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Abstract—This paper introduces a synchronous dual-arm 
manipulation with obstacle avoidance trajectory planning by an 
adult-size humanoid robot. In this regard, we propose a high 
precision 3D object coordinate tracking using LiDAR point cloud 
data and adopting Gaussian distribution into robot manipulation 
trajectory planning. We derived our 3D object detection into three 
methods included auto K-means clustering, deep learning object 
classification, and convex hull localization. Therefore, a 
lightweight 3D object classification based on a convolutional 
neural network (CNN) has been proposed that reached 91% 
accuracy with 0.34ms inference time on CPU. In empirical 
experiments, the Gaussian manipulation trajectory planning is 
applied adult-sized dual-arm robot, which shows efficient object 
placement with obstacle avoidance. 

 Index Terms—3D perception, deep learning, manipulation, 
humanoid robot  

I. INTRODUCTION 

bject placement problem is the most interesting 

manipulation problem in robots with arm and it has been 

utilized to tackle a variety of problems. Therefore, the optimal 

trajectory planning for pick and placement is a critical issue to 

be investigated by single-arm robots. There are numerous 

industrial oriented applications and several famous 

manipulation competitions as the benchmark for single-arm 

robot [1]. Those applications represent object manipulation 

importance, which in the last decade many solutions have been 

proposed [2]. 

Unlike the single-arm manipulation robot, a dual-arm 

manipulation robot is more complex. This complexity is 

because of the required synchronization procedure in object 

grasping and placement with dual-arm manipulators. In this 

regard, different items should be considered such as two arms 

collision and amount of torque applied on the dual-arm object 

grasping. Therefore, the dual-arm configuration is needed for 

complex operations and can be useful for the load sharing of a 

big or heavy object. Recently, there have been many research 

studies on dual-arm manipulations. 

In [3], authors introduced a manipulation planning of 

dual-arm industrial manipulators (HiroNX) to integrate grasp 

and object placement planner. Manipulation planning in this 

work presented transferring a simple solid object from one to the 

other hand as a sequential task by using a transit-transfer path. In 

[4], the authors used a dual-arm robot for specific applications in 

harvesting tomato using binocular vision and hand-eye 
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coordination system. The dual-arm robot system implemented 

in this work is a cooperative work, where one arm grasps the 

tomatoes, and the other arm cut the tomatoes. In [5], the authors 

designed an anthropomorphic, compliant, lightweight dual-arm 

for aerial manipulation. They demonstrated a high accuracy 

visual servoing of the combination dual-arm with a hexarotor 

drone platform that capable to grasp a lightweight object with 

the provided object grasping point. In [6], the authors presented 

dual-arm compliance control coordination to solve the 

undetermined force balance for grasping objects. They used a 

master-slave force control strategy, where the trajectory and 

operational force of the slave arm can be calculated through a 

dynamic force balance equation from master arm forces input. 

Most previous literature studies addressed the dual-arm 

manipulation problem as a sequential task or they just 

considered object grasping and object placement as a separate 

study. In [2], the authors presented an extensive survey for 

dual-arm manipulation. They concluded that dual-arm 

manipulations can be divided into the un-coordinated 

(asynchronous) task and coordinated (synchronous) task. 

Accordingly, in existing methods, most of the study in literature 

assumed that the grasping objects tasks are required using a 

special robot hand or gripper. 

Motivated by shortcomings in stated studies, in this paper, 

we introduce a heuristic based approach using 3D point clouds 

perception to deal with synchronous dual-arm object placement 

that considers obstacle avoidance in adult-sized humanoid robot 

arms. Moreover, we use a human-like robot hand to generalize 

for many different types of object shape. Therefore, the grasping 

object and trajectory planning task is performed in 

high-dimensional (3D) coordinate system. 

In general, the main contributions of the paper are as follows. 

(i) Proposing a light-weight and real-time two-stage 3D object 

detection based on point clouds data. (ii) Proposing a Gaussian 

trajectory for motion planning. (iii) Implementing the proposed 

algorithm on the real-robot with dual-arm synchronize 

manipulation including obstacle avoidance. 

The rest of this paper is organized as follows. Section II 

presents the system architecture of the THORMANG-Bear 

adult-sized humanoid robot platform. Section III describes the 

proposed methods with two algorithms in detail. Section IV 

provides the experimental result of the proposed method on the 

dual-arms humanoid robot. Finally, Section V concludes and 

discusses the future research of the paper. 

II. SYSTEM ARCHITECTURE 

In this section, the proposed system architecture details for 

an adult-sized humanoid robot to accomplish the manipulation 

task is derived. 
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A. THORMANG-Bear Robot 

We used a modified upper body of the THORMANG 

humanoid robot platform named THORMANG-Bear. The 

main modification was applied on the robot’s hands, as the 

original robot used gripper, we replaced it with Seed Robotics 

dexterous robot hand. Also, we replaced its camera with a 

wide-ranging field of view web camera Logitech C930E.  

 
(a) (b) (c) 

Fig. 1. The modified upper-body of THORMANG3 platform (a) 

THORMANG-Bear robot (b) Right arm URDF and (c) Kinematic chains. 

The THORMANG-Bear robot has 27 Degree of Freedom 

(DOF) in total: 2 DOF on the head, 1 DOF on the torso, and 12 

DOF on each arm. It equipped with two minicomputers for 

motion and perception controls, one mono-vision camera, and 

one LiDAR scanner.  

B. Forward and Inverse Kinematics 

Kinematics plays an important role in humanoid robot 

development for different applications to derive a mechanism 

of motion [7], especially for manipulation tasks. We used the 

Unified Robot Description Format (URDF) for representing 

kinematics and dynamic model of the robot. URDF in many 

respects is similar to the Denavit-Hartenberg convention but 

with significant additional enhancement 0(b). Therefore, 

formulating the humanoid robot kinematic can be divided into 

forwarding kinematics and inverse kinematics. 

Forward Kinematics (FK) refers to calculate the position 

and orientation of the end-effector given by a set of joint 

configurations. Solving FK problems is more straightforward 

and there is no complexity to derive the equations. Conversely, 

Inverse Kinematics (IK) calculates a set of joint variables to 

generate the end effector at the desired position.  Solving IK 

solutions is more complex due to the position and orientation of 

a link and the joint angles humanoid robot are represented by 

nonlinear equations.  

The most typical way to compute the IK solution from a 

joint link constrained is based on the numerical approach. 

Therefore, one of the famous open-source IK solvers uses 

Jacobian Pseudo Inverse (numerical method) to derive the 

relationship between the position and rotation of a link and joint 

angles into linear equations as Orocos Kinematic Dynamic 

Library (KDL) [8]. This approach could give IK and FK 

solutions based on the kinematic chain rule (URDF). 0(c) 

illustrates the kinematic chains of the right arm 

THORMANG-Bear robot as an example. 

III. PROPOSED METHOD 

In this section, the design of the proposed algorithm to solve 

synchronous dual-arm manipulation are deliberate into (i) 3D 

object detection and (ii) trajectory planning. Therefore, in 0 we 

illustrated the block diagram of the proposed method. Each step 

of the shown block diagram in 0, will be described individually 

in the rest of this section. 

A. 3D Object Detection 

Point clouds data (PCD) refers to a set of points in 

three-dimensional geometric coordinates that can represent 

objects or space. These points represent the X, Y, and Z in 

cartesian coordinates. In this regard, the robot pelvis link is 

used as an origin coordinates system for the processing 

reference. Therefore, we acquired PCD by using the LiDAR 

scanner from the robot. As a result, those PCