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Abstract—Work pieces usually have burrs after machining 
processes. The burrs could result in a potential dimension error 
and they may cause the impression of following assembly 
processes. Therefore, the deburring process is very important for 
casting parts to guarantee the dimension accuracy and surface 
quality. Many factories still rely on the manual deburring for 
achieving a suitable quality of product. The reason is because the 
deburring machine can handle a specified part and it is not 
feasible for various parts. The manual deburring is highly 
time-consuming with danger. In addition, the resulting dust and 
physical demands ultimately represent a health risk. Most typical 
deburring techniques are applied for the fixed part and it is not 
easy to be automated. They require many setup processes as 
different positions are requested deburring for different parts. To 
improve the surface treatment of deburring parts, how to 
automate the deburring operation is a important issue in the 
development of manufacturing. In this study, to detect the burring 
size and position of a casting, a Realsense F200 camera is used to 
capture the 3D geometric model to establish a point cloud model. 
Then, a coherent point drift algorithm based on a variable ROI is 
proposed to detect burring dimension and location. After that, an 
automated deburring system is developed by using an UR3 robot 
integrated with the self-developed automatic optical inspection 
system. 

 Index Terms—point cloud, 3D vision, Coherent point drift 
algorithm 

I. INTRODUCTION 

obotics research focuses on trying to solve the problem of 
uncertainty, one of which is the manipulation of objects in 

3D space. The 3D vision of robotics has been a main topic of 
discussion in recent years and scientists around the world have 
added different vision systems to their robots in order to 
improve the ability of robots to perform tasks. [1] On one hand, 
the function of the robot vision system focuses on the 
measurement of the pose of the workpiece to guide the robot 
motion mainly. On the other hand, the robot vision system is 
used for the three-dimensional attitude measurement of the 
workpiece. Lindner et al. proposed a novel robot vision system 
that uses dynamic laser triangulation to determine the 
three-dimensional (3D) coordinates of the observed object. [2] 
According to the classification task of the assembly line, Qin et 
al. designed the industrial robot classification system based on 
the 3D vision to identify the workpiece and calculate its center 
coordinate with respect to the robot frame; then the robot can 
accurately grasp and classify artifacts based on the measurement 
of the vision system. The robot vision system is usually used to 
guide the robot motion. Šuligoj et al. proposed a method of 
relative displacement of the framework and described a 
multi-robot co-working application that can be used to track, 
process, or process operations using stereoscopic vision in an 

 
 

unstructured laboratory environment. One robot arm carries a 
stereovision camera system, and the other has a marker for 
navigation between the robot and the workpiece. Although this 
approach has served its purpose, overall hardware costs are still 
relatively high [3]. In order to improve the efficiency in the 
production of shoes using robots, Wu et al. proposed a shoe 
slot’s tracking method based on robotic system [4]. The 
proposed method is mainly to simplify feature extraction by 
projecting geometric information from 3D to 2D, so as to 
identify the longest groove feature line in two-dimensional 
space. When a two-dimensional slot line is detected, it is 
projected into three-dimensional space to identify the feature 
point set of the 3D slot [5,6]. In this paper, an automatic 
detection of a casting’s burr is studied using the 3D point cloud 
technology. The burr detection is performed to compare the 
golden sample of a STL model from the measured point could 
models using the F200 camera. The coherent point drift (CPD) 
algorithm and iterative closest point (ICP) algorithm are used to 
implement the proposed method. 

II.  SYSTEM DESCRIPTION 

In this study, a seven DOF redundant robot was developed 
and used in experiments and simulations. As shown in Figure 1, 
this robotic arm consists of two control blocks. There are three 
subsystems; the first one is a six DOF UR3 robot, the second is a 
rotating stage that make the robot arm rotate, and the final one is 
the 3D vision system (as shown in Fig. 1 and Table 1). The 
rotational base stage is actuated by a servo motor (OMRON 1S) 
and a harmonic drive mechanism (Harmonic drive, 
CSF-32-100-2A-GR). A real-time controller (OMON NX1P) is 
used to integrate the UR3 with the rotational stage and this 
controller is communicated with a PC via the EtherCAT 
interface. The 6th joint of the UR3 can rotate infinitely and the 
other joints can rotate 360 degrees; each joint has a force sensing 
device to ensure operation safety. 

