prompt language: TAIDE will use
Traditional Chinese prompts, while LLaMA and GPT-40 will
be prompted in English.

TABLE Il

COMPARISON OF LLM PERFORMANCE UNDER DIFFERENT LANGUAGES

TAIDE 8B LLaMA 8B GPT 40
Chinese prompt (%) 74.67 64.67 80
English prompt (%) 70 92 96

D. Result

Table 111 presents the experimental results of our proposed
methods compared to the baseline Naive RAG architecture.
Three system variants are evaluated: (1) Naive RAG, the
original RAG system which only supports pure text retrieval
without image processing capability; (2) Caption RAG, and (3)
VLM RAG, both of which are proposed in this study. All three
systems use GPT-40 as the generator to ensure consistency.

As shown in the results, when evaluating answer similarity
using BERT Score, Caption RAG (40) achieves the highest
similarity score of 76.4%, followed by VLM RAG (40) at 76%.
In terms of answer correctness evaluated via LLM Score, VLM
RAG (40) achieves the best performance with an accuracy of
96.67%, while Caption RAG (40) reaches 96%.

These results indicate that the proposed image-enhanced
retrieval strategies can effectively improve response
correctness. Compared to Naive RAG, both Caption RAG and
VLM RAG show significant improvements in both accuracy
and semantic similarity, demonstrating the practical
effectiveness of our methods.

It is also worth noting that BERT Score tends to be affected
by response length. Since VLM RAG is capable of leveraging
both visual and textual input simultaneously, its generated
responses are often more detailed. This may lead to lower
BERT Scores despite high accuracy, resulting in a divergence
between BERT and LLM Score metrics.

TABLE Il1
Compare with Naive RAG and our work
Naive RAG Caption RAG VLM RAG
(40) (40) (40)
BERT Score (%) 75.27 76.4 76
LLM Score (%0) 86 96 96.67
TABLE IV

Compare with the local model and the cloud model

Caption RAG  Caption RAG  Caption RAG

(TAIDE 8B) (LLaMA 8B) (40)
Chinese prompt (%) 74.67 64.67 80
English prompt (%) 70 92 96

In addition, we conducted experiments analyzing the local

deployment of the Caption RAG system using two local models:

TAIDE 8B and LLaMA 8B. The results are presented in the

Table 1V. The results reveal that LLaMA significantly
outperforms TAIDE in terms of answer accuracy, achieving an
LLM Score of 92% compared to TAIDE’s 74.67% . This
demonstrates that our proposed system can be effectively
deployed on local models with relatively lower computational
resources, showing promising potential for real-world
applications.

Fig. 6 is the inference time comparison in this study. We
evaluated the local models (TAIDE, LLaMA) on a GeForce
RTX 4090 GPU. The results reveal that the LLaMA model
demonstrates superior inference efficiency compared to the
TAIDE model, despite both models having a similar number of
parameters.

Furthermore, the Caption RAG method demonstrates
significantly shorter inference time, since it only relies on
textual information and can directly operate on pre-extracted
captions without the need for complex multimodal alignment.
In contrast, the VLM RAG method exhibits longer inference
time. This is because it needs to check whether the retrieved
textual content contains image tags and then process the
identified images through the VLM. Specifically, this involves
passing the image data through a vision encoder for alignment,
followed by cross-modal integration, which collectively leads
to longer inference time.
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Fig 6. Inference time comparison
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We also carried out experiments to assess the impact of
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integrating the GMM module into our system, and the results
are presented in Fig. 7. The blue lines indicate the accuracy of
the LLM score without the GMM module (w/o GMM), while
the orange lines represent the accuracy of the LLM score with
the GMM module (with GMM). The results demonstrate that
the integration of the GMM module consistently improves the
overall accuracy. This improvement arises because the GMM
effectively filters out irrelevant noise, thereby reducing the
number of unrelated chunks that are passed to the LLM and
potentially interfere with its responses. The effect of the GMM
module is particularly evident in local models. For example, the
difference between the Caption RAG (TAIDE) and the Caption
RAG (LLaMA) results with and without the GMM maodule is
more significant. This is because local models have a limited
number of parameters, unlike large-scale cloud-based models
such as GPT-40, which possess a significantly larger parameter
capacity. As a result, when too many noisy chunks are input
into local models, their responses are more likely to become
inaccurate.

E. Cost Analysis

In our proposed methods, since we used the cloud-based
model GPT-4o, the use of its API leads to corresponding costs.
Therefore, we conducted a cost analysis. At the time of our
calculation, the pricing for GPT-40 was $2.5 per one million
input tokens and $10 per one million output tokens. The
results of this analysis are summarized in Table V.

In the Caption RAG method, images are first converted into
textual descriptions through the image description process,
which results in an additional cost. However, this step must be
performed only once. In contrast, the VLM RAG method
directly feeds the retrieved images into the VLM, and thus does
not incur such pre-processing costs.

Regarding query processing, the Caption RAG method
requires only textual input, leading to relatively lower API
usage costs. On the other hand, VLM RAG directly processes
both text and images within the VLM, resulting in significantly
higher costs. Overall, the API usage cost of VLM RAG is
approximately 6.8 times greater than that of Caption RAG.

TABLE V
Cost comparison of different RAG methods (USD)
Image Description
Method (Only one time) Per query
Caption RAG (TAIDE) $0
Caption RAG (LLaMA) $2.36 $0
Caption RAG (GPT 40) $0.0073/query
VLM RAG $0 $0.05/query

F. Case Study

In Table VI, this case study presents the input question: How
to start Snake Dance project?

For comparison, we employed the latest web-based version
of ChatGPT 5 [30]. In this test, we uploaded the same document
to the ChatGPT web interface and asked the same question.
Since the relevant instructions in the document are presented in
image form, our system was able to correctly answer the
question because it includes an image-processing module that
extracts and explains visual content.

At the same time, our system’s response also includes
Citation Pages, which serve as direct references to the source
document. This feature allows users who may still have doubts

about the system’s generated explanation to trace back and
quickly locate the exact page where the answer originates.
Moreover, it helps prevent the LLM from introducing
information unrelated to the document during the generation
process.

In contrast, the ChatGPT 5 web version returned the

response “The document does not provide direct instructions on
how to start the Snake Dance project.”
This outcome highlights a key advantage of our method: by
incorporating specialized image understanding, our system can
accurately respond even when the necessary information
appears as images within the original document, whereas the
ChatGPT 5 web version’s document reading function fails to do
this case.

G. Cross-Platform Interface

We designed a dedicated user interface that integrates
seamlessly with the proposed system. Two versions of the
interface were developed: a web-based version and a mobile
application. In Fig. 8 (a), the web version is intended to be
deployed alongside production machines or used in employee
training programs. To enhance accessibility, we further
implemented a mobile version, as illustrated in Fig. 8 (b),
enabling users to interact with the system more conveniently on
their personal devices.

In addition, a feedback system was incorporated into the
interface. Specifically, a feedback button allows users to
evaluate the chatbot’s responses. If a wuser indicates
dissatisfaction, a problem-reporting dialog is triggered, through
which detailed feedback can be submitted. This feedback
system provides us with clearer insights into user experiences
and helps guide the continuous improvement of the system.

