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 Abstract- This paper presents an improved deep 

reinforcement learning which encourages an agent to 

explore unvisited states in an environment with sparse 

rewards. The improved method is based on an actor-critic 

approach. It uses some neglected observations from the 

background as the target output of supervised learning, 

providing the agent denser training signals to bootstrap 

reinforcement learning. Moreover, the improved method 

uses the prediction loss from supervised learning as 

feedback for the agent's exploration in the environment, 

called the label reward, to encourage the agent to explore 

unvisited states. Finally, the improved method constructs 

multiple neural networks to learn a policy by the 

Asynchronous Advantage Actor-Critic algorithm. 

Keywords-Reinforcement Learning, Actor-Critic algorithm, 

Asynchronous Advantage Actor-Critic algorithm, Supervised 
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I. INTRODUCTION 

In reinforcement learning [1], how an agent explores an 

environment with sparse rewards is a long-standing problem. 

Therefore, most of the reinforcement learning leads the agent to 

explore by designing denser rewards. However, poor reward 

design often results in a policy learned by the agent that is not 

the best solution.  

Besides, in deep reinforcement learning [2], an agent relies on 

an image from an environment as an input to the neural network. 

However, some neglected observations from the environment, 

such as depth, might provide valuable information.  

An improved deep reinforcement learning described in this 

paper, based on an actor-critic approach, uses the convolutional 

neural network as a heterogeneous encoder between the image 

and the neglected observation. 

The improved method uses the neglected observation as the 

target output of supervised learning, providing the agent denser 

training signals to bootstrap reinforcement learning. 
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Moreover, the improved method uses the prediction loss from 

supervised learning as feedback for the agent's exploration in 

the environment, called the label reward to encourage the agent 

to explore unvisited states. 

Finally, the improved method constructs multiple neural 

networks to learn a policy by the Asynchronous Advantage 

Actor-Critic algorithm. 

II. BACKGROUND 

A. Reinforcement Learning 

In reinforcement learning, an agent interacts with an 

environment over several discrete time steps. At each time 

step , the agent observes a state and selects an action . 

An agent is guided by a policy π, mapping from states to 

actions . After each action, the agent observes the next 

state and receives feedback in the form of a reward . 

This process continues until the agent reaches a terminal state 

or time limit. 

The goal of learning is to find a policy π that maximizes the 

expected reward. In policy-based model-free methods, a 

function approximator, such as the neural network, computes 

the policy , where θ are parameters of the neural 

network. There are many methods for updating θ based on 

rewards received from the environment.  

The REINFORCE method [3] uses gradient ascent on . 

 

 
(1) 

where is the accumulated reward starting from time 

step and increasingly discounted at each subsequent step by 

factor . 

B. Actor-Critic Algorithm 

The REINFORCE method updates θ using the gradient: 

  (2) 

which is an unbiased estimator of . The variance of 

the estimator is reduced by subtracting a baseline and using 

the gradient: 

  (3) 

One common baseline is the value function defined as: 

  (4) 

which is the expected return for following the policy π in 

state . In this approach, the policy and the baseline can be 

viewed as actors and critics in the Actor-Critic algorithm [3]. 

C. Asynchronous Advantage Actor-Critic Algorithm(A3C) 
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The Actor-Critic algorithm consists of two convolutional layers 

where the first layer has 16×8×8 filters and a stride of 4; the 

second one has 32×4×4 filters with a stride of 2. The CNN is 

followed by a fully-connected layer with 256 units; a rectifier 

nonlinearity follows each hidden layer. The two outputs are a 

softmax layer, which approximates the policy , 

and a linear layer to output an estimate of .  

Two loss functions are associated with the Actor-Critic 

algorithm. For the policy, this is: 

 
 (5) 

 

 
(6) 

where is the estimated discounted reward in the time 

interval from to and is upper-bounded 

by . 

The loss function for the estimated value function is: 

 
 

(7) 

A3C [4], based on an actor-critic approach, constructs multiple 

neural networks as multiple agents to learn a policy. Multiple 

agents play concurrently and update the weights of the neural 

network through asynchronous gradient descent. In an 

asynchronous training environment, an agent represents on its 

environment, sees observation and reward pairs, and takes 

actions that are different from the other agents. Meanwhile, the 

neural network weights are stored in a central parameter server. 

Agents calculate gradients and send updates to the server after 

every actions, or when a final state is reached. After 

each update, the central server propagates new weights to 

agents to guarantee they share a joint policy. 

Training is performed by collecting the gradients ∇θ from both 

of the loss functions and using the RMSProp algorithm [5] as 

an optimization: 

  

 

(8) 

(9) 

III. AN IMPROVED DEEP REINFORCEMENT LEARNING 

A. Nav A3C Algorithm 

An improved deep reinforcement learning described in this 

paper is based on the Nav A3C algorithm [6], which is a variant 

of the A3C algorithm. 

The Nav A3C algorithm (see Figure 1) employs a two-layer 

stacked LSTM after the convolution neural network. It expands 

observations of agents to include the action and the reward 

from the previous time step. The variant of the A3C algorithm 

opts to feed the previously selected action to the second 

recurrent layer. The first layer only receives the reward and 

postulates that the first layer might be able to make associations 

between reward and visual observations from an environment 

provided as context to the layer where the policy is computed. 

 
Figure 1: Nav A3C algorithm [6] 

B. Deep Reinforcement Learning with Supervised Learning 
An improved deep reinforcement learning described in this 

paper (see Figure 2), based on the Nav A3C algorithm, uses the 

convolutional neural network as a heterogeneous encoder 

between an image observation and other observations, which 

both are from an environment. 

In an environment with sparse rewards, the improved method 

considers supervised learning from the convolutional neural 

network, using an environmental observation as the target 

output of supervised learning to compute the prediction loss, 

which provides an agent denser training signals to bootstrap 

reinforcement learning. The prediction loss is calculated on the 

current frame via a single layer MLP. Through denser training 

signals, the improved method accelerates the construction of 

the convolutional neural network in the environment with 

sparse rewards. 

 
Figure 2: Neural network of an improved deep reinforcement learning. 

C. Label Reward 

An improved deep reinforcement learning described in this 

paper uses the prediction loss from supervised learning as 

feedback for an agent's exploration in an environment, called 

the label reward , to encourage the agent to explore 

unvisited states. 

In supervised learning, when the neural network is trained with 

the same training set, the prediction loss is gradually reduced by 

gradient descent. Therefore, an improved deep reinforcement 

learning described in this paper examines an agent's exploration 

in an environment by the prediction loss from supervised 

learning. During the process of learning, when the prediction 

loss is small, it indicates that the agent has visited the state 
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multiple times. When the predicted loss is substantial, the agent 

has not yet visited this state. 

The improved method uses the label reward with the 

reward , which is directly from the environment, 

as the new reward for updating weights of the neural network 

(see Figure 3). 

  (10) 

 
Figure 3: Architecture of an improved deep reinforcement learning. 

D. Training 

An improved deep reinforcement learning described in this 

paper constructs eight neural networks as eight agents to learn a 

policy jointly by the Asynchronous Advantage Actor-Critic 

algorithm. Agents calculate gradients and send updates to the 

server after every 50 actions, or when a final state is reached. 

IV. EXPERIMENTS 

A. First-person 3D maze 

This paper considers a first-person 3D maze (see Figure 4.a) 

from the DeepMind Lab [7], which provides an agent with 

sparse rewards. The action space is discrete, comprising six 

actions: the agent can rotate in small increments, accelerate 

forward or backward, or sideways. The reward is achieved in 

this environment by reaching a goal from a random start 

location and orientation. If the goal is reached, the agent is 

respawned for a new start location and must return to the goal. 

The episode terminates when a fixed amount of time expires, 

providing the agent enough time to find the goal several times. 

There are sparse rewards. Apples are worth 1 point, and goals 

are 10 points. In the maze, the goal and fruit locations are fixed, 

and only the agent's start location changes. The image is 

84×84×3 (see Figure 4.b). 

 
(a)A Top-down view of a maze 

 
(b) Images from the agent's egocentric viewpoint 

Figure 4: A first-person 3D maze from the DeepMind Lab [7]. 

The DeepMind Lab simulates an agent finding a goal with an 

RGB-D camera in a first-person 3D maze. An improved deep 

reinforcement learning described in this paper uses depth 

information provided by the environment as the target output of 

supervised learning (see Figure 5). 

The improved method uses a low-resolution variant of the 

depth map by reducing the screen resolution to 4×16 pixels. For 

the classification loss, the depth at each position is discretized 

into eight different bands. Figure 6 shows the learning curves. 

 
Figure 5: Neural network of an improved deep reinforcement learning for the 

maze. 

 
(a)  

 
(b) 
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Figure 6: Learning curves: (a) An improved reinforcement learning without the 

label reward, is compared with the Nav A3C algorithm. (b) An improved deep 

reinforcement learning is compared with the improved method without the 

label reward. 

B. Wafer detection simulator 

This paper also considers a simple 12×12 wafer detection 

simulator (see Figure 7) from the IRIS Lab, which provides an 

agent with sparse rewards. It attempts to find the shortest path 

of wafer detection. The action space is discrete, comprising 24 

actions: the agent can move in 8 directions, and the maximum 

amount of movement for each direction is 3. Undetected chips 

in the wafer are represented by water blue. The upper limit of 

detection for each chip is 15. The number of detection for each 

chip is represented by a grayscale divided into 15 levels. The 

reward is achieved in this environment by the reward function: 

 

 
(11) 

After each action, the amount of detection for chips detected by 

the current action is d, and the number of those chips is  

The episode terminates when a fixed number of actions are 

taken, providing the agent enough time to detect the wafer 

several times. The image is 36×36×3 (see Figure 7). 

 
Figure 7: A simple 12×12 wafer detection simulator from the IRIS Lab. 

The 12×12 wafer detection simulator from the IRIS Lab 

provides the amount of detection for each chip. An improved 

deep reinforcement learning described in this paper (see Figure 

8) uses the amount of detection for each chip as the target 

output of supervised learning. The improved method reduces 

the amount of information to 8 values and considers a 

classification loss, where the amount of detection for each chip 

is discretized into ten different bands. Figure 9 shows the 

learning curves. 

 
Figure 8: Neural network of an improved deep reinforcement learning for the 
wafer detection simulator. 

 
Figure 9: Learning curves: An improved reinforcement learning is compared 
with the Nav A3C algorithm. 

V. CONCLUSION 

The improved deep reinforcement learning described in this 

paper encourages an agent to explore in an environment with 

sparse rewards. 

In section 4, this paper considers a first-person 3D maze from 

the DeepMind Lab, which provides an agent with sparse 

rewards, as a training environment for the agent. First, the 

improved method without the label reward is compared with 

the Nav A3C algorithm (see Figure 6.a). In the absence of the 

label reward, the improved method uses supervised learning to 

improve the agent's performance in the early stage significantly. 

Second, an improved deep reinforcement learning is compared 

with the improved method without the label reward (see Figure 

6.b). After adding the label reward, it is evident that the agent 

tends to explore the environment in the early stage. However, 

the agent finally learns a better policy. 

Besides, even in an environment with denser rewards, the 

improved deep reinforcement learning described in this paper 

still encourages an agent to explore. This paper also considers a 

simple 12×12 wafer detection simulator from the IRIS Lab, 

which provides an agent with denser rewards, as a training 

environment for the agent. An improved reinforcement learning 

is compared with the Nav A3C algorithm (see Figure 9). 

Because the reward function described in this paper is not 

well-designed, it results in a policy learned by the agent that is 

not the best solution. However, the agent can still explore 

through the improved method, and finally, take a better policy. 
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