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Abstract—This research introduces a novel approach to 
estimate the dynamic model parameters of the delta robot. The 
simplified delta robot model is developed by using virtual work 
principle. This method is efficient and can be computed in real 
time for the control propose. To estimate the dynamic model 
parameters, an excitation trajectory is generated based on Fourier 
series, and the unknown parameters of the dynamic model is 
estimated by using least mean square algorithm. The simulation 
result indicates that this method can estimate the dynamic model 
parameters of delta robot accurately in real time.  

Index Terms— parameter identification, delta robot, Fourier 
series, least mean square algorithm 

I. INTRODUCTION 

HE application of robot manipulator has become more and 
more popular in the industry. The robot manipulators can be 

divided into two categories: series and parallel. The series 
manipulator performs an open movement, that is, its mechanism 
is not closed, while the parallel manipulator is the opposite. 
Compared with the series manipulator, the parallel manipulator 
has the advantages of high rigidity, low inertia, and simple 
structure, but its working space is limited. The parallel 
manipulator is usually used in situations where fast movement 
is required and the workspace is not large. Failures of the robot 
manipulator could cause loss of precision, mechanism 
interference, production shutdown and human injury. Therefore, 
fault detection of robot manipulator attracts a wide attention. 
The current fault detection methods can be divided into three 
types: sensor redundancy, signal-based method, and model-
based method.  

The sensor redundancy is the simplest method for the fault 
detection. It installs multiple sensors to the system, and the 
diagnosis is performed by comparing the measurement from 
identical sensors [1-3]. This method can effectively detect the 
faults, but the installation of sensors is expensive and it reduces 
the workspace of robot manipulator. Therefore, in recent years, 
people have started to use mathematical methods to replace a 
large number of sensors [4].  
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The model-based method establishes a system dynamic 
model, and compares the model output and the actual output.  
When the difference between the two exceeds a preset threshold, 
it indicates that a fault occurs. The model-based method requires 
an accurate dynamic model and parameters [5]. Therefore, this 
research proposes a novel method to estimate the parameters of 
the Delta robot dynamic model. 

II. DYNAMIC MODEL OF DELTA ROBOT 

The Delta robot discussed in this research consists of three 

upper arms (1), three sets of forearms (2), a travelling plate (3), 

and three sets of actuators (4), as shown in Fig. 1(a). The global 

coordinate of the Delta robot is defined in Fig. 1(b). Owing to 

the robot’s triple symmetry, one can calculate the movement of 

one arm and apply the transformation matrix to retrieve the 

movement of the other arms. The transformation matrix is given 

by 

i i

i i

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1
iR

 

 

 
 
 
 
 
  





       (1) 

Where i = 1, 2, 3 and 
1 2 3
0 , 120 , 240     . 

 
 

(a) (b) 

Fig. 1 (a) configuration and (b) global coordinate of the Delta robot 

 

As shown in Fig.2, the origin O locates at the center of the 

delta robot, and the center of the travelling plate locates at the 

point P. In order to simplify the dynamic model of the delta robot, 

the end of the forearm '
i

C  has been shifted to 
i
C . It makes three 

sets of the forearm intersects at the point P. As shown in Fig. 2, 

3 2
,

i i
L R r L BC   . The dimensions of the delta robot is: R = 

100 mm, r = 45 mm, L1 = 85 mm, and L2 = 377 mm.  

The dynamic model of the delta robot is derived based on the 

virtual work principle proposed by Codourey [6]. By using this 
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method, the mass matrix of the robot can be computed separately 

based on kinetic energy consideration. The model thus obtained 

is efficient and can be computed in real time for control proposes. 

 

  

(a) (b) (c)   

Fig. 2. The dimension of the forearm 

 

The delta robot consists of one traveling plate, three upper 

arms, and three forearms. The mass matrix of the robot is the 

sum of the contributions of traveling plate, upper arm, and 

forearm:  

n u f
A A A A           (2) 

The mass matrix of the traveling plate can be represented as: 
T

n n
A m J J          (3) 

Where J is the Jacobian matrix of the Delta robot and mn is the 

mass of the traveling plate and the payload. The contribution of 

the upper arms can be compacted into one matrix as: 

1

2

3

0 0

0 0

0 0

b

u b b

b

I

A I I

I

 

 
 
 
  

      (4) 

Where 
1 2 3b b b bi
I I I I    and 

2

3

b

bi m A c

m
I I L m  

 
 
 

       (5) 

Where Im is the inertia of the motor, mb is the mass of the upper 

arm and mc is the mass of the elbow. The velocity at the lower 

end of the forearm is the velocity of the traveling plate, and the 

velocity at the upper end of the forearm can be defined as:  

,

sin

0

cos

A i

u i i i

A i

L q

v R q

L q

 

 
 
 
  

       (6) 

Written as a function of the joint-velocity qi for each forearm, it 

becomes: 

1

,1 1 ,1

1

sin 0 0

0 0 0

cos 0 0

A

u u

A

L q

v R q J q

L q

  

   
   
   
      

    (7) 

2

,2 2 ,2

2

0 sin 0

0 0 0

0 cos 0

A

u u

A

L q

v R q J q

L q

  

   
   
   
      

     (8) 

3

,3 3 ,3

3

0 0 sin

0 0 0

0 0 cos

A

u u

A

L q

v R q J q

L q

  

  
  
  
    

     (9) 

Thus the contribution of each forearm to the mass matrix of the 

robot can be calculated as:  

 , , , ,

1

3

T T T

b i ab u i u i u i
A m J J J J J J        (10) 

Where mab is the mass of the forearm. Hence the mass matrix of 

the Delta robot can be represented as: 

 
3

, , ,

1

1

3

T T T T

b n ab u i u i u i

i

A I m J J m J J J J J J


      (11) 

However, the inertia matrix of the three forearms (the third 

term of the above equation) would vary depending on the motor 

angle and the position of the traveling plate. To simplify eqn(11), 

we put one-third of the forearm mass into the traveling plate, and 

the remaining two-third to the upper arm. Hence the third term 

in the above equation can be erased. The simplified inertia 

matrix can be shown as:  
T

bt nt
A I m J J         (12) 

Where 

1

2

3

0 0

0 0

0 0

bt

bt bt

bt

I

I I

I



 
 
 
  

, 2

1

1 2

3 3
bti m b c ab
I I L m m m   

 
 
 

  (13) 

The torque of the motor m  can be represented as:  

3 3

, ,

1 1

m n b i ab i

i i

   
 

        (14) 

Where 
n

 is the contribution of the force acting on the travelling 

plate, 
,b i

 is the force/torque contribution of the upper arm i, and 

,ab i
  is the force/torque contribution of the forearm i. Because 

the traveling plate only performs translation, its torque equation 

becomes: 

0

0
T

n n
J m P

g

  

   
  
  
     

       (15) 

Where g is the gravitational acceleration. On the other hand, the 

upper-arm only performs rotation, and its torque equation is: 

1

1 2

3

cos(q )

cos(q )
2

cos(q )

b

b b c

m
I q m gL   

 
   
    

  

    (16) 

The gravitational force of each forearm can be placed by one 

half of the mass at the upper-arm and one half of the mass at the 

traveling plate. Combining eqn(14), (15) and (16), the dynamic 

model of the Delta robot becomes as follows: 
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0 cos(q1)

0 cos(q2) (q)

cos(q3)

T T

m bt nt ng na
I q m J P m J m F

g

     

   
   
   
      

  (17) 

 

Where 

3
nt n ab c

m m m m          (18) 

3

2
ng n ab

m m m   

1

1 1

2 2
na b c ab

m m m m gL  
 
 
 

 

And the friction term (q)F  can be shown as:  

(q) (q)
c v

F f sng f q          (19) 

Where cf is the Coulomb friction coefficient and vf is the 

viscous friction. Their matrixes can be represented as:  

1

2

3

0 0

0 0

0 0

c

c c

c

f

f f

f



 
 
 
  

, 

1

2

3

0 0

0 0

0 0

v

v v

v

f

f f

f



 
 
 
  

     (20) 
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2
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sgn(q) sgn(q )

sgn(q )



 
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 
  

 

1, if 0

sgn(q ) 0, if 0

0, if 0

i

i i

i

q

q

q



 









     (21) 

 

III.  ESTIMATION OF PARAMETERS 

A. Least Mean Square Algorithm 

The dynamic model is necessary for the controller design. 

However, because several crucial parameters such as friction 

are hard to measure, system identification method is applied to 

estimate the value of these parameters. Least mean square 

algorithm is applied in this research. Assume the unknown 

parameters of the Delta robot can be formulated as:  





1 2 3 1 2

3 1 2 3 1 2 3

bt bt bt nt ng l l

l c c c v v v

x I I I m m m m

m f f f f f f


   (22) 

The measured torque of the three motors are:  

 
1 2 3

T

m m m
y           (23) 

Where m = 14. The basis function is   

The basis matrix is defined as  

1 1

2 1

3 1

1 1

2 2

3 3

0 0 0 cos(q ) 0 0

0 0 0 0 cos(q ) 0

0 0 0 0 cos(q )

sgn(q ) 0 0 0 0

0 sgn(q ) 0 0 0

0 0 sgn(q ) 0 0

T T

q

h q J P J

q g

q

q

q



  
  
  
    






(24) 

and  

 

 

1 2

1 2

...

...

T

m

T

m

H h h h

Y y y y





 

Where m = 14 to make H full rank. The parameters of the Delta 

robot can be estimated by using 
T 1

(H H)
T

x H Y


         (25) 

 

B. Excitation Trajectory 

The excitation trajectory is generated by using 3rd-order 

Fourier series to form the motor rotation angle. They are  
3

1 10 1 1 1 1

1

3

2 20 2 2 2 2

1

3

3 30 3 3 3 3

1

(t) sin(2 t) cos(2 t)

(t) sin(2 t) cos(2 t)

(t) sin(2 t) cos(2 t)

i i i i

i

i i i i

i

i i i i

i

a f b f

a f b f

a f b f

   

   

   







  

  

  







 (26) 

The rotation frequency is intentionally set to 
1

0.41f Hz , 

2
0.45f Hz , and 

3
0.43f Hz . The constraints of the Delta is 

listed in Table I.  

TABLE I 

CONSTRAINTS OF THE DELTA ROBOT 

Parameters Operating rage 

Motor rotation angle 
i

   60 10
i
      

rotation speed 
i

 (rad/s) 1.5 1.5
i
    

rotation acceleration
i

 (rad/s2) 15 15
i
    

platform position x (m) 0.06 0.06x    

platform position y (m) 0.06 0.06x    

platform position z (m) 0.38 0.35z     

 

The optimization method proposed in [7] is applied to calculate 

1 2 , 3 1 2 3
, , , ,

i i i i i i
a a a b b b  of the Fourier series trajectory. Their 

values are shown in Table II.  

TABLE II 
COEFFICIENTS OF THE FOURIER SERIES TRAJECTORY 

 
0i

  
1i

a  
2i

a  
3i

a  
1i

b  
2i

b  
3i

b  

i = 0 0.5 -0.028 -0.003 0.059 -0.084 0.02 -0.018 
i = 1 0.5 -0.094 0.001 0.044 0.111 -0.361 0.025 

i = 2 0.5 -0.062 0.012 0.014 0.082 -0.012 -0.13 

The unit of (t)
i
  is in radius.  

The trajectory of the center of the traveling plate is shown in 

Fig. 3. By applying torque control of the three servo motors to 

follow the Fourier series trajectory, the unknown parameters of 

the Delta robot can be estimated by using the least mean square 

algorithm. The estimation error of each parameter is shown in 

Table III. All the parameters of the Delta robot dynamic, 

including Coulomb friction and viscous friction coefficients, 

can be estimated accurately.  
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Fig. 3. The trajectory of the traveling plate 

 

TABLE III 
ESTIMATION ERROR OF DYNAMIC MODEL PARAMETERS 

Parameter Estimation error 

1bt
I  0% 

2bt
I  0% 

3bt
I  0% 

nt
m  1.09% 

ng
m  0.33% 

1l
m  0.4% 

2l
m  0.4% 

3l
m  0.4% 

1c
f  4% 

2c
f  0% 

3c
f  1.3% 

1v
f  2.7% 

2v
f  0.6% 

3v
f  1% 

 

C. Application to Delta Robot 

The proposed identification method is applied to the Delta 

robot developed in NTUST, as shown in Fig. 4, and the 

estimation error is indicated in Table IV. It can be seen that 

although the errors of 
1bt

I , 
nt

m , and 
ng

m are within 10%, most 

parameters deviate from their theoretical values. Unbalance is 

observed on the inertia and the mass parameters of the forearms. 

The large error could be caused by the misalignment of the 

Delta robot, model uncertainty, and un-modeled dynamics. 

However, each parameter’s coefficient of variation remains 

small for five repeated experiments. It means that the proposed 

method is able to provide a stable estimation, and the estimated 

value is very sensitive to the robot dynamics in the real-world 

scenario. Hence the proposed method could be used to monitor 

the status of the Delta robot.  

 

 

 
Fig. 4. The Delta robot developed in NTUST 

 

TABLE IV 

ESTIMATION ERROR OF DELTA ROBOT DYNAMICS 

Parameter 
Estimation 

error 

Coefficients of 

variation 

1bt
I  4.3% 1.2% 

2bt
I  21.7% 2.1% 

3bt
I  30.4% 3.1% 

nt
m  4% 0.2% 

ng
m  8.5% 0.2% 

1l
m  13.4% 1.0% 

2l
m  25.9% 0.4% 

3l
m  27.9% 0.4% 

1c
f  N/A 2.0% 

2c
f  N/A 3.9% 

3c
f  N/A 3.2% 

1v
f  N/A 2.3% 

2v
f  N/A 6.3% 

3v
f  N/A 4.5% 

IV. CONCLUSION 

A novel method to identify the dynamic parameters of the 
Delta robot dynamics is proposed in this research. The dynamic 
model of Delta robot is developed by using the virtual work 
principle, and the frictional force equation is integrated into the 
model. The excitation trajectory is generated for the torque 
control of the Delta robot, and the least mean square algorithm 
is used to estimate the value of the parameters. The simulation 
result indicates that the proposed method can estimate the 
dynamic parameters accurately in real time. Although large 
errors are observed in certain estimated values in the real-world 
experiment, the proposed method still provide a stable 
estimation and it could be used to monitor the status of the Delta 
robot.  
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Abstract—Alzheimer’s is a disease of the brain relating to 
problems of memory, thinking, attention, and behavior. There are 
no disease-modifying drugs available for Alzheimer’s but early 
diagnosing may reduce its symptoms and help improve quality of 
life. In this study, the relative power (RP) of 
electroencephalography (EEG) is proposed as the feature to 
determine medical conditions, including patients with Alzheimer’s 
disease (AD), patients with mild cognitive impairment (MCI), and 
healthy control adults (HC). We also applied Fisher’s class 
separating criterion to determine the best RPs and the best 
frequency band (FB). Our results showed that using only 8 
channels and EEG RP features could achieve a high accuracy of 
binary (AD vs HC > 90%) or even three classification tasks (AD vs 
MCI vs HC = 57.90%). 

 Index Terms—Alzheimer’s disease (AD), EEG, fisher criterion, 
LDA, mild cognitive impairment (MCI), relative power (RP). 

I. INTRODUCTION 

MPROVEMENTS in health care in the past century have 
contributed to people living longer and healthier lives. This 

has also resulted in an increase in the number of people with 
non-communicable diseases, including dementia. Alzheimer 
disease is the most common form of dementia. It has become a 
major public health concern as the world’s population ages. 
Because of increasing in the occurrence of the disease, the 
diagnosis has attracted the attention of researchers in the field. 
The higher of age, the higher of probability of disease. This 
prevalence is just 1% for people between 60 and 64 years, but it 
raises to 38% for people over 85 years [1]. Mild cognitive 
impairment (MCI) is the stage between the expected cognitive 
decline of normal aging and the more serious decline of 
dementia [2]. In this regard, further research is crucial to identify 
incipient AD, because patients with MCI get high risk of later 
developing to AD [3]. Recent studies estimated that the 
conversion rate from MCI to AD is approximately 15% per year 
[4]. Despite many years of intensive and effective research, no 
available treatments that stop or reverse the progression of the 
disease, which worsens as it progresses, and eventually leads to 
death. It has become increasingly clear that, if the disease is to 
be treated successfully, it must be detected as early as possible, 
perhaps even before symptoms are evident. Thus, there is a great 
need for reliable diagnostic methods to slow or prevent the 
disease in proper way [5]. 

To identify abnormalities in the brain, various techniques 
have been applied: functional magnetic resonance imaging 
(fMRI), positron emission tomography (PET), magnetic 
resonance spectroscopy electroencephalography (EEG), and 
magnetoencephalography (MEG), and others [6]. While PET 
was and is better in some situations than fMRI, it has many 
disadvantages overall. With higher cost, lower temporal 
resolution, and need for isotopes, the disadvantages of PET seem 

 
 

to outweigh the advantages. However, EEG and MEG are non-
invasive techniques with high temporal resolution, allowing for 
studying the complex dynamical processes in brain systems [7]. 
EEG equipment is relatively inexpensive compared with other 
devices and simple to operate. Moreover, it is functionally fast 
and safe way of checking different areas of brain. It is interesting 
that EEG has already revealed its advantages to characterize 
brain dynamics in AD and MCI [7]. EEG is really a promising 
method in diagnosis Alzheimer’s disease as well as other 
neurological disorders. 

Known as spectral analysis, frequency domain analysis is the 
most conventional yet one of the most powerful and standard 
methods for EEG analysis. Among all the spectral methods, 
band power (BP) spectral analysis is commonly used [8]. 
Besides, the relative power (RP), the power difference between 
a pair of electrodes, is a noticeable feature. Up-to-date findings 
showed that the EEG-based three-class classification problem is 
very challenging [9], which calls to the need to search for more 
effective EEG markers. The EEG RP features have been 
successfully applied in depression detection [10], but have never 
been used in AD detection. 

The present study thus aims to using EEG RP as features and 
Fisher’s criterion as feature selection strategy. Linear 
discriminant analysis (LDA) with leave-one-participant-out 
cross validation (LOPU-CV) is adopted to confirm classification 
accuracy in both binary and three-classification tasks. The 
obtained results allowed us compare and determine the best FB 
and 8 channels as well as corresponding RPs, which can help us 
obtain high classification accuracy. This is a reliable suggestion 
for an 8 channels Quick-cap. 

II.  MATERIAL 

A. Subjects 

Patients with AD and MCI were diagnosed by a board-
certified psychiatrist, whereas HC were elderly subjects without 
a cognitive impairment and with no history of neurological or 
psychiatric disorder. There were totally 87 participants took part 
in this study: 31 AD patients (17 males and 14 females, mean 
age: 75.1±6.9 y/o, mean education years: 10.9±4.5), 24 MCI 
patients (10 males and 14 females, mean age: 71.4±7.9 y/o, 
mean education years: 12.5±3.4), 32 HC subjects (8 males and 
24 females, mean age: 66.4±6.6 y/o, mean education years: 
13.9±3.5). 

This study was conducted at Taipei Veterans General 
Hospital, Taipei, Taiwan. All participants were fully informed 
of the aims and methods of the study, and written consent was 
obtained from all participants. 

Thanh-Tung Trinh, Yu-Tsung Hsiao, Chieh-Hung Chang, Chia-Fen Tsai, Chien-Te Wu, Yi-Hung Liu 
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B. Diagnostic criteria 

All participants underwent a complete medical interview and 
neuropsychiatric evaluation. This study used Mini-Mental State 
Examination (MMSE) and Montreal Cognitive Assessment 
(MoCA). 

C. EEG recording 

Three minutes of spontaneous EEG activity were recorded 

using a 32-channel Quick-Cap connected to a 40-channel 

NuAmps (NeuroScan Inc.). The arrangement of channels was 

followed the international 10-20 system. Impedance was kept 

below 10 kOhm and the band-pass filter was set at 0.5-100 Hz 

with a sampling rate of 500 Hz.  

 

Fig. 1.  (a) Quick-Cap; (b) International 10-20 system 

Subjects were asked to stay in a relaxed state, awake, and 

look at a central fixation cross on computer screen during EEG 

acquisition. During the recording procedure, EEG traces were 

visually monitored in real time, and muscle activity was 

identified to avoid high-frequency noise. Ocular artifacts 

coming from blinking, vertical eye movement or horizontal eye 

movement were removed through artifact removal software of 

NeuroScan (Scan4.5). Afterwards, EEG signals were digitally 

filtered using a Finite Impulse Response (FIR) filter designed 

with a window between 0.5 and 50 Hz. Additionally, 

Independent Component Analysis (ICA) also was performed to 

minimize the presence of noise. Finally, the 20 3-sec epochs 

were taken out from 180-sec EEG signal.  

 

Fig. 2.  EEG data recording process 

III. METHODS 

A diagram of the proposed methodology to discriminate 
between AD, MCI and HC subjects is presented in Figure 3. 
After EEG-signal recording and data pre-processing, relative 
power was computed. Then, fisher criterion was applied and 

removed some features following the original purpose. Finally, 
LDA was adopted to check classification accuracy for all task. 

 

Fig. 3.  Schematic diagram of the methodology 

A. Feature Extraction 

In this study, the frequency bands of interest were delta (1–
4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and 
gamma (30–45Hz). But each band was divided into sub-bands 
with smallest length of 2 Hz. Thus, we had totally 260 sub-bands. 
The spectral power density of each electrode’s signal was 
extracted using Fast Fourier Transform (FFT), and the band 
power (BP) of each frequency sub-band was then calculated. For 
each participant and each electrode, we averaged power in each 
sub-band across 20 EEG epochs. For each participant, a total of 
30 BP feature values (from 30 electrodes) in each frequency sub-
band were obtained. The BPs were subsequently used to 
calculate relative power (RP) features. 

There are many different types of relative powers used in 
various EEG studies. In this study, we extracted one type of RP 
following below calculation: 

𝑅𝑃 =
𝑊(𝐴) − 𝑊(𝐵)

𝑊(𝐴) + 𝑊(𝐵)
 (1) 

where W is the power within a specific sub-band of interest 
divided by the total power within the entire sub-band. W(A) and 
W(B) denote the W of two different electrodes A and B in the 
same frequency sub-band. 

 

Fig. 4.  Illustration of the relative power calculation in a specific frequency 
band between a pair of electrodes A and B. (FFT = fast Fourier transform; PSD 

= power spectrum density, and BP = band power). 

For each participant, a total of 435 (30x29/2) RP values were 
extracted for each frequency sub-band. We obtained one D-
dimensional feature vector (D=435) from each participant for 
each frequency sub-band. A feature vector is called a data point 
in this paper. 

B. Feature Selection 

High-dimensional data in the input space is usually not good 
for classification due to the curse of dimensionality. It 
significantly increases the time and space complexity for 
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processing the data. A common way to resolve this problem is 
feature selection, which reduces the dimensionality by selecting 
a subset of features from the input feature set. It is often used to 
reduce the computational cost and remove irrelevant and 
redundant features for problems with high dimensional data. 
Fisher score is one of the most widely used supervised feature 
selection methods. In particular, supposing: 

𝐱ij ∈ 𝑅𝐷  (D features) is 𝑗𝑡ℎ  data point of 𝑖𝑡ℎ class (i=1, 2, ...C). 

1) Sample covariance matrix for class i: 

S𝑖 =  
1

𝑛𝑖

∑(𝐱ij − 𝐦i)

𝑛𝑖

𝑖=1

(𝐱ij − 𝐦i)
T

 (2) 

2) Within-class scatter: 

𝑆𝑊 = ∑ 𝑃𝑖𝑆𝑖

𝐶

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒 𝑃𝑖 =
𝑛𝑖

∑ 𝑛𝑖
𝐶
𝑖=1

 (3) 

3) Between-class scatter: 

S𝐵 =  ∑ 𝑃𝑖(𝐦i − 𝐦)

𝐶

𝑖=1

(𝐦i − 𝐦)T (4) 

4) For the 𝑘𝑡ℎ feature: 

Fisher Score(k) =
𝑆𝐵

(𝑘)

𝑆𝑊
(𝑘)

(5) 

where 𝐦i is mean and 𝑛𝑖 is number of data in 𝑖𝑡ℎ class. 

After computing the Fisher score for each feature, it selects 
the top-d ranked features with large scores (d < D). 

For purpose of finding 8 best channels, we considered top 28 
(d from 1 to 28) features from 435 features because 8 channels 
can make maximum of 28 (8×7/2) features. 

C. Classification 

In this study, the LDA classifier was employed to implement 
binary (AD-HC, AD-MCI, MCI-HC) and three (AD-MCI-HC) 
classification tasks.  

For binary classification task, LDA finds a hyperplane as the 
decision boundary in the original space of patterns. For a test 

data point 𝐱 ∈ 𝑅𝑑 , where d is the dimension of x, the LDA 
decision function for x is given by the following:  

𝐷𝐿𝐷𝐴(𝑥) = (𝜇1 − 𝜇2)𝑇𝛴−1𝑥 −
1

2
(𝜇1 − 𝜇2)𝑇𝛴−1(𝜇1 + 𝜇2) − ln (

𝐶12𝜋2

𝐶21𝜋1

)    (6)  

where𝛍1 and 𝛍2 are the mean vectors of the training data of the 
first (positive) and the second (negative) classes, respectively, Σ 
is the d×d covariance matrix of the training data of the two 
classes, C12 is the penalty weight for the positive class’s training 
error, C21 is the penalty for the negative class’s training error, 
andπ1 and π2  are the a priori probabilities of the positive and 
the negative classes, respectively. Here, we set C12 = C21 = 1. 
The test data point x is classified as positive if  DLDA(𝐱)  > 0; 
otherwise, it belongs to the negative group. 

For three-classification task, this study utilized a common 
method: one-against-one. Solving the three-class problem is 
considered to handle three binary-class problems. 

D. Performance Evaluation 

The present study performed the add-one-feature-in strategy 
[10] and leave-one-participant-out cross validation (LOPO-CV) 

to assess the classification performance and find the best RP 
subsets (built by 8 channels) from the 435 RP candidates. 
LOPO-CV is technique for evaluating how well the results of a 
method will generalize to unseen data. In each fold of the 
LOPO-CV, data from participants were used to train the 
classifier, and then, the d-dimensional data from the one 
remaining participant were used as the test data. This step was 
repeated until every participant’s data had served as the test data 
once. 

We also analyzed the sensitivity of various EEG epoch 
lengths to the 3-class classification accuracy. 

IV. RESULTS AND DISCUSSIONS 

TABLE I 

LOPO-CV RESULTS IN 4 CLASSIFICATION TASKS 

 AD vs HC AD vs MCI MCI vs HC 3-Class 

Acc. 90.42% 79.91% 75.52% 57.90% 

Selected 8 

Channels 

CP4; TP7; 
P4; T5; CZ; 

CPZ; PZ; 

OZ 

F3; FC3; 
FC4; C3; 

CP4; TP8; 

T5; FZ 

F3; FC3; 
FT8; C3; 

P3; FZ; 

FCZ; CZ 

CP4; P3; 
P4; O2; 

FCZ; CZ; 

PZ; OZ 

Best RP 

subset 

CPZ-PZ; 
CZ-PZ; 

P4-CZ; 

TP7-P4; 
P4-T5; 

CP4-CZ; 

P4-OZ 

F3-T5; 
FC3-C3; 

T5-FZ; 

FC3-T5; 
FC4-FZ; 

F3-TP8; 

FC3-CP4 

C3-CZ; 
F3-FZ; 

F3-FCZ; 

FC3-FCZ; 
FT8-P3 

CP4-O2; 
P3-CZ; P3-

FCZ; P4-

OZ; O2-PZ; 
CP4-OZ 

 

Best FB 18-29 Hz 13-20 Hz 19-22Hz 15-30 z 

 

TABLE II 

ACCURACY IN DIFFERENT EEG EPOCH LENGTHS 

Length 2 sec 3 sec 5 sec 8 sec 

Acc. 58.03% 57.90% 56.86% 56.89% 

 

Table I shows that the selected 8-channels achieved higher 

75.52% accuracies for all binary classification tasks. 

Particularly, the best AD-HC classification accuracy of 90.42% 

was obtained by using 8 channels: CP4, TP7, P4, T5, CZ, CPZ, 

PZ and OZ; the AD-MCI classification accuracy of 79.91% was 

reached by selecting 8 channels: F3, FC3, FC4, C3, CP4, TP8, 

T5 and FZ; the MCI-HC classification accuracy of 75.52% was 

get by choosing 8 channels: F3, FC3, FT8, C3, P3, FZ, FCZ and 

CZ. A much higher than chance level (33%) accuracy of 

57.90% was also obtained for the three-class classification task 

(AD vs MCI vs HC) by using 8 channels: CP4, P3, P4, O2, FCZ, 

CZ, PZ, OZ. Interestingly, most of discovered electrodes are in 

the central and posterior regions. 

It should be emphasized that the number of electrodes affects 

to equipment cost and experimental setting time as well as 

computational cost. The obtaining results with such small 

quantities of electrodes will be motivation for thinking about 

the future application in wearable devices. 

On the other hand, the table I also indicates that all of 4 

classification tasks (AD-HC, AD-MCI, MCI-HC, AD-MCI-HC) 

show the best FB belongs to Beta band (18-29 Hz, 13-20 Hz, 

19-22 Hz and 15-30 Hz, respectively). In other words, Beta 

band (13-30 Hz) is the good choice for classifying. This finding 
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is suitable to early studies. Literature shows that changing at 

this band is considered the first EEG finding in AD [11], [12]. 

Table II reveals that the RP features were not sensitive to the 

change of EEG epoch length (2 sec, 3 sec, 5 sec and 8 sec), 

providing a stable estimate of accuracy (58.03%, 57.90%, 

56.86% and 56.89%, respectively). These acceptable results are 

achieved with employing a sample classifier as LDA. This also 

prove that RP features are selected based on Fisher’s score are 

promising and trustworthy.  

V.    CONCLUSIONS 

This study demonstrated that using only 8 channels and 

EEG RP features can applied to diagnose Alzheimer’s disease 

with high accuracy. However, the result of 57.9% for 3-class 

classification task is not really as expected. To overcome this 

issue, we tried to combine and choose features found from all 

binary classification tasks. In this way, overfitting may be 

unavoidable. In future studies, we suggest verifying in a larger 

sample to validate the findings found here, and more detailed 

work needs to be done in collecting more comprehensive data 

about participants. 
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10    Chun-Hsu Ko et. al.  
Design and Control of an Upper-Limb Exoskeleton Robot with Visual Sensing 

 

 

Abstract—As the aging society is approaching, people with limb 

immobility are increasing. Motivated by it, we develop a wearable 

two-DOF upper-limb exoskeleton robot, named as HAMEXO. It 

is designed to be fitting and comfortable for the user. Meanwhile, 

to attain the goal of providing motion assistance in daily life, we 

equip HAMEXO with a visual system to detect the locations and 

movements of the objects in the environment, and also a motion 

controller for its governing. For dealing with the coupling 

between the two joints during movements and adapting to 

different users, we propose using the learning mechanism for 

controller design. The experimental results demonstrate that the 

proposed system can effectively assist the user to accomplish the 

task in daily life, such as object- fetching. 

 
Index Terms—upper-limb exoskeleton robot; mechanical 

design; visual sensing; motion assistance; learning mechanism. 

I. INTRODUCTION 

S the number of elderly population and stroke patients 

increases, medical staffs are highly demanded for 

providing assistance in their daily lives. It solicits the use of 

robots to alleviate the workloads from the caregivers. Among 

them, the exoskeleton robot has been of a focus for its closeness 

with the user [1–12]. Compared to the traditional robot that 

distances itself from the person in use, the exoskeleton robot is 

designed to be worn on human body for acting with the user. As 

the exoskeleton robot is highly interacting with the human, its 

design [1-6] and control [7] [8] that allow proper coordination 

between them is very imperative.  

     The exoskeleton robots can be mainly classified into 

upper-body, lower-body, and full-body types [1–6]. In previous 

research, they have been applied for rehabilitation, daily 

activities, and others, including BLEEX [1], HAL [2], ULERD 

[3], NTUH-ARM [4], ReWalk [5], TTL-Exo [6], etc. 

According to the given applications, they may be fixed to a base 

or wheelchair [9], heavy for stability or light for portability, etc. 

In their use for assistance, the exoskeleton robot can be 
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operated mainly in three styles: passive, active-assisted, or 

active-resistive [4,10]. The passive style allows the robot to 

dictate the entire motion without any involvement from the user. 

For the active-assisted or active-resisted style, the robot usually 

takes a supporting role in assisting the user for task execution. 

Consequently, it is crucial for the robot to realize the intention 

of the user for providing proper assistive force. For this purpose, 

electromyography (EMG) and electroencephalography (EEG) 

measured from the user, among others [11], are frequently used 

for detecting user’s motion intention. 

Continuing from previous research [12][13], our laboratory 

has developed a wearable 2-DOF upper-limb exoskeleton robot, 

HAMEXO. As it is intended for daily activity, we equip it with 

a visual system to detect the object in the working environment 

for those tasks, such as object picking and drinking. With the 

object identified, a motion controller is then developed for task 

execution. Due to the coupling present between the two joints 

during motion and the demand for adapting to various users, we 

adopted the adaptive network-based fuzzy inference system 

(ANFIS) for controller design due to its excellence at 

adaptation [14].  In summary, the contribution of this paper lies 

on: 

 Design of a two-DOF upper-limb exoskeleton robot that 

is comfort and fitting for the user; 

 Development of a visual sensing system for detecting 

objects in the working environment; 

 Development of an intelligent controller that can be 

adapted to various users. 

In this stage, we mainly focus on the passive style of 

assistance. For demonstration, the proposed system is applied 

for experiments based on the task of object fetching. 

II. DESIGN AND DEVELOPMENT FOR HAMEXO 

Based on the discussions above, proper design of the 

exoskeleton robot is very crucial, and should fit its application. 

As it is mainly intended for providing the freedoms for 

object-picking types of tasks, HAMEXO (abbreviated for 

Human and Machine Exoskeleton) is developed to be a 2-DOF 

upper-body exoskeleton robot, with the two DOFs used for the 

flexion and extension of the shoulder (1) and elbow (2). 

According to the motion range of human upper-body anatomy 

[15] [16], the ranges of 1 and 2 are arranged to be  

4/30   ,2/0 21    (1) 
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Fig. 1 shows the CAD modeling for HAMEXO. The 

polylactide 3D printed platform is attached with a strap belt for 

each of the two links to secure user’s arm to the exoskeleton. 

Sliding parts are equipped on the upper-arm, forearm, shoulder, 

and backpack, respectively, to accommodate for different 

human body sizes. The brushless DC motors, along with 

reduction gears and incremental encoders for position feedback, 

were adopted as the actuators [17]. In addition, the hard foam 

was used as padding between the user and exoskeleton for 

comfort and the power-kill switch for safety [18]. For 

illustration, Fig. 2 shows the photo with the user wearing 

HAMEXO. 

In its use, we found that HAMXO might lean to one side, as 

it is worn only on one arm of the user. This is a major reason 

that we have included a backpack for it, as shown in Fig. 3, 

which is modeled after human body and closely attached to the 

back of the user [19]. This backpack provides the support in 

sharing the weight of HAMEXO. As the effort for weight 

reduction, we managed to make the weight of HAMEXO be 

about 4.9 kg, and that of the backpack be 2.2 kg. 

To evaluate whether HAMEXO is fitting and comfortable 

for use in daily activity, we invited 10 university students, 8 

males and 2 females, for testing, with their ages ranging 

between 22~26 years old, heights between 162~176 cm, and 

weights between 50~70 kg, respectively. They were asked to 

wear HAMEXO to move their arms to a number of locations. 

After the trial, we administered a questionnaire to obtain 

subjects’ evaluations on the aspects of fixity, comfort, mobility, 

and lightness, with the scores shown in Fig. 4 (1~5, with 5 as 

the highest). From the evaluation, the subjects highly agreed 

that HAMEXO was closely fixed on his/her arm via the 

assistance of the backpack, as indicated by a score of 4.1. The 

score of 3.7 for comfort implicates that the wearing of 

HAMEXO was not so disturbing, while some subjects reported 

that they still felt an unbalancing weight distribution. Although 

there were only 2 DOFs available for HAMEXO, its motion 

feasibility in the given direction was acceptable, as indicated by 

a score of 3.7 for mobility. Meanwhile, the score of 2.3 for 

lightness shows that it was still too heavy for a long-time use. 

Further interview on the subjects also discloses that it was easy 

to use, as most of them felt the system was quite responding and 

its operation was intuitive. Some subjects suggested to use 

HAMEXO for rehabilitation. 

III. MOTION GOVERNING SYSTEM 

The proposed motion governing system mainly consists of a 

visual system and an ANFIS- PID controller. Since the main 

purpose of the system is to assist the user to accomplish the task 

in daily life, like object-fetching, the visual system is first used 

to detect the location of the object. Based on the visual 

information, a smooth trajectory for the task is generated via a 

motion planner previously developed and the ANFIS PID 

 

 

 

 
 

Figure 1. CAD modeling of HAMEXO. 

 
 

Figure 2. The photo with the user wearing HAMEXO. 

 
 

Figure 3. The backpack for holding HAMEXO. 

 
 

Figure 4. User evaluation on HAMEXO. 
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controller is then applied to govern the motion of HAMEXO. 

The proposed visual system and ANFIS PID controller are 

described below. 

A. Visual System 

The proposed visual system uses two cameras to locate the 

objects in the workspace, as shown in Fig. 5 [13]. The 

calibration procedure has been conducted for the two cameras 

to derive accurate parameters. With the visual system, the 3D 

object location can then be deduced with the 2D images 

captured from the cameras. 

In the pinhole camera model commonly used [20], the relation 

between a 3D point  Tccc zyx  in camera coordinates and 

its corresponding 2D projection  Tvu  on  the image plane 

can be described as 

CAXsm 
 (2) 

with 
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where s is a scaling factor and A is the camera intrinsic matrix. 

In A, 0u
 
and 0v

 
are the coordinates of the principal point, and 

xf
 
and yf

 
the scaling factors in u and v directions, respectively. 

These four parameters can be easily obtained by applying the 

calibration procedure provided by the camera calibration 

toolbox [21]. From CX
 
in 3D camera coordinates, the 

corresponding  TwwwW zyxX   in world coordinates 

can be obtained via rotation and translation: 

TRXX CW   (4) 

where R is the rotation matrix and T the translation vector. 

From Eqs. (2) and (4), we can obtain  

TmsRAXW  1  (5) 

with  
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We use the two cameras shown in Figure 4 to find 
WX  for an 

object. Letting the rotational matrix and translational vector for 

cameras 1 and 2 be 
1R  and 

2R  and 
1T  and 

2T , respectively, 

the two corresponding 
1WX  and

2WX  in world coordinates for 

them can then be derived as 

1111 TvsXW 


 (7) 

2222 TvsXW   (8) 
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To find the scaling factors 
1s  and 

2s  in Eqs. (7)-(8), we first 

calculate lengths 
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 and 
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 for the triangle in Figure 5 as  
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where d


 in Figure 5 is the vector from the location of camera 1 

to that of camera 2. 
1s  and 

2s  can be calculated as 

 
 

Figure 5. The visual system for object detection 
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Figure 6. Deployment of the two cameras for detecting the object in the 

workspace. 
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TABLE I  

AVERAGE ERRORS FOR THE THREE OBJECTS  

Object x(cm) y(cm) z(cm) 

Ping-pong ball  0.40 0.45 0.30 

Cup  0.35 0.37 0.32 

Cup with a handle  0.27 0.33 0.34 
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Consequently, 
1WX and 

2WX can be calculated by using Eqs. 

(7)-(8), and 
WX is then taken as their average.  

We conducted a series of experiments to evaluate the 

accuracy of the visual system. As the setup shown in Fig. 7(a), 

the visual system was used to locate the positions of the three 

objects randomly placed in the workspace, which include a 

ping-pong ball, a cup, and a cup with a handle (shown in Fig. 

7(b)), with their width and height as (1.9 cm, 2.2 cm), (2.5 cm, 

3.5 cm), and (3.5 cm, 4.7 cm), respectively. The process was 

repeatedly 15 times for each object, with their detected and 

actual positions recorded. Table 1 lists the average errors of the 

three objects in x, y, and z directions, and they are all within 0.5 

cm, indicating this visual system is accurate enough for our 

targeted tasks. 

B. ANFIS-PID Controller 

With the relative distance between the object and HAMEXO 

identified from the visual system, it will be forwarded to the 

proposed ANFIS-based motion controller, shown in Fig. 8, to 

move HAMEXO. In Fig. 8, the motion planner first generates a  

 

 
path (d). The B-spline method is employed to make the path 

smooth. The planned path (d) is then sent to the ANFIS-PID 

position controller, which determines proper control commands 

in current (Icmd_PID) based on position error (e) and position 

error rate (ec), formulated as 

 
t

DIPPIDcmd teKdeKteKtI
0

_ )()()()(   (14) 

The commands shall then drive the motors for moving 

HAMEXO to follow the desired path (d).  

Fig. 9 shows how the proposed ANFIS-PID position 

controller operates, which is equipped on each link of 

HAMEXO. It was designed as a PID controller with adjustable    

gains KP, KI, KD to be tuned by the ANFIS. Fig. 10 shows the 

ANFIS architecture for deriving KP as an illustration. Those 

for KI, and KD can be derived similarly. This ANFIS is 

designed to consist of five layers, including fuzzification, rule, 

normalization, defuzzification, and output layers, with the 

nodes in layers 1 and 4 adaptive. In searching for proper 

parameters, the cost function was designed to minimize the 

tracking error and the back-propagation gradient descent 

method employed for learning. Details for its implementation 

can be referred to [12]. 

x

yz

  
(a) 

 

 

                     
(b) 

 

Figure 7. (a) The setup for accuracy evaluation for the visual system and (b) 

the three objects. 

 
 

Figure 8. The proposed motion controller based on the ANFIS. 

 
 

Figure 9. The proposed ANFIS-PID position controller. 

 
 

Figure 10. The ANFIS architecture for deriving ∆𝐾𝑝. 
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IV. EXPERIMENT  

We first conducted experiments for the performance of the 

ANFIS-PID controller in the presence of disturbances, such as 

friction, gravity, nonlinearity in system dynamics, and 

uncertainty in parameter identification. During the experiments, 

the subject was asked to wear HAMEXO, and let it carry their 

arm to follow a straight or curved path. For comparison, we also 

conducted the experiments by using the PID controller of fixed 

gains. Two sets of fixed gains were used, one arbitrarily chosen 

and the other one selected via a trial-and-error process for 

achieving acceptable performance. Figs. 11(a)–(b) shows the 

resultant joint trajectories for the shoulder and elbow, and Figs. 

12(a)–(b) shows the errors during path following. The errors 

along the path were computed in the root mean square (RMS) 

manner, as listed in Table II. From the results, both the 

proposed ANFIS-PID controller and PID controller with 

selected gains outperformed the PID controller with arbitrary 

gains, while the proposed one led to smaller errors. Meanwhile, 

the proposed ANFIS-PID controller was deemed to be more 

efficient, as the trial-and-error process in searching proper 

gains for the PID controller was very time consuming. 

 

 

  
 

TABLE II 

ERRORS IN RMS DURING PATH FOLLOWING 

 
 

 

Shoulder (rad) Elbow (rad)

ANFIS-PID 0.0148 0.0151

PID (selected) 0.0163 0.0234

PID (arbitrary) 0.0194 0.0552

 
(a) 

 
(b) 

 

Figure 11. Experimental results for evaluating the performance of the 
ANFIS-PID controller: (a) joint trajectories for the shoulder and (b) joint 

trajectories for the elbow. 

 
(a) 

 
(b) 

 

Figure 12. Experimental results for evaluating the performance of the 

ANFIS-PID controller: (a) errors for the shoulder and (b) errors for the elbow. 

              
 

(a)                                  (b)                                      (c) 

 
Figure 13. Photos of the subjects invited for the experiments. (a) subject A, (b) 

subject B, and (c) subject C. 
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With the effectiveness of the proposed ANFIS-PID 

controller verified, we went on to evaluate how the system 

performed when it was combined with the visual system for the 

task of object fetching. We invited three subjects to conduct the 

experiment, with their photos shown in Fig. 13. The maximum 

motor speeds for the shoulder and elbow were set to be 300 and 

250 rpm, respectively, for safety consideration. During the 

experiments, the subjects needed to fetch a cup, which would 

appear in an arbitrary manner, i.e., the subjects did not know 

where it was located in advance.  

    Figs. 14(a)-(i) show the experimental setup, in which the cup 

on the desk was first reached by the subject at the first location 

(shown in Fig. 14(c)), raised up to the air to the second location 

(shown in Fig. 14(f)), and then put down to the desk at the third 

location (shown in Fig. 14(i)). Table III lists the joint angles of  

 

  
TABLE III 

HAMEXO JOINT ANGLES CORRESPONDING TO THE THREE LOCATIONS 

 

 

 

Subject Location Shoulder (rad) Elbow (rad)

1st -0.5331 0.0003

2nd -0.1480 -1.3302

3rd -0.5327 -0.0001

1st -0.5331 0.0007

2nd -0.1286 -1.2891

3rd -0.6362 -0.3369

1st -0.5332 -0.0003

2nd -0.5430 -0.3707

3rd -0.3592 -1.0365

A

B

C

              
 

(a)                                       (b)                                     (c) 

               
(d)                                       (e)                                     (f) 

               
(g)                                       (h)                                     (i) 

 

Figure 14. The setup for the experiment of object fetching: (a)-(c) the actions 

for reaching the cup, (d)-(f) the actions for raising the cup, and (g)-(i) the 

actions for putting down the cup. 

 
(a) 

 
(b) 

 

Figure 15. Experimental results for evaluating the performance of the motion 

governing system (subject A): (a) joint trajectory for the shoulder r (θ1) and 

(b) joint trajectory for the elbow(θ2). 

 
(a) 

 
(b) 

 
Figure 16. Experimental results for evaluating the performance of the motion 

governing system (subject B): (a) joint trajectory for the shoulder (θ1) and (b) 

joint trajectory for the elbow (θ2). 
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the shoulder and elbow of HAMEXO corresponding to the 

three locations for subjects A, B, and C, respectively. As a 

demonstration, Figs. 15-17 show the angles of both the 

shoulder and elbow joints during the motion to fetch a cup for 

the three subjects, in which the round circles 1, 2, and 3 

represent the three sequential change locations, the red line the 

trajectory designed by the motion planner, and the blue line the 

actual trajectory executed by HAMEXO. In these figures, the 

actual joint trajectories followed the planned ones quite well, 

and all three target locations were reached, indicating the 

effectiveness of the proposed system. 

V. CONCLUSIONS 

In this paper, we have developed a wearable two-DOF 

upper-limb exoskeleton robot, HAMEXO, which is designed to 

be comfort and fitting for the user when wearing. For its motion 

governing, we have developed a visual and control system. The 

system aims to accurately detect and track the targeted object 

and be adapted to various users. The experimental results 

demonstrate its effectiveness in successfully assisting the user 

to accomplish the object-fetching task. As one of our future 

works, we intend to conduct a large-scale user's experience 

evaluation to assess its performance via the means of the 

interview and survey as the feedback. The results will be 

analyzed for system enhancement. We will also upgrade the 

ability of the visual system and motion controller, so that 

HAMEXO can deal with more different types of daily tasks. 
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Abstract—The front end of the robot arm has been one focus of 

technology development. Once the gripping objects are random 

patterns, the damage may be caused due to the fixed traditional 

jaw gripping force. In this research, a smart neural network 

model is developed via backpropagation algorithm to recognize 

the object. The whole identification procedure can be divided into 

four steps. Step 1: Use the camera module of the Raspberry Pi 

microcontroller to capture the image of all possible objects. Then 

the invariant moments are calculated and the neural network 

model is established. Finally, the model is embedded into the 

memory of microcontroller. Step 2: When the gripper is working, 

the Raspberry Pi microcontroller trigs the camera to capture the 

image at fixed distance according to the ultrasonic sensor. Step 3: 

The Raspberry Pi and the Open CV are used to pre-process and 

calculate the characteristic values. Step 4: The Raspberry Pi 

identifies the image via the embedded neural network model. To 

verify its feasibility, some simulation and experiments are carried 

out and a gripper prototype with vehicle robot platform is 

implemented in this research. From the results and the prototype 

performance, the proposed hardware architecture and neural 

network identification method possess good recognition. 

 Index Terms—Backpropagation algorithm, Handling gripper, 
Image recognition, Invariant moments, Neural network model, 
Raspberry Pi microcontroller 

I. INTRODUCTION 

HE combination of image recognition and artificial 

intelligence has always been the goal of researchers [1]. 

One of the most common applications is the identification of 

license plate in the traffic violation, flow guidance, residential 

vehicle management, electronic toll collection management, etc. 

In 2012, a license plate location method was proposed by Song 

et al. [2], in which a mathematical morphology method is based 

and a modified radial base function neural network algorithm is 

used to complete the identification. To conform to the standard 

of ISO/TC104 in identification formats and styles, a fast method 

to extract the recognition from freight containers was proposed 

by Fahn et al. [3]. Further to improve the accuracy of pattern 

recognition under low illumination environment, a remarkable 

texture feature from license plate area was employed to find the 

approximate area of the license plate [4]. On the other hand, 

because the collection of extracted features from the image can 

define the character uniquely, the selection of relevant feature 

extraction method was the most important factor in achieving 
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high identification performance [5]. To deal with the movement 

of vehicle license extraction from complex environment, a 

template matching was used to process the license plate image, 

location of the license plate area, character segmentation and 

identification in [6]. The neural network with a lot of neurons, 

its structure is similar to the human brain with a deduced 

mathematical leaning algorithm. A robust end-to-end 

convolutional neural network was proposed to simultaneously 

detect and classify the traffic-signs [7]. In 2017, a deep neural 

network was proposed for structural prediction and lane 

detection in traffic scene by Li et al. [8]. Nowadays, the spatial 

features of hyperspectral imagery (HSI) have gained attention, 

an HSI reconstruction model based on deep convolutional 

neural network was proposed to enhance spatial features [9]. In 

2019, a deep neural network with polynomial activations [10] 

was proposed to improve the classification accuracy and 

training time. 

Grasping task in the robot industry is common and important. 

However, in a simple environment, as well as the parameters of 

the object to grasp for known circumstances, you can construct a 

mathematical model for its features to reach grasping task. 

However, after leaving the pure environment faced many 

unknown objects, we will need to obtain a contact or 

non-contact of the parameters. Non-contact objects commonly 

used its image [11] to measure the length, width, area, center of 

mass, the degree of bend, even three-dimensional model can be 

reconstructed, and the data is provided to grasping task a 

suitable location for crawling [12-14] , but the vision is still 

developing stage, in a complex environment image will be all 

kinds of interference by environmental factors, such as shadow, 

reflection, background color interference … , so the image will 

not be able to provide a very effective and accurate data. The 

contact object is to use pressure sensors, tactile sensors for the 

main, the former is composed of a piezoresistive material, and 

the latter is composed of a piezoelectric material. Piezoresistive 

material reaches the steady state is slower, but is applicable to 

stationary power moments, and the piezoelectric material to 

reach steady-state response is faster, but the principle will not 

apply force static timing. Both can be used to surveillance 

whether to touch the items [15-17]. Through proper detection 

can discernible its body, force feedback, and other useful 

information to crawl task. Due to the non-contact and 

contact-type has its own advantages and disadvantages, so there 

have been a mixed type of architecture, or the multi-sensor 

architecture, trying to crawl task could be more perfect [16, 18]. 

Whether contact or non-contact sensors are useful feedback 

information to the controller then referred to the actuator, the 

controller generally divided into three categories PID control, 

fuzzy control, and hybrid control is the most taken method 

[19-26]. 
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II.  NEURAL-NETWORK-BASED IMAGE RECOGNITION 

The pixel values of the sample patterns are found and set as 

the P-value of the input layer, and then the represented digital 

values of the sample patterns are set as the T-value of the output 

layer. Then a 3-layer simple back-propagation neural network 

architecture is used. It contains input, hidden and output layers. 

The error function is defined as 

  
21

( )
2

j j
j

E T O                (1) 

where 
jT  and 

jO are the target output and the actual output of 

neuron j, respectively. The adjusting algorithm is derived as:  
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j j
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              (2) 

where n

jnet  is the net input of the jth neuron at  nth layer. 

From the settings of training function, adaptive learning 

function, performance function, input layer and output layer, 

momentum coefficient, number of layers, learning rate α, 

learning rate increasing factor, learning rate decreasing factor, 

maximum performance increasing value and number of 

neurons, a heuristic neural network is developed. The proposed 

adaptive momentum gradient descent (AMGD) adjusting 

algorithms for weighting and bias values are designed as 

  
1( ) ( 1) (1 ) ( )m m m m TW k W k s a                  (3) 

( ) ( 1) (1 )m m mb k b k s                        (4) 

where m is the number of layer, s is the sensitivity,  is the 

momentum coefficient,  is the learning rate and k is the 

number of iteration. In order to achieve rapid convergence and 

increase the identification capability, the learning rate α of the 

neural network is modulated according to the classification error 

of previous iterations are calculated and the NNTOOL of 

Matlab is used to establish the neural network model, which is 

trained via backpropagation algorithm. Finally, the model is 

embedded into the Raspberry Pi microcontroller. 

In general, the geometrical properties of a position, size, 

and direction of an image are related to the matrix. Seven 

invariant moments are obtained by the second and third 

moments. The seven invariant moments are not sensitive to the 

rotation, shift, zoom in and zoom out. Although the calculation 

of the error will cause a little difference, but in general the 

feature of the moment is quite obvious. In this project, ten 

category vectors are used as training samples, and the invariant 

moments of different sizes, positions and rotation angles are 

calculated for each sample. The average vector mj of each 

category is calculated as the eigenvalues of each sample and the 

eigenvalues of new captured image is 

𝐱＝[φ1 φ2 φ3    φ4 φ5 φ6    φ7]        (5) 

And the classifier is defined as 

𝐷𝑗(𝐱) = 𝐱𝑇𝐦𝑗 −
1

2
𝐦𝑗

𝑇𝐦𝑗              (6) 

According to the maximum value of Dj (x), the jth category 

can be found. The backpropagation algorithm is adopted to train 

and the NNTOOL of Matlab is used to establish the neural 

network model. After establishing the model, the trained data is 

loaded and embedded into the memory of microcontroller. As 

the eigenvalues of new captured image is entered, the correct 

category of the object can be decided. Fig. 1(a) is the NNTOOL 

interface and Fig. 1(b) is the neural network model.  

 

(a) 

 

(b) 

Fig. 1.  (a) NNTOOL interface; (b) Neural network model. 

Further to describe the object shape, the Zernike invariant 

moments are used. When calculating the Zernike moments of 

the image, the primitive coordinates are mapped into the unit 

circle with the center of gravity of the image as the origin. The 

Zernike moments are complex moments, and the Zernike 

moments are often characterized by the shape of the object. 

Firstly, the Cnm and Snm are calculated then the absolute value 
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of Znm can be obtained. In this project, the Zernike invariant 

moments, containing 25 values, are calculated and three 

category vectors are used as training samples. The NNTOOL of 

Matlab is also used to establish the neural network model, which 

is trained via backpropagation algorithm. Same as previous 

procedure, the trained model is also embedded into the 

microcontroller. As the eigenvalues of new captured image is 

entered, the correct category of the object can be decided.  

III. IMPLEMENTATION OF GRIPPER AND ITS CONTROLLER 

The Cero sketch of the proposed handling gripper is shown 

in Fig. 2 and the implemented gripper prototype is shown in Fig. 

3. The control problem is to find a control law so that the 

gripper can find and grasp the desired object. First, a TSK fuzzy 

controller is established to control the base motors of the robot 

platform to near the grasped object. Then the controlled signals 

are sent to the motors of the gripper to trig the grasping action. 

The hardware structure and control block diagram are shown in 

Fig. 4 and Fig. 5, respectively. Fig. 6 is the program flowchart 

of Raspberry Pi microcontroller. 

 

 
Fig. 2. The Cero sketch of the proposed handling gripper. 

The detailed descriptions are exhibited as follows. The 

action to grasp object can be decomposed into ten distinct steps 

in the proposed handling gripper prototype with vehicle robot 

platform: 

Step 1: Search the object. 

Step 2: Preprocess and identify the captured image. 

Step 3: Test whether the object is in line with the gripper by 

identifying the position of the pasted mark. The mark is pasted 

in the middle of object. If the mark is in the middle of the image 

then the object is in line. If not, rotate the pet robot until in line. 

Step 4: Trig the ultrasound sensor and approach the object. 

Step 5: Keep the distance in 15 cm between the object and pet 

robot by reading the returned value of ultrasound sensor. 

Step 6: Test again whether the object is in line with the gripper. 

If not, rotate the pet robot until in line. 

 
Fig. 3. Implemented gripper prototype. 

Fig. 4. Proposed architecture of the controller hardware. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Control block diagram. 

Step 7: According to the identifying result, read the depth and 

width of the object from gathered data base. 

Step 8: Grasp test. 

Step 9: Read the pressure sensor. If the value is not match then 

release and go to Step 8, otherwise go to next step. 

Step 10: Lift, move and release object. 
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Fig. 6.  Program flowchart of Raspberry Pi microcontroller. 

IV. SIMULATION AND EXPERIMENTAL RESULTS 

The image identifications for mobile phone, kettle and porter 

bottle are carried out. First, the simulation results of the Hu and 

Zernike invariant moments are summarized in Tables 1and 2. 
Then the 7 Hu values in Table 1 are used to train the NN model. 

The trained results of the NN model are depicted in Fig. 7 and 

the identification results are shown in Table 3. For comparison, 

pure gradient descent (GD) method and adaptive gradient 

descent (AGD) method are also carried out and the 

identification results are shown in Tables 4 and 5, respectively. 

Table 1 

 Hu invariant moments 

Hu values mobile phone kettle porter bottle 

Hu1 1.7364928e-1 1.7365876e-1 1.7366317e-1 

Hu2 2.3782500e-3 2.3798600e-3 2.3806800e-3 

Hu3 7.8040664e-10 4.1849030e-10 4.7620623e-10 

Hu4 2.6962462e-11 1.0359705e-11 2.2913269e-11 

Hu5 -1.7041451e-21 -5.7996288e-22 -2.2493076e-21 

Hu6 -1.0921835e-12 -3.3195986e-13 -1.1046331e-12 

Hu7 -3.5203202e-21 3.5907817e-22 -8.1811779e-22 

Table 2 
 Zernike invariant moments 

Zernike 

values 
mobile phone kettle porter bottle 

Z1 3.1830989e-1 3.1830989e-1 3.1830989e-1 

Z2 2.6242820e-2 2.8166740e-2 1.7629200e-2 

Z3 1.3308085e-1 9.6083600e-2 2.4739000e-2 

Z4 2.1953600e-2 5.4299740e-2 1.9100140e-2 

Z5 6.7308870e-2 1.9075780e-2 7.9891400e-3 

Z6 1.6762430e-2 2.2346870e-2 1.1916820e-2 

Z7 1.0340753e-1 3.9908610e-2 1.6976670e-2 

Z8 4.6742910e-2 6.0618170e-2 1.7276290e-2 

Z9 8.8914000e-3 3.1120380e-2 8.2173400e-3 

Z10 4.0629900e-2 2.3996830e-2 9.2487900e-3 

Z11 2.4107390e-2 2.9212090e-2 4.6141800e-3 

Z12 7.1298700e-3 2.7251110e-2 3.5044400e-3 

… … … … 

Table 3 

 Identification results of proposed AMGD method 

I/P   

O/P 
mobile phone kettle porter bottle 

O1 0.9981130 0.0016280 0.0015990 

O2 0.0012360 0.9982910 0.0018460 

O3 0.0016060 0.0016120 0.9983830 

Then the trained data of the NN model is loaded and 

embedded into the memory of Raspberry Pi microcontroller. 

Some experiments are carried out with the implemented gripper 

prototype. The process of line correction is shown in Fig. 8, in 

which the grasped object is in left and the center of line is drawn 

as white line. The PWM signals of left and right motors under 

large forward are shown in Fig. 9. 

Table 4 

 Identification results of pure GD method 

I/P   

O/P 
mobile phone kettle porter bottle 

O1 0.9768667 0.0192989 0.0159469 

O2 0.0110754 0.9750179 0.0141126 

O3 0.0055968 0.0172089 0.9859714 

Table 5 

 Identification results of AGD method 

I/P   

O/P 
mobile phone kettle porter bottle 

O1 0.9971988 0.0022747 0.0015335 

O2 0.0023882 0.9973780 0.0021015 

O3 0.0026306 0.0021622 0.9973924 

 

 

Fig. 7. The trained results of the NN mode.  
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V. CONCLUSION 

To continue the research of the intelligent handling gripper 

in the previous project, a smart image identification and neural 

network model based handling gripper is proposed in this paper. 

In the proposed gripper, the camera module, pressure sensor and 

the backpropagation neural network model are utilized to 

increase its sensitivity. Three functions have been accomplished 

in this project: (1) Mechanism design and prototype making of a 

simple smart handling gripper. (2) Image recognition of the 

position and type of the grasped object. (3) The integration of 

smart handling gripper prototype with vehicle robot platform. 

From the simulated, experimental results and the prototype 

performance, the proposed hardware architecture and neural 

network identification method possess good recognition. 

 

 

 

Fig. 8. The process of line correction (object in left). 

 

Fig. 9. PWM signals of left and right motors under large forward.  
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Abstract—In the research field of fall detection, the method of 
proposing a universal, simple, and accurate fall detection method 
has been a popular topic of discussion. In this study, signal vector 
magnitude (SVM) and threshold sliding window are combined to 
extract the feature information of the postures of falls and 
activities of daily living (ADLs) from an accelerometer as datasets. 
Thereafter, the back propagation neural network (BPNN) 
algorithm is used to perform posture classification to determine if 
a fall has occurred. Using the proposed method, the model trained 
at the offline training stage can accurately identify a single motion 
among various types of falls and ADLs. Furthermore, in the 
experiment on ADLs involving different age groups, the system 
obtained a specificity of 99.6%, thereby proving that the system 
has excellent generalizability. In the real-time verification, the 
system obtained a sensitivity of 100% for fall detection and a false 
alarm rate of 0.8%. Finally, we compare the proposed method 
with the descent gradient and k-nearest neighbor algorithms. The 
results of this comparison reveal that the proposed method has a 
more robust sensitivity and false alarm rate, as compared to the 
other methods. 

 Index Terms—disability care, fall detection, LoRa, neural 
network, three-axis accelerometer 

I. INTRODUCTION 

he elderly may respond more poorly to the environment as 
compared to the youth due to their aging characteristics. 

Consequently, their autonomy in activities of daily living 
(ADLs) and their ability to integrate ADLs are significantly 
reduced [1]. Due to disabilities or pre-existing fall experiences, 
they are significantly more likely to fall again, as compared to 
average people [2-3]. Therefore, detecting falls in the elderly for 
the purpose of providing immediate medical assistance has 
become an important issue for caregiving facilities. 

Fall detection methods can be classified by the hardware 
type of the device into two types, i.e., wearable system and 
non-wearable system, while fall detection algorithms can be 
divided into analytical methods (ANM) and machine learning 
methods (MLM) [4-5]. 

For non-wearable fall detection systems, floor vibration 
detection, infrared light, acoustics, and imaging technologies are 
often widely discussed. The most direct way of fall detection is 
to deploy a pressure sensor on the ground to detect the vibration 
of the floor [6], or to use an accelerometer under the tiles to 
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detect the change in the acceleration state caused by the impact 
pressure during the fall [7], both of which are contact sensing 
methods. There are also non-contact sensing methods, e.g., 
behaviors of the elderly can be recognized by sensing changes in 
infrared flux [8], or the sound wave technology can be used to 
mark an event as a fall or an ADL based on sound characteristics 
[9]. In recent years, imaging technologies mainly employ 3D 
cameras to identify ADLs and falls and extract contours from 
depth images to estimate human postures and head motion 
trajectories [10-13]. The advantage of non-wearable systems is 
that users do not need to wear them, and therefore will not have 
foreign sensation. However, such solutions require a large 
number of sensors to be deployed in the environment, resulting 
in high installation costs, difficulty in deployment, lack of 
adjustment flexibility, and requirement for regular adjustments. 
Therefore, wearable systems are mainly used in practice. 

Generally, in wearable systems, one or more sensors are 
fixed on a user to determine if a fall occurs. Common sensors for 
fall detection include accelerometers (ACC), gyroscopes (Gyro), 
cardiotachometers, and barometers. Herein, we provide several 
examples of studies related to accelerometers. Based on an 
assumption of accelerometer-based fall detection, two 
MPU6050 six-axis sensors are donned on the chest and the thigh. 
Subsequently, the threshold (TH) method is used to identify a 
stand-up, sit-down, lie-down, and fall [14]. However, this 
wearing method evidently affects user activities in practical 
applications; therefore it is impractical. In [15] and [16], a 
wearable device integrating an accelerometer and a barometer is 
used to check for various states such as falls, sit-downs, and 
stand-ups, based on the acceleration and inclination and the 
maximum speed and height difference indicated on the 
barometer. In [15], the threshold judgment method was 
employed. Although its detection rate is 100%, this method only 
relies on a binary judgment, i.e., the judgment is either a “yes” 
or a “no,” which limits its generalizability for practical 
applications. In [16], only sit-downs and stand-ups were used to 
classify fall states, which is insufficient to meet the practical 
requirements of ADL judgment. 

From the aforementioned literature, it is evident that an 
accelerometer is the primary method to detect a fall, and a 
cardiotachometer and barometer are subsequently used to help 
determine the falling state. Accordingly, accelerometers have 
been widely employed in studies on human postures and possess 
the advantages of ease of use, portability, and low cost [17-25]. 
Therefore, several researchers and research institutions have 
been actively developing this type of fall detection system. 

After explaining the advantages and disadvantages of 
wearing methods and sensors in fall detection, we introduce fall 
detection algorithms. Fall detection algorithms are the core 
technology in related research, which can be roughly divided 
into ANM and MLM [4]. Table I summarizes some of the 
literature on fall detection from the past five years. The table 

Chien-Wu Lan, Member, RST, and Sung-Chun Chen 

Research and Development of a Disability Care 

Assistance Management System for Fall Detection 

T 

mailto:chienwulan@gmail.com
mailto:g061984@gmail.com


iRobotics 

Vol. 3, No. 1, March, 2020 

25 

presents a comparison of classification, analysis method, 
wearing location, used sensors, and research results. Each 
research is evaluated by the sensitivity (true positive ratio, TPR) 
and specificity (true negative ratio, TNR) of confusion matrix to 
represent its performance. In the following table of this paper, 
these two indicators will be represented by this abbreviation. 
Based on the research, both ANM and MLM have high and low 
sensitivity. However, the overall sensitivity of MLM is better 
than that of ANM. These findings also add weight to the need 
for discussion on determining a universal, simple, and accurate 
fall detection method that has the aforementioned advantages. 

 

Based on the results of the aforementioned literature, we 
propose a left-wrist-mounted fall detection system. Although 
the accuracy of wrist-mounted devices is not optimal compared 
to the devices mounted to other parts of the body [25], the wrist 
is considered to be the most comfortable part for wearing a 
wearable device. The device uses a three-axis accelerometer, 
which is commonly built in a commercially available wearable 
device, to capture users’ postures, providing more space for 
imagination on future commercial applications. The system uses 
MLM to assess whether a fall occurs and collects training data 
of different age groups to build a more general classification 
model. The experiment results show satisfactory accuracy. 

II.  SYSTEM OVERVIEW 

This study proposes a disability care assistance management 
system in which the fall detection algorithm detects whether a 
fall occurs. This section explains the system architecture and 
system flow. 

A. System Architecture 

To make the designed system have better applicability, we 
used the Internet of Things (IoT) concept to develop the 
architecture of the disability care system, which consists of the 
client, server, and monitoring side, as shown in Fig. 1. 

The client is a wearable device that consists of an inertial 
measurement unit (IMU) integrated with a microcontroller 
(MCU), and a LoRa wireless communication module. The 
server is the core of the system, which consists of a disability 
care assistance management system (equipped with a fall 

detection algorithm, a database, and an alarm function) and a 
LoRa Dongle. The monitoring side includes the information 
broadcasting function and a device (computer or handheld 
device) that receives information. 

 

Fig. 1.  System architecture. 

 

B. System Flow 

The system performs the following steps to detect whether 
the user falls. First, the three-axis acceleration values of the 
user’s posture are sensed using the IMU in the wearable device 
on the client side, and returned to the disability care assistance 
management system on the server side in real-time through 
LoRa. The system then fuses the data and extracts fall 
eigenvalues from posture information and uses the fall detection 
algorithm to identify a fall. After the fall, the system broadcasts 
the fall information to the monitoring side. Finally, the 
caregivers on the monitoring side can receive the fall alarm 
notification through the mobile device and strive for decreased 
rescue time of the person who fell and reduce the injuries caused 
by the fall. 

In the system flow, real-time and accurate processing of 
continuous posture sensing information is the key to fall 
detection. To address this demand, we propose four main 
methods: 1) fall detection modeling, which fuses the 
accelerometer data; 2) threshold sliding window, which extracts 
the most likely fall posture from the continuous sensing signals; 
3) learning model, which judges the fall; 4) flow of a fall alarm, 
which explains how the system provides a fall alarm. These 
methods are described in detail in the next section. 

III. METHODOLOGY 

After describing the system overview and the functions 
between the system components, we explain the methods 
required by the system to detect falls in this section. 

A. Fault Detection Modelling 

The device reads the three-axis accelerometer values at a 
sampling interval of 100 ms. It uses the signal vector magnitude 
(SVM) method to fuse the eigenvalues of the motion postures as 
a source for fall feature extraction and subsequent processing. 
The SVM for extracting eigenvalues can be given by Eq. (1): 

 

        
2 2 2

SVM x y zi a i a i a i     (1) 

TABLE I 
COMPARISON OF FALL DETECTION ALGORITHMS 

Ref. Class. Method Location Sensors Best Results 

[18] ANM 
HIDDEN 

MARKOV 

Neck, Waist, 
Chest, and in 

pockets 

ACC 
TPR:  

TNR:  

100% 

99.8% 

[23] ANM TH Chest Phone 
TPR:  
TNR:  

93.33% 
98% 

[24] ANM TH Wrist ACC 
TPR:  

TNR:  

94.44% 

100% 

[17] MLM BPNN Waist 
ACC, 

Gyro 

TPR:  

TNR: 

98% 

96.5% 

[19] MLM k-NN Wrist 

ACC, 

Gyro,  

Magneto 

TPR:  
TNR:   

100% 

97.9% 

[21] MLM k-NN 
Back of the 

vest 

ACC, 

Gyro 

TPR:  

TNR:  

95.8% 

99.2% 

[22] 
ANM/ 
MLM 

FUZZY-NN  ACC TPR:  
TNR: 

97.29% 
98.7% 

[29] 
ANM/ 

MLM 
TH-SVM Pocket Phone 

TPR:  

TNR: 

92% 

99.75% 
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Where  xa i ,  ya i , and  za i  represent the accelerometer 

readings obtained in the ith sampling, and SVM[i] represents the 
SVM calculated based on the information obtained in the ith 
sampling. Fig. 2 shows the eigenvalues of the SVM during the 
fall process. We can conclude from [26-28] that the fall process 
is divided into three intervals, i.e., descent interval, impact 
interval, and short static interval, taking about 3 seconds in total. 
The intervals in the fall process are also used as the time 
intervals for measuring an ADL. 

 

Fig. 2.  SVM during the fall. 

We can see from Fig. 2 that SVM reaches the peak value 
upon the fall impact, and the values around the peak are the 
important information about the posture change before and after 
the fall impact. Therefore, this characteristic can be further used 
as a basis for screening effective information. 

B. Threshold Sliding Window 

Through fall detection modeling, we obtain the SVM peak 
value, which is the most representative of a fall event, and 
important information displayed before and after the peak. We 
can observe from Fig. 3 and Fig. 4 that when the body descends 
and hits the plane, the SVM peak value in a fall is significantly 
higher than that in the cases of sit-down and going upstairs. 
Therefore, the most obvious difference between a fall and an 
ADL is whether an impact occurs, and only the feature set 
obtained based on a high enough SVM value may be the feature 
of a fall event. Hence, we designed a threshold judgment 
algorithm in reference to [29]. Before the posture data are 
inputted into the learning model for fall judgment, the threshold 
judgment algorithm first identifies highly recognizable data 
with an SVM threshold of 1.8 G (17.64 m/s2) to improve the fall 
detection accuracy of the system [29]. When the SVM is smaller 
than 1.8 G, the system only senses users’ postures in real-time. 
When the SVM is greater than 1.8 G, the system performs fall 
judgment, and the obtained dataset is judged by the learning 
model. 

Further, the sampling intervals should be defined to detect a 
fall from the continuous data. To address this problem, we 
proposed the sliding window method, as shown in Fig. 5. 

This method, referring to the fall interval and features after 

modeling, takes 10 sampling points ( 1T  to 10T ) before and 20 

sampling points ( +1T  to +20T ) after the SVM peak sampling time 

T. 31 parameters are extracted at a sampling period of 100 ms on 

each axis. Hence, the feature set  DataSet(S) including a total of 
93 parameters on three axes can be expressed as follows: 

    10 20DataSet , , | , , , ,x y z

s s ss a a a s T T T    (2) 

where s represents the sampling time of the fall interval, which is 

3.1 s in total. T is the time point when the SVM peak occurs. x

sa , 

y

sa , and z

sa  represent the accelerometer readings at time s. 

 

Fig. 3.  SVM feature map of sit-downs and falls. 

 

Fig. 4.  SVM feature map of going upstairs and falls. 

 

Fig. 5.  SVM eigenvalues. 

After the design of the threshold sliding window method 
was completed, we extracted eigenvalues from nine motions, 
including four fall motions (i.e., forward fall, backward fall, left 
fall, and right fall) and five ADL motions (i.e., walking, sitting 
down, standing up, going upstairs, and going downstairs). 
Judging falls in such continuous and complex sampling signals 
is a non-linear issue. Therefore, a method capable of effectively 
judging this type of signal is required to judge falls. 
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C. Learning Model 

In this study, we used Levenberg Marquardt’s back 
propagation neural network (BPNN) [30] algorithm in error 
back propagation (EBP) as the core method for systematically 
judging falls and took 93 pieces of data extracted from the 
sliding window as the input. The output of fall judgment was 
obtained through the BPNN. The idea behind the BPNN is to 
propagate information forward and errors backward during the 
learning process. As shown in Fig. 6, a neural network has an 
input layer (i), an output layer (o), and a (or multiple) hidden 
layer (h) between the two. The input layer in the network has n 
inputs (x), the output layer has m outputs (y), and the hidden 
layer has z neurons (h). The weight from the input layer to the 
hidden layer is wih, and the weight from the hidden layer to the 
output layer is who. The transfer functions (f) of the hidden layer 
and output layer are fh and fo, respectively. The partial weights (b) 
of the hidden layer and output layer are bh and  bo, respectively. 
The target output value of training is yt. Here, the three-layer 
BPNN is taken as an example for description. The parameters 
used in this study are explained in the experiment design 
section. 

 

Fig. 6.  Architecture of the neural network. 

The input layer in the network has a total of n inputs of data 
from the hidden layer. The output of the hidden layer, αh, can be 
given by Eq. (3): 

  1
,  1,2, ,

n

h h ih i hi
f w x b h z


     (3) 

Where 
1

n

ih i hi
w x b


    is the sum of the product of the weight 

from the input layer to the hidden layer. We then perform a 
non-linear transformation through fh to obtain the output value 
inferred at the hidden layer, i.e., αh. We use αh as the input data 
of the output layer. In this way, we can obtain the output of the 
output layer, i.e., yo, as shown in Eq. (4). 

  1
,  o 1,2, ,

z

o o ho h oh
y f w b m


     (4) 

Eq. (4) can also be rewritten as Eq. (5): 

   1 1

z n

o o hz h ih i h oh i
y f w f w x b b

 
       (5) 

BPNN is a supervised learning network that aims to reduce the 
difference between the network output value and the target 
output value. Therefore, we can use the error function E to test 
the learning quality after obtaining the network output: 

  
2

1

1

2

m

t oo
E y y


   (6) 

The back-propagation process is to minimize the error function 
to meet the expected answer. The descent gradient method is 
used to find the optimal solution of the error function such that 
the weight can be adjusted quickly to optimize the network. The 
corrected magnitude of the weight from the output layer back to 
the hidden layer can be given by Eq. (7): 

 
oh

oh

E
w

w



  


 (7) 

Where η is the magnitude of the weight corrected by the learning 
rate, which generally ranges between 0.1 and 0.9. The updated 
weight woh can be given as follows: 

    1oh oh ohw n w n w    (8) 

We can also calculate the corrected weight of the back 
propagation from the hidden layer to the input layer by referring 
to Eqs. (7) and (8). We then iteratively calculate and correct the 
weight until the network output matches the expected answer. 

D. Flow of Falling Alarm 

The system integrates various information based on the 
aforementioned methods to provide fall alarms. Fig. 7 is a 
flowchart of the system’s fall detection alarm, which is divided 
into two stages: offline training and online real-time detection.  

 

Fig. 7.  Flowchart of the fall detection algorithm. 
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At these two stages, the client first takes the average of the 
first 100 readings of the accelerometer on each axis to initialize 
and correct the device. The stages of a fall alarm are described as 
follows. 

1) Offline Training Stage 
The purpose of this stage is to train an optimal fall judgment 

algorithm. At this stage, a user collects accelerometer 
information through the client and sets up training and test 
datasets for the neural network on the server. For reliable fall 
judgment of the system, the trained model cannot exit the 
training and be considered as an optimal model until its fall 
judgment accuracy reaches above 98%. The trained model can 
then be used as a fall judgment algorithm at the online real-time 
detection stage. 

2) Online Real-Time Detection 
After the training of the offline fall judgment algorithm is 

completed, online real-time detection is performed. At this stage, 
the system initially filters the accelerometer data infused by the 
client based on the designed SVM threshold (1.8 G). The fall 
posture data with a stronger SVM are inputted into the fall 
judgment algorithm to judge a fall. The performance of this 
method is explained in the experiment section. 

IV. EXPERIMENTS AND RESULTS 

After designing a fall detection method, we tested and 
verified the system and obtained the performance of the system 
from the experimental results, which are explained in order 
below. 

A. Experimental Setup 

As shown in Fig. 8, the device developed in this study 
consists of the IMU, LoRa wireless communication module, 
MCU, lithium battery, and other parts. We used 3D printed 
shells and simple hardware to realize the detection of fall 
postures. 

 

Fig. 8.  Device components. 

We used the accelerometer in the IMU (MPU6050) to obtain 
a user’s postures on a scale of ± 2 g. We then used the LoRa 
wireless communication module (iFrog SX1272) to perform 
data transmission. This module is a long-distance transmission 
technology with low power consumption, anti-interference 
capability, and strong penetrability. It is suitable for wearable 
devices with limited power and transmission distance and can 
also complete the transmission for the judgment of fall postures. 
Finally, we used the compact Arduino Nano, the MCU of the 
wearable device, to process the accelerometer readings and 
transmit the data to the backend through the LoRa wireless 
module to judge falls. The Fig. 9 shows the appearance of the 

wearable device on a user’s left wrist and the coordinates of the 
system. 

 

Fig. 9.  Appearance and coordinates of the wearable device. 

The fall experiment was set up on a cushion with a thickness 
of 23 cm on the ground. Among ADLs, walking was sampled in 
a straight line of 10 m on a plane with no height difference. 
Sitting and standing were sampled on a hard-faced chair with a 
height of 45 cm. Finally, going upstairs and going downstairs 
were tested on a total of 12 steps (with a height of 18 cm each). 

To verify the performance of the system, we divided the 
state outputs of the neural network into Positive and Negative to 
represent falls and ADLs. The training results of the model can 
be evaluated from the state judgment matrix in Table II. 

 

In True Class, P indicates that a fall occurs, and N indicates 
that a fall does not occur. In BPNN judgment, Y indicates that a 
motion is judged as a fall, and N indicates that a motion is 
judged not as a fall. True Positives (TP) indicate that a fall is 
correctly classified, False Negatives (FN) indicate that a fall is 
not detected by the BPNN, True Negatives (TN) indicate that an 
ADL is correctly classified, and False Positives (FP) indicate 
that an ADL is incorrectly classified by the BPNN. 

The training results were evaluated based on indicators such 
as sensitivity, specificity, accuracy, and false alarm rate (FAR). 
These indicators can be calculated as follows: 

 
TP

Sensitivity
TP PN




 (9) 

 
TN

Specificity
TN FP




 (10) 

 
TN TP

Accurancy
P N





 (11) 

 
FP

False Alarm Rate
P N




 (12) 

TABLE II 

STATE JUDGMENT MATRIX 

  TRUE CLASS 

  P N 

 
BPNN 

CLASS 

Y TRUE POSITIVES FALSE POSITIVES 

N FALSE NEGATIVES TRUE NEGATIVES 
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Sensitivity measures the proportion of correct judgments of 
a fall when a fall occurs. Specificity measures the proportion of 
judgments of non-falls when there is no fall. Accuracy measures 
the proportion of falls and ADLs being correctly judged. The 
false alarm rate measures the proportion of ADLs being judged 
as falls. The higher the sensitivity and specificity, the higher the 
system reliability and accuracy. On the other hand, the lower the 
false alarm rate, the better. 

After the experimental setup, we verified the effect of the 
neural model at the offline training stage on single motion 
classification and the ADL specificity of the system for different 
age groups. We then performed a real-time fall sensitivity 
verification in continuous motion at the online real-time 
detection stage for the post-learning neural network, to 
understand the sensitivity of the system in practical applications. 
Finally, we compared the performance of the proposed 
BPNN-TH method combining ANM and MLM with that of 
K-NN and TH, which are introduced in order below.t 

B. Single Motion Classification 

This experiment was an offline training conducted in the 
laboratory. It was mainly used to train and judge whether the 
BPNN model can correctly discriminate between fall and ADL 
motions. After obtaining a dataset of the accelerometer readings 
on users’ postures through the wearable device, we generated a 
1 × 93 array according to the proposed method and inputted it 
into an input layer containing 93 neurons. Using prior 
experimental experience, two hidden layers, each with seven 
neurons, were used, and the learning rate was 0.001. Finally, the 
values between 0 and 1 in a 1 × 2 array were outputted at the 
output layer. We performed model training on this network 
architecture. The actual performance can be verified by 
experimental results. 

Various motions in this experiment are explained in Table 
III, and they are also used as the standard motions to follow in 
each experiment. Nine motions were designed in total, including 
four fall motions (i.e., forward fall, backward fall, left fall, and 
right fall) and five ADL motions (i.e., walking, sitting down, 
standing up, going upstairs, and going downstairs). 

In the experiment, we collected data of all motions with the 
aid of eight participants. Among them, seven participants with 
normal mobility repeatedly performed each motion 10 times, 
and the other one only repeated each motion five times due to 
physical health. Therefore, 75 datasets were obtained for each 
designed motion. Among the 675 datasets obtained for nine 
motions, we selected an average of 72 datasets as the test 
datasets to reduce the specificity between the training data and 
used the remaining 603 datasets as training datasets. 

After completing the training of the neural network, we 
inputted 72 test sets of fall and ADL motions into the system to 
judge the motions (with a motion recognition probability 
between 0 and 1). If the probability converges to 1, it indicates 
that the motion is classified correctly. In the test results, one 
dataset of the backward fall was judged to be a fall with a 
recognition probability of 0.8 and a sit-down with a recognition 
probability of 0.2. Although this single result did not fully 
converge, the motion recognition probability was above 0.5, and 
this motion was therefore still judged as a correct classification. 
Because the sensitivity, specificity, and accuracy of the test sets 
were all 100%, the trained result can be used as the optimal 
neural model. Therefore, the model can complete the 

verification of various types of single motions. On this basis, we 
then performed the next experiment. 

 

C. ADL Specificity Verification in Different Ages 

M. Kangas et al. have found that the elderly and the 
middle-aged participants have similar descent intervals and 
impact intervals during the fall [31]. According to their 
conclusion, we can judge that the trained BPNN model for falls 
is also suitable for all age groups, but whether the trained BPNN 
for ADL motions is suitable for all age groups is uncertain. 
Therefore, the purpose of this experiment is to verify and detect 
the ADL specificity, i.e., the proportion of an ADL motion 
being misjudged as a fall, based on the optimal neural model 
trained at the previous stage, and to verify whether the ADL 
motions of non-modelers increase the false alarm rate of the 
system. 

This experiment involved 67 volunteers who were divided 
into three groups: 21-40 years old, 41-64 years old, and above 
65 years old. Table Ⅳ presents the physiological parameters of 

the volunteers. The volunteers met the following three activity 
indicators: 1) being able to walk over 10 m without using a 
walker; 2) being able to stand up from the chair on his or her 
own; 3) being able to participate in motion detection with 
spoken and written words. Among them, 11 had suffered foot 
injuries or structural degradation, but they all met the test 
conditions. 

The experimental environment at this stage is similar to the 

original experimental setup. We performed motion detection 

based on the current situation of the volunteers’ home and public 

space environment. The straight line distance was more than 10 

m in an open field, and there is no obstruction to affect the 

inertial behavior of walking forward; the chair height was 

between 42 cm and 50 cm, and the seat cushion had hard/soft 

TABLE III 

DEFINITION OF THE MOTIONS 

Motion 

No. 
Class 

Motion 

name 
Motion description 

fF  

FALL 

FORWARD 
The knees hit the ground before the face 

points downwards. 

bF  BACKWARD 
The bottom hits the ground before the face 

points upwards. 

lF  
LATERAL-LE

FT 

The left knee hits the ground before the 
left shoulder, with the face pointing to the 

left. 

rF  
LATERAL-RI

GHT 

The right knee hits the ground before the 
right shoulder, with the face pointing to 

the right. 

wA  

ADL 

WALK 
The left foot steps forward first, and the 
wrists naturally swing back and forth. 

sA  SIT-DOWN 

In a standing posture, the two arms hang 

down naturally with the palms facing 
inward. In a sitting posture, the palms lie 

down flat on the thighs. 

uA  STAND-UP 

In a sitting posture, the palms lie down flat 
on the thighs. The user stands up with 

hands on thighs and returns to a standing 

posture with two arms hanging down 
naturally and palms inward. 

usA  UP-STAIRS 

The left foot moves upwards, and the 

wrists naturally swing back and forth, 
without lying on the escalator. 

dsA  DOWN-STAI

RS 

The left foot moves downwards, and the 

rest of the movement and environment are 
the same as those of going upstairs. 
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surfaces or were sofas; eight to 10 steps of the stairs were used, 

with the height of each step ranging being 14 cm to 18 cm. 
 

 

Volunteers performed five ADL motions each time and 

repeated them three times. For the 18 volunteers aged 21-40, a 

total of 270 ADL motions were tested, of which three sit-downs 

were misjudged as falls. For the 15 volunteers aged 41-64, a total 

of 225 ADL motions were tested, and no ADL motion was 

misjudged as falls. For the 34 elderly aged over 65, a total of 510 

ADL motions were tested, of which one ADL motion was 

misjudged as a fall. 
We can conclude from Table Ⅴ that a total of four ADL 

motions were misjudged as falls in 1,005 tests, with a specificity 
of 99.6% and a false alarm rate of only 0.4%. This conclusion 
shows that the system has high reliability in detecting ADLs of 
different age groups and non-modelers. Next, we performed 
real-time falling sensitivity verification in continuous motion to 
understand the performance of the system in actual operation. 

 

D. Real-Time Falling Sensitivity Verification in Continuous 

Motion 

The verification results at the offline training stage show that 
the system has a universal and significant effect on fall detection. 
Next, we conducted an experiment on online real-time detection. 
At this stage, five males aged 21-35 were tested in the laboratory. 
First, we conducted a static experiment of single motion 
detection to confirm the system’s stability in detecting a single 
motion of participants. Participants performed the defined fall 
and ADL motions two times. The recognition rate of a single 
motion was then tested. By testing the dataset of 40 fall motions 
and 50 ADL motions, we obtained a sensitivity of 100% and no 
false positives. Therefore, we conducted a dynamic experiment 
of real-time fall sensitivity verification in continuous motion. 

Table VI explains the definitions of continuous motions 
(Act1 to Act4) in the dynamic experiment. To make the 
experiment close to the real ADLs of the participants, we added 
four single motions, i.e., opening the door (Ao), pulling the chair 
(Apc), picking up an item from the ground (Apu), and washing 

hands (Awh). By testing these continuous motions, we verified 
the robustness and applicability of the system in real-time and 
continuously. 

 

Fig. 10 to Fig. 13 show the feature maps of Act1 to Act4 
obtained in this experiment, respectively. We can clearly see 
from Fig. 10 to Fig. 12 that the SVM waveform caused by a fall 
has a quite high peak, and the signal features can be clearly 
identified from the motion, showing that setting an SVM 
threshold can make a preliminary and obvious discrimination 
between falls and ADLs. On the other hand, if the fierce or 
irregular signal vibrations caused by a rapid descent and rotation 
or vibration of hand movements (such as picking up items from 
the ground, opening doors, washing hands) are higher than the 
SVM threshold, the BPNN can be used for further classification. 

 

Fig. 10.  Feature map of Motion 1. 

 

Fig. 11.  Feature map of Motion 2. 

Table Ⅶ shows statistics of all experiments. The results 

show that the system has a sensitivity of 100%, a specificity of 
98.9%, and an accuracy of 99.2% overall in judging static and 
dynamic falls. Although there were two false alarms during 
hand washing in Act4, the overall false alarm rate was only 0.8%, 
indicating that the system has stable performance. 

TABLE Ⅵ 

DEFINITIONS OF THE MOTIONS 

Motion Behavioral procedure 
Data set 

Fall ADL 

Act1 dsA →
usA →

wA → fF  5 15 

Act2 dsA →
usA →

wA →
oA →

wA → pcA →
bF  5 30 

Act3 dsA →
usA →

wA →
oA →

wA →
sA →

uA →
lF  5 35 

Act4 dsA →
usA →

wA →
oA →

wA → puA →
wA →

whA  None 55 

 

TABLE Ⅴ 

STATISTICS OF FALL DETECTION AT THE SECOND STAGE 

Category 
 

Detect Fall 

ADL Activities 

21-40 
Years 

41-64 
Years 

65 Up 
Years 

Y 3 0 1 

N 267 225 509 

Total 1005 

TPR 99.6% 

FAR 0.4% 

 

TABLE IV 

PHYSIOLOGICAL PARAMETERS OF THE VOLUNTEERS 

Group 
(years) 

Age 
(years) 

Participants Height 
(cm) 

Weight 
(kg) Male Female 

21-40 30 6  11 7 169.5 9.5  69.5 20.5  

41-64 59 5  6 9 166.0 13.0  69.0 21.0  

65 UP 78.5 13.5  19 15 159.5 13.5  63.5 18.5  

Total 67   
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Fig. 12.  Feature map of Motion 3. 

 

Fig. 13.  Feature map of Motion 4 (showing only the movement after standing 

up). 

 

 

Fig. 14. Feature set of false alarms in the case of hand washing. 

We further analyzed one false alarm event of Act4. We found 
from Fig. 14 that in the interval of false alarm events, four 
events exceeded the SVM threshold, among which the third 
event complied with the fall features described in Fig. 5. 

Although the system has achieved expected results through the 
SVM threshold and BPNN training methods, more types of 
ADL datasets can be added to neural training in the future to 
effectively reduce the false alarm rate. 

E. Performance of Different Fall Recognition Methods 

According to the comparison of the fall judgment methods 
discussed in the existing literature, the TH judgment and K-NN 
algorithm are commonly used among ANM and MLM, 
respectively. For the wrist-mounted fall detection device as well, 
we combined the K-NN algorithm [19] and descent gradient TH 
method [24], and tested the sensitivity and false alarm rate using 
72 test datasets (including 32 datasets of falls and 40 datasets of 
ADLs) in offline experiments and 150 datasets in the online 
real-time experiment (including 15 falls and 135 ADLs). The 
experimental results are as follows: 

1) K-NN Algorithm 

Based on angle changes, researchers have performed machine 

learning training on six fall motions (i.e., forward fall, backward 

fall, left fall, right fall, fall after clockwise rotation, and fall after 

counterclockwise rotation) and six ADL motions (i.e., walking, 

clapping, opening and closing doors, moving objects, tying 

shoestrings, and sitting down), and achieved a 99% accuracy in 

the offline test [19]. We trained the K-NN model using the 

training dataset used in the offline experiment and achieved a 

false alarm rate of 1% in classification during the training 

process. The verification using test datasets shows that the 

trained model has an accuracy of 100%, which is consistent with 

the accuracy at the offline training stage. 
We then used K-NN parameters to perform dynamic 

detection at the online real-time stage and achieved a sensitivity 
of 100% and a false alarm rate of 15.3%. False alarms occurred 
during untrained motions of door opening and hand washing. 
We concluded that the false alarm rate was very high for 
untrained motions in this method. Since it is impossible to train 
all real-life ADLs, the scope of application of K-NN is limited. 

2) TH Judgement Method 
In [24], the descent gradient threshold method achieved a 

sensitivity of 94.44% and a false alarm rate of 2% in the cases of 
pre-planned falls, walking, and stillness, as well as real-life 
jogging. Next, we applied the training dataset in the offline 
experiment to the descent gradient threshold method. In the 
experimental results, three falls were judged as ADL motions, 
rendering a sensitivity of 90.6%. Because the accuracy of the 
TH method was too low during the offline experiment, we no 
longer performed online real-time dynamic detection. Further, 
15 ADL motions were misjudged as falls, rendering a false 
alarm rate of 20.8%. Further analysis found that the false alarms 
mainly occurred in motions such as sitting down, standing up, 
and going downstairs. These three motions are not the motions 
planned in [24], but this also highlights the use of the TH 
method alone to implement motion judgment, which clearly 
shows the limitations of its use. 

Based on the above results and data, we presented the 
performance comparisons in Table Ⅷ. We can clearly see from 

the table that the BPNN-TH method combining ANM and 
MLM can achieve better sensitivity and lower false alarm rate 
than the single method of K-NN and TH judgment. 

TABLE Ⅶ 

ACCURACY OF FALL JUDGMENT AT THE REAL-TIME DETECTION STAGE 

Activities 
Free-Living Static 

Activities 
Total 

    Subtotal 

Detect fall Y N Y N Y N Y N Y N Y N  

Fall(P) 5 0 5 0 5 0 - - 15 0 40 0 55 

ADL(N) 0 15 0 30 0 35 2 53 0 135 0 50 185 

TPR 100% 100% 100% - 100% 100% 100% 

TNR 100% 100% 100% 96.3% 98.5% 100% 98.9% 

Accuracy 100% 100% 100% 96.3% 98.7% 100% 99.2% 

FAR None None None 3.6%   1.3% None   0.8% 
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It is worth noting that the method proposed in this study has 
quite excellent judgment results in the recognition of 
non-planned motions in free-living. 

V. CONCLUSIONS 

In this study, we proposed a fall detection system that only 
employs an accelerometer for posture measurements. We 
combined SVM and data from a three-axis accelerometer and 
thus employed a sliding window method to extract feature 
information of falls and ADLs from continuous signals. 
Thereafter, we used a BPNN algorithm to classify the motions 
for fall judgment. During the offline training stage, the trained 
model can correctly judge various types of single motions. In the 
experiment on ADL motions of different age groups, the system 
can obtain a specificity of 99.6%, thereby yielding excellent 
generalizability. In the real-time verification, the system could 
achieve a sensitivity of 100% and a false alarm rate of 0.8% for 
fall judgment. Finally, the BPNN-TH method exhibited better 
sensitivity in different motion states than the K-NN and TH 
methods. In addition, the system uses LoRa wireless 
transmission and provides fall alarms. Fig. 15 shows that the 
server sends a fall alarm to the monitoring side through the 
IFTTT cloud platform on the Internet. We believe that the 
results of this study can provide a reference for future fall 
detection systems. 

 

Fig. 15.  (a) Alarm of GUI on PC; (b) Alarm Message of Mobile Device. 
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 

Abstract— The main challenge to design the controller of the 

robotic manipulator is the tracking of a predefined trajectory. 

Furthermore, most of robotic manipulators consist of more arms 

and each arm must be track different trajectory with some 

specifications. This paper suggests a novel design to tune the 

parameters of the robot manipulator controller to track linear 

and nonlinear trajectories. The optimization operation is created 

by utilizing a new tuning algorithm named butterfly 

optimization algorithm (BOA) instead of the trial and error of 

designer’s expertise. This algorithm is devoted to search for the 

optimal gains of the proportional integral derivative (PID) 

controller based on a new figure of demerit objective function 

(FOD). The suggested technique is evaluated with the multi- 

objective genetic algorithm (GA) and cuckoo search algorithm 

(CSA) in Literature. Different tests are created to confirm the 

superiority of the proposed method. 

Index Terms— Robot Manipulator, Objective Function, 

Trajectories, Optimization. 

I. INTRODUCTION 

ECENTLY, the robotic controller design represents many 

challenges in the applications of robot because of the 

changes in trajectories types and the robotic system 

nonlinearities [1]. Different controllers are utilized to control 

the links of the robot manipulator such as proportional integral 

derivative (PID) controller [2-4], fuzzy logic [5, 6], and 

artificial neural network [7, 8]. Among these control methods, 

the PID controller is the most popular one and it is utilized in 

different industrial applications because it is simple in the 

implementation [9, 10]. The main challenge that retards the 

utilization of the PID controller is the selection of the 

controller parameters. This controller requires a proper tuning 

for its gains to ensure a good performance for the system 

response. In literature, different tuning methods are applied to 

select the controller’s gains such as Ziegler Nichols (ZN) 

method [11] and graphical methods [12]. These methods are 
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conventional and it doesn’t prove a good performance 

because the ZN method is depending on constant basics for 

any system [13] and the graphical methods are built based on 

the linearized model of the system. Furthermore, it is 

complicated mathematically especially in the large systems, 

and consume a long time [14]. Artificial intelligence (AI) 

techniques can solve the tuning problem of the controller and 

it proved good performance in many engineering applications 

[15]. In [16], the genetic algorithm (GA) is utilized for the 

optimal tuning of the robotic torque controller. A new particle 

swarm optimization (PSO) is introduced for the tuning of a 

fractional PID controller in [17]. In [18], the ant colony 

optimization (ACO) is applied to select the optimal 

parameters of the fuzzy controller for a mobile robot. The 

cuckoo search algorithm (CSA) is introduced for the path 

planning for a mobile robot in [19]. In [20], the CSA is 

utilized to optimize the parameters of a sliding mode 

controller for multi- degrees of freedom robot. The main 

problem of these optimization algorithms is the trapping in a 

local optimum solution. 

This paper suggests a novel optimization method to tune 

the robot manipulator controller based on a new figure of 

demerit objective function (FOD) and the butterfly 

optimization algorithm (BOA). This algorithm utilizes the 

cooperative movement between the butterflies to get the 

optimal global solution and overcome the enclosing in a local 

optimum solution. The proposed method is compared with the 

multi- objective GA-PID controller due to [21] and the multi- 

objective cuckoo search algorithm (CSA)- PID controller due 

to [22]. The performance of the suggested method is 

confirmed by carrying out different test scenarios. 

II. BUTTERflY OPTIMIZATION ALGORITHM OVERVIEW 

Butterfly optimization algorithm is a novel AI technique 

inspired by the foraging behavior of the butterflies [23, 24]. 

The cooperation between the butterflies awards this algorithm 

the manner of global search.  The BOA divided into three 

phases named the initial, iterative, and final stage respectively. 

In the initial stage, the parameters of the algorithm and the 

objective function are defined then the initial population is 

started randomly and the initial solutions are determined. 

After the initial population, the iterative stage starts by 
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calculating the fitness function of all butterflies. Then, the 

butterflies generate the fragrance according to stimulus 

intensity as follows, 
acIf                                     (1) 

where 

f The value of fragrance 

c The sensory modality 

I The stimulus intensity 

a The absorption indicator 

 

Each butterfly in the algorithm produces different fragrance in 

the intensity according to the fitness function. In the algorithm, 

there are two steps of search named global and local search 

respectively with switching probability (P). In the global 

search, the butterfly moves to the best butterfly or solution as 

follows, 

iiii ftxgrtxtx  ))(*()()1( *2
                  (2) 

where 

xi(t) The current solution vector 

t The current iteration 

i The butterfly index 

g* The current best solution 

fi and r Random number within [0, 1] 

 

In the local search, the butterfly moves randomly to the 

neighbor butterfly or solution as follows, 

ikjii ftxtxrtxtx  ))()(*()()1( 2
              (3) 

where xj(t) and xk(t) are the neighbor butterflies of the 

current solution. This local moving between the butterflies 

increases the exploration behavior of the algorithm and 

prevents it from the trapping in a local optimum solution. The 

following flowchart in Fig. 1 summarizes the steps of BOA. 

III. ROBOT MANIPULATOR MODELING 

Set of differential equations are utilized to describe the 

robot dynamics. These equations consist of different terms 

named inertia, torque, load, and gravity terms. The 

movements of the links in a defined trajectory with a certain 

speed require appropriate torque to be applied in the actuator 

of the links. The modeling of the manipulator which 

represents the robot dynamics of n-links is governed as 

follows [21], 

)(),()(  GCM 





                 (4) 

where 

  Vector of links torques  

)(M  Positive matrix  

),( 


C  
Vector of Coriolis torques  

)(G  Vector of gravity torques  

  Angular position of links 




 
Velocity of links 




 
Acceleration of links 

n Number of links 

 
Fig. 1. The flowchart of the BOA. 

 

In this paper, two degrees of freedom robotic manipulator 

is used with ‘n=2’ of links. The dynamics equations that 

represent this manipulator links which shown in Fig. 2 are 

described as follows [25], 

11211222212212

2

222121
2

121

21221221
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where )cos( 11 c , )cos( 22 c , 

)cos( 2112  c , )sin( 11 s , and )sin( 22 s . In 

this paper, the control signal of the PID controller represents 

the torque of each link as follows, 

dt

de
KdteKeK i

iDiiIiiPi   ,,, .                (7) 

iidie   ,
                                      (8) 

where 2,1i , ie is the error signal, 
id , is the desired 

trajectory, and i is output angular position. 

 
Fig. 2. The geometric representation of two degrees of freedom robotic 

manipulator. 

IV. RESULTS AND DISCUSSIONS 

In this section, the BOA is consecrated to get the optimal 

parameters of the links controllers in order to track any 

trajectory with less error, settling time, and maximum 

overshoot. A new time-domain objective function named 

figure of demerit (FOD) is developed to ensure the 

minimization of steady-state error, settling time, and 

maximum overshoot simultaneously. This function is 

represented as follows, 




 
2

1

,,,, )())(1(
i

irisiSSiP tteEMeJ 
                  (9) 

 

where  

MP,i The maximum overshoot 

ESS,i The steady-state error 

ts,i The settling time 

tr,i The rise time 

β A weighting factor 

i The index of each robot link 

The value of weighting factor ‘β’ controls the 

minimization of settling time and maximum overshoot. When 

β <0.7, it can minimize the settling time. In contrast, When the 

β>0.7, it can minimize the maximum overshoot. In this paper, 

the selected value of β =0.7 to ensure a fair minimization of 

the settling time, and maximum overshoot. The optimization 

operation is created at the system nominal parameters and a 

unit step reference for the position of each link. The system 

parameters are: m1=m2=0.1 kg, l1=0.8 m, l2=0.4 m, and 

g=9.81m/s2 [21]. The proposed BOA-PID controller is 

evaluated with the GA-PID controller due to [21] and the 

CSA-PID controller of [22]. The controller parameters and 

the corresponding value of the objective function (J) are listed 

in Table I. The steps of the BOA to tune the controller 

parameters are concluded in the following pseudo-code. 

 

The pseudo-code of the BOA to tune the controller parameters 

Start BOA 

Run the robot manipulator model with the controller 

Determine the fitness function in (9) 

Select the best solution (g*) 

while (t < iterations max (tmax)) 

Determine fragrance for each butterfly by using (1) 

If  rand<p 

Perform global search stage by using (2) 

else 

Perform local search stage by using (3) 

End 

Update the position of each butterfly 

Run the robot manipulator model with the controller 

Determine the fitness function in (9) 

Select the best fitness (g*) 

end while 

Stop 

 

It is clear from Table I that the proposed method has less 

performance index value compared with other methods. The 

effectiveness of the proposed technique is confirmed by 

applying the following test scenarios, 

 

Scenario 1: Step reference trajectory 

In this Scenario, the effectiveness of the proposed method 

is confirmed   by applying unit step input as a reference 

trajectory for each link. Figures 3 and 4 show the output 

responses of the system due to the different methods. The 

maximum overshoots and the settling time of the output 

responses of the system are listed in Table II. It is clear from 

Figs. 3, 4 and Table II that the proposed BOA-PID controller 

has high damped performance and less settling time and 

overshoot compared with the GA-PID controller and the 

CSA-PID controller. 

 

Table I  The controller parameters of each technique with the 

corresponding objective function (j) value 

 GA-PID  CSA-P

ID  

Proposed 

BOA-PID  

Controller Link KP,1 = KP,1 = KP,1 = 
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Parameters  1 184.76,  

KI,1 = 

49.68, 

KD,1=8.9

4 

782.41

7,  KI,1 

= 

225.21

23, 

KD,1=3

5.1995 

249.388,  

KI,1 = 

0.4896, 

KD,1=11.9

204 

Link

2 

KP,2 = 

11.46,  

KI,2 = 

16.54, 

KD,2=0.2 

KP,2 = 

324.52

3,  KI,2 

= 

119.24

5, 

KD,2=2

0.1025 

KP,2 = 

192.4835,  

KI,2 = 

0.3178, 

KD,2=4.35

58 

J 1.1758 0.3292 0.0443 

 

 
Fig. 3. The output response of link1 in case of Scenario1. 

 
Fig. 4. The output response of link2 in case of Scenario1. 

 

 

 

 

Table II The maximum overshoot and the settling time of the 

system responses in the case of Scenario 1 due to the different 

techniques 

 GA-PID CSA-PID  Proposed 

BOA-PID  

Maximum 

overshoot 

Link1 4.301% 1.1421% 0.1791% 

Link2 93.3058% 2.1193% 1.8101% 

Settling Link1 0.4899 0.1404 0.1138 

time Link2 1 0.694 0.0733 

 

Scenario 2: Nonlinear reference trajectory 

This scenario is created by applying a cubic reference 

trajectory for each robot link. The cubic reference is generated 

from the following equation [25], 
3

,3

2

,2,1,0, tctctcc iiiiid                   (10) 

where, 02,01,0  cc , 

02,11,1  cc , 09375.01,2 c , 75.02,2 c , 

015625.01,3 c , and 125.02,3 c  at assumed 

desired final positions of each link are ‘ 5.01, f   rad and 

42, f  rad’ at  final time ‘tf=4 sec’. The initial position and 

velocity are   equal to zero. 

The generated cubic references for each link are shown in 

Fig. 5. The output response of the system due to this scenario 

is shown in Figs. 6 and 7. It is concluded from these Figs that 

the proposed method can track the nonlinear cubic reference 

trajectory with negligible error. 

 
Fig. 5. The cubic references for each robot link. 

 
Fig. 6. The output response of link1 in case of Scenario2. 
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Fig. 7. The output response of link2 in case of Scenario2. 

Scenario 3: The effectivity test of the proposed method 

against parameters uncertainties 

This test is created to confirm the effectiveness of the 

proposed method against the change of system parameters. 

The test is carried out by changes the masses and the lengths of 

the robot links with ±20% from the nominal values. Figures 8 

and 9 clear that the proposed method can overcome the 

uncertainties of the parameters with a negligible change in the 

system response. 

 
Fig. 8 The output response of link1 in case of parameters uncertainty. 

 
Fig. 9 The output response of link2 in case of parameters uncertainty test. 

V. CONCLUSION AND FUTURE WORKS 

This paper introduces a novel global optimization 

algorithm named BOA for the optimal design of the robotic 

manipulator controller. The proposed BOA is consecrated to 

find the optimal parameters of the controller in order to 

minimize a new developed time-domain objective function. 

The new objective function can ensure the minimization of the 

settling time and the maximum overshoot simultaneously. The 

proposed technique is compared with two previous techniques 

named GA-PID controller and the CSA-PID controller. The 

simulation results emphases that the proposed method has 

high damped and effective performance compared with other 

methods in case of tracking linear and nonlinear trajectories.  

In the future, this work can be extended to use adaptive 

PID controller based on the proposed method for different 

robotic manipulator problems with experimental 

implementation.  
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