IV. CONCLUSION

To improve RAG systems for multimodal technical
documents, this study introduces two methods: Caption RAG
and VLM RAG. By separating text and images and applying
vision-language model (VLM) pipelines, both approaches
enhance the system's ability to understand and respond to
documents containing visual data. Caption RAG converts
images into contextual descriptions, while VLM RAG
processes retrieved text and images together using GPT-40 for
more accurate responses. Experimental results, validated on
datasets curated by senior experts from an industrial robotic
arm manufacturer, show that VLM RAG (GPT-40) achieves
the highest accuracy at 96.67%, while Caption RAG (GPT-40)
scores a BERT Score of 76.4%, reflecting strong semantic
consistency. Both outperform the baseline Naive RAG in
accuracy and coherence. Caption RAG was also tested in a
local environment using the LLaMA model, achieving 92%
accuracy with an average inference time of 4.37 seconds,
demonstrating suitability for resource-limited settings. In
summary, the proposed multimodal RAG system enhances
image-text understanding, delivers high accuracy and
efficiency, and supports flexible deployment—making it
well-suited for real-world applications such as intelligent
maintenance and enterprise  knowledge management.
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TABLE VI
COMPARISON BETWEEN OUR SYSTEM AND CHATGPT 5 WEB VERSION

Q: How to start Snake Dance project

Answer: To start the "Snake Dance" project for testing robotic arms, follow these detailed steps.

1. Configuration of Nodes:

Create two nodes with specific joint angles for six joints (J1 through J6). The angles for Node 1 and Node 2 are
mirrored as follows:

J1: 260, -260

J2: 90, -90

J3: -150, 150

J4: 90, -90

J5: 170, -170

J6: 110, -110

2. Execution of the Test: After configuring the nodes with the specified joint angle, run these nodes in a loop at 60\%
speed for 30 minutes.

3. Assessment: During the test, monitor the robotic arm for any abnormalities. If no abnormalities are detected, the
robot is considered ready for use.

This procedure ensures that the robotic arm is functioning correctly and is ready for operational tasks. The "snake
dance" test is a critical step in verifying the robot's readiness and performance.

Citation Pages: Techman confidential 78 (Page 79, paragraph describing the snake dance procedure).
[Confidence: 9]

Our system (Caption RAG)

The document does not provide direct instructions on how to start the Snake Dance project. However, it can be
inferred that this is a post-calibration verification procedure. You must first complete all calibration processes and

ChatGPT 5 (OpenAl, Web version) save the calibration data, then execute the "Snake Dance" test in Maintenance Mode to verify the motion accuracy of
the system. If detailed operation steps are required, it is recommended to refer to Techman’s software operation
manual or internal maintenance tool (Maintenance Mode) documentation for further guidance.

Conesssation Record Conversation 1) oo CEEEED -
ot [
3 i onren 0a" Caplio BORL: 40 | Document: Red

How many people are needed if

1 it to di ble the Robot
How to start snake dance project? et it

Answer: To start the "snake dance" project for testing robotic arms, follow these detailed steps: Answer:
1. **Configuration of Nodes™":

To di mble the Robot Arm,
- Create two nodes with specific joint angles for six joints (J1 through J6). The angles for Node 1 and Node 2 should be mirrored as S mocvmtiorat

at least two people should work

jows:
5 together to ensure safe
s o Thia I sand o ha
13150, 150 *Assembly and Disassembly
4:90, 90 Guide for Robot arm” section of
235:170, 170 the document (page 15).
- 36: 110, -110

Citation Pages: Page 15

2. **Execution of the Test"":

- After configuring the nodes with the specified joint angles, run these nodes in a loop at 60% speed for 30 minutes. Cordars Seedt

Note: The document
emphasizes the importance of
having at least two people to

3. **Assessment"":
- During the test, monitor the robotic arm for any abnormalities. If no abnormalities are detected, the robot is considered ready for use.

This procedure ensures that the robotic arm is functioning correctly and is ready for operational tasks. The “snake dance” test s a critical :ﬁ;fg,’f;:{:‘fx' il
step in verifying the robot's readiness and performance et et e tak ey b
Citation Pages: Techman confidential 78 (Page 79, paragraph describing the snake dance procedure). m‘::; I -
[Confidence: 9] & Additionally, the document

provides detailed instructions on
how to disassembie the Robot
Arm, Including removing the
Joint cover and Joint rubber,

(a) (b)

Fig 8. User interface of the proposed system: (a) Web version with problem-reporting dialog, (b) Mobile application.
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