The kinematic model of the robot is presented using 

Denavit-Hartenberg (DH) convention. The set of four 

parameters for the transformation between two successive 

frames are denoted by αi, ai,θi, di. As shown in Fig. 2, the UR3 

robot is installed on a T-shape struture. According to the 

coordinate XYZ0 defined in Fig. 2, Table 2 describes the DH 

parameters of the proposed robot. The first link is actuated by 

the base servo motor via the harmonic drive mechanism and the 

UR3 robot provide the next six degrees of freedom (DOFs). 

Although the robot can be equipped with a gripper attached to 

its flange, the motion planning with obstacle avoidance is 

considered without considering the gripper in this study. The 

forward kinematic relation is used to determine the position and 

orientation of the end effector given the vector of joint variables. 
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Then the position and orientation of the end-effector in the 

ground frame are given by  

 (1) 

, where is a coordinate for a given point is expressed 

relative to the frame 7;  is the ith transformation of 

coordinate according to the DH table;  is the position and 

orientation of the end-effector in the inertial frame. If 

 is substituted into Eq. (1), then we have the 

forward kinematic function of the robot as follows. 

                   (2) 

, where (x,y,z) represents the coordinate of the flange center 

with respect to the world frame. 

 

Fig. 1 Proposed system with 3D vision for deburring 
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Fig. 2 

TABLE I 

SPEC LIST OF HARDWARE AND EQUIPMENT USED IN THIS STUDY 

Item Type Specification 

F200 RGBD camera Depth resolution 640 x 480 working 

distance 0.2m~1.2m 
UR3 6-axis robotic arm Six-DOF/ Payload 3kg/ Repeat 

accuracy 0.1 mm 

 
Table II DH table of the proposed robot. 

Joint  
 

ai(mm) 
 

di(mm) 

J1 0 -280 -90 0 

J2 135 0.0 0.0 118.0 

J3 90 0.0 180.0 0.0 

J4 0.0 243.7 0.0 0.0 

J5 0.0 213.0 0.0 110.4 

J6 -90 0.0 0.0 83.4 

J7 90 0.0 180.0 82.4 

The motion planning of the proposed robot is developed in 
MATLAB; then, the motion planning results were transmitted to 
the NX1P controller (for the rotation stage) and UR3 controller 
using the C# code via Ethernet. Because the proposed robotic 
arm has one redundancy to make the motion planning with 
flexibility, we can switch the motion in the deburring task 
between multiple poses with using the redundancy. To obtain 
the 3D information of the deburred object, we installed the 
Realsense F200 camera at the end of the arm in order to scan the 
object to be tested through the action of the arm. The camera's 
real-time scanning information is acquired and integrated using 
the DF_3DScan GUI. The developed scanning program can 
extract a complete and accurate output data set with respect to 
single-shot stereo images, which are used by feature matching 
and image processing. We developed a C# code to control the 
robotic motion with a series of paths to capture and calculate the 
3D images of the workpiece. After obtaining the orientation of 
the workpiece, the burr areas are compared by the proposed 
CPD algorithm to obtain the deburring area. Figure 3 shows the 
five positions for scanning the 3D profiles of the deburred 
workpiece. At the first step, the 3D profile of the normal 
workpiece is captured using Realsense F200 camera. Then, the 
five data scanning data sets are integrated into a model of 3D 
point cloud as the golden model (as shown in Fig. 4). 

 

Fig. 3 Scanning motion of the deburring process 
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Fig. 4 The good sample with no burr 

III. MAIN RESULTS 

A. Point cloud matching based on CPD algorithm 

In order to match the captured 3D cloud image with the 
golden sample, a CPD algorithm with weighting parameters is 
used as the main algorithm for matching of point cloud model. 
The CPD algorithm was proposed by Myronenko in 2005 and 
was improved in 2010 [7]. The CPD algorithm considers point 
cloud matching as an estimate of the probability density. CPD 
uses the Gaussian mixture model (GMM) to solve the matching 
relationship. There are two main advantages of CPD, which are 
setting with the suitable weighting parameter can improve the 
anti-noise ability for matching and iterations of CPD algorithm 
can improve its performance of model matching.  

The CPD algorithm considers point cloud matching as 
an estimate of the probability density. CPD uses the Gaussian 
mixture model (GMM) to solve the registration relationship. If  

T

M D 1 MY (y , , y )  represents the point cloud of the good part 

with using a vector containing the coordinates of the N 
boundary points, where correspondences are represented by a 
Gaussian Mixture Model (GMM) and target points are 
considered as the centers of the Gaussian mixtures and D 
represents the dimension. If the measured point cloud set of the 
workpiece using the Realsense F200 camera is denoted by 

T

N D 1 NX (x , , x ) 
, then the registration process of the CPD 

algorithm is like the Expectation-Maximization (EM) algorithm 
to estimate correspondences in the E-step and to update the 
trans-formation in the M-step [8]. The EM algorithm is an 
iterative method to find maximum a posteriori or maximum 
likelihood estimates of parameters in statistical models using 
Bayes theorem. The basic EM Paradigm of the CPD can be 
described as follows. 

(1) Initialization: Given initial guess of registration to compute 
the variance of distances between all possible point pairs. Then, 
the independent isotropic Gaussian distribution is assumed for 
matches and a uniform distribution for outliers [8]. 

(2) In the E-step, the likelihood function is calculated using the 
current estimates of parameters. Based on current variance, the 
CPD algorithm computes probability of matches of all possible 
point pairs to decide what are outliers 

(3) In the M-step, the parameters maximizing the likelihood 
function are calculated and the process iterates until 
convergence. In order to solve correspondence problem, the 
CPD algorithm computes new transformation that increases 
probability and update probabilities based on registration.  

(4) The target points are considered as the centroids of a GMM 
and they are fitted to the measured point cloud set of the 
workpiece through maximizing the likelihood function of the 
reference points. The E-step is used to find the maximum 
likelihood function, which is calculated using the current 
positions of the target points. The M-step is used to find the new 
positions of the centers that maximize the likelihood function 
are estimated. This algorithm is guaranteed to converge from 
almost any initial condition [9]. 

B. Burr detection with the CPD algorithm 

Table 3 describes the notations and meanings of the variables 
used in this article. To detect the burr of the part, the measured 
GMM model of  the measured workpiece (

N DX 
) is computed to 

match the point cloud set 
M DY 

(the GMM centroid of the good 

part) using the rigid point set registration[7]. Then, we can find 
the different point set between the measured part and the good 
part to find the position of the burr.  The proposed process is 
separated into three stages to reduce the scope of searching burr 
gradually and the computing process is shown in Figure 5.   

 

Stage 1: the CPD algorithm is performed for 20 iterations to 
match the measured point could model and the GMM of the 
good part. Figure 6 shows the initial relation and the final 
relation using the CPD for the two models. After the first stage, 

we can find the transformation matrix 1T , which describes the 

relation between the point cloud models 
N DX 

 and 
M DY 

. From 

the result in Figure 5, it shows that there exists the location error 
after the first stage of CPD computation.  

Stage 2: To speed up the computation time of registration, we 
define a region of interest (ROI) of the GMM model to reduce 
the matching error. If 

1T (Y)  describes the transformation of the 

first stage, then the filter of the fixed point cloud 
N DX 

 is 

defined as follows.  

1 x,y N D 1 x,y1.25min T (Y ) X 1.25max T (Y )             (1) 

, where 
1 x,ymin T (Y )  is the minimal value of the first 

transformation 
1T (Y)  and 

1 x,ymax T (Y )  is the minimal value of 

the first transformation 
1T (Y)  of the volume in x and y direction. 

After reducing the set 
N DX 

 by the ROI filter, we can find the 

second transformation matrix 2T . The CPD algorithm is 

performed for 20 iterations to match the measured point could 
model and the second GMM.  

Stage 3: To increase the accuracy of the location for the CPD 
computation, we define a region of interest (ROI) of the GMM 
model for the third pattern matching process. The filter of the 
fixed point cloud 

N DX 
 for the third stage is defined as follows. 

2 1 x,y N D 2 1 x,ymin T T (Y ) X max T T (Y )                (2) 

Figure 7 shows the results using the CPD with different ROI 
for the above three stages. The results show that the proposed 
CPD method with various ROI can make the measured point 
cloud set match the GMM of the good part efficiently.  

After three stages of CPD computations, we can make the 
GMM model of the good part be allocated to the measured 3D 
could data as shown in Fig. 8. Figure 9 shows the difference 
between the golden sample and the measured results, where the 
green part represents the model of the good sample and the red is 
the actual measured point cloud set obtained by the proposed 
robotic measurement system. In order to reduce the computation 
loading for the curved surface on the left in Fig. 10, we apply the 
proposed method using the small ROI before calculating the 
amount of burr.  The burr’s location can be computed according 
to the distance between the two point-cloud sets and the 
different areas are highlighted in Figure 11. In Figure 11, the 
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blue defect points are the location with a distance greater than 
0.6mm.  Therefore, the burr location can be found for the robotic 
deburring task.  

 TABLE III LIST OF NOTATIONS 

Notations Meanings 

D 
N, M 

T

N D 1 NX (x ,..., x )   

dimension of the point sets 
number of points in the point sets 

the first point set (the data points) 

T

M D 1 MY (y ,..., y )   
the second point set (the GMM 

centroids) 

n 1T ...T (Y)  multiple transformation T applied to Y 

 

 

Fig. 5 Flow chart of the CPD algorithm with various ROI 

 

(a) Initial position of the two models 

 

(b) Matching results of the proposed method for 20 iterations 

Fig. 6 Matching result of the CPD method in Stage 1 

 

 

Fig. 7 Results using the CPD iteration with various ROI for  

three stages 

 

Fig. 8 The final result after three stages using the CPD method 

 

 

Fig. 9 Comparison between the golden sample and the measured  
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Fig. 10 Comparison between the golden sample and the 
measured from the Top view 

  

Fig. 11 Registration of the burr region using the proposed 
method 

 

IV. CASE STUDIES AND DISCUSSION  

To compare the results using the ICP algorithm with the 

CPD algorithm, we divide the four-stage point set matching in 

Fig.5 into two stages, which the first stage is used to discuss the 

accuracy of location and the second is used for the calculation of 

the burrs. The purpose of Stages 1~3 in Section 3 is used to 

locate the measured pattern on the surface of the workpiece 

quickly. The matching point set used at this time is 

down-sampled to improve computing efficiency. After 

positioning through the down-sampled point set, the positioning 

result is output to the right block of Fig. 5 for detailed error 

calculation. In Figure 5, each of the three stages of positioning 

takes 20 iterations, a total of 60 iterations. After 60 iterations, 

the last 20 detailed iterations are performed to calculate the 

calculation of the burr points. The overall process costs a total of 

80 iterations.  

The specifications of the computer used for this experiment 

are CPU: Intel(R)Xeon(R)CPU X5647 2.93GHz, and memory: 

DDR3 72GB. To compare the root mean square value of the 

Euclidean distance between the point set and the point set after 

each matching stage and the calculation time of each stage using 

the different algorithms, four cases are designed to compare the 

computation performance of the different algorithms.   

The first case uses the CPD algorithm for obtaining the 

burr location in Stage 1-3 and the CPD algorithm is used for the 

detailed iteration in the last stage. Table IV shows the distance 

error and computation time for the (CPD/CPD) method. The 

second case uses the ICP algorithm for obtaining the burr 

location in Stage 1-3 and the ICP algorithm is used for the 

detailed iteration in the last stage. Table V shows the distance 

error and computation time for the (ICP/ICP) method. The third 

case uses the ICP algorithm for obtaining the burr location in 

Stage 1-3 and the CPD algorithm is used for the detailed 

iteration in the last stage. Table VI shows the distance error and 

computation time for the (ICP/CPD) method. The fourth case 

uses the CPD algorithm for obtaining the burr location in Stage 

1-3 and the ICP algorithm is used for the detailed iteration in the 

last stage. Table VII shows the distance error and computation 

time for the (CPD/ICP). 

From the experimental results of Table IV, it can be seen 

that as the positioning ROI of each stage shrinks, the RMS error 

between the two point sets is gradually reduced. According to 

the calculation time for Stage 1-3 (60 iteration), the iteration 

time of each stage is significantly reduced if the matching 

method with various ROI is achieved. Besides of reducing the 

calculation time, the distance error of matching two models is 

also decreased and the location of burr zone can be found 

finally. 

With comparing Table IV and Table V, if matching error is 

concerned, the ICP method has the smaller RMS error than the 

CPD in the first and second stages, but the CPD has the smaller 

RMS error than the ICP in the third stage. Based on the purpose 

of looking for burrs, it is necessary to reduce the iteration error 

as much as possible when the two point sets are partially 

different. In this case, the probability-based CPD algorithm is 

better than the conventional ICP algorithm. However, according 

to the computation time of the fourth stage, the CPD algorithms 

need more time than the ICP algorithms. If the computation time 

of the CPD algorithm is acceptable, the proposed CPD method 

with multiple stages using different ROI zones have the ability 

to find the burr location for the robotic deburring tasks. 

 

TABLE IV 
METHOD CPD/CPD 

Method 

CPD 
/CPD 

Iteration

0-20  

Iteration 

20-40  

Iteration 

40-60  

Iteration 

60-80  

distance 

error 
(mm) 

41.936 6.774 1.826 0.677 

Time 

(sec) 
0.382 0.081 0.083 2.238 

 

TABLE V 

METHOD ICP/ICP 

Method 

ICP 
/ICP 

Iteration

0-20  

Iteration 

20-40  

Iteration 

40-60  

Iteration 

60-80  

distance 

error 
(mm) 

2.998 2.415 2.240 1.086 

Time 

(sec) 
0.287 0.044 0.026 0.055 

TABLE VI 

METHOD ICP/CPD 

Method 

ICP 

/CPD 

Iteration
0-20  

Iteration 
20-40  

Iteration 
40-60  

Iteration 
60-80  

distance 
error 

(mm) 

2.998 2.415 2.240 0.615 

Time 
(sec) 

0.260 0.042 0.025 2.208 
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TABLE VII 

METHOD CPD/ICP 

Method 
CPD 

/ICP 

Iteration

0-20  

Iteration 

20-40  

Iteration 

40-60  

Iteration 

60-80  

distance 
error 

(mm) 

41.936 6.774 1.826 0.681 

Time 
(sec) 

0.378 0.082 0.083 0.115 

 

 
 

V. CONCLUSION 

  This paper proposes a point cloud matching method with 

dynamic ROI area to search for defects in the workpiece. It can 

gradually reduce the root mean square error of iterative 

calculation without manually adjusting the weight value. 

Dynamic ROI makes it tolerant of small deviations in workpiece 

processing. With comparing the ICP algorithm with the CPD 

algorithm, the point cloud set matching are discussed in four 

case studies. With comparing Table IV and Table V, if matching 

error is concerned, the ICP method has the smaller RMS error 

than the CPD in the first and second stages, but the CPD has the 

smaller RMS error than the ICP in the third stage and the final 

stage. However, according to the computation time of the fourth 

stage, the CPD algorithms need more time than the ICP 

algorithms. If the computation time of the CPD algorithm is 

acceptable, the proposed CPD method with multiple stages 

using different ROI zones have the ability to find the burr 

location. Therefore, the proposed method can locate the burr 

zone of the metal part for the robotic deburring tasks. 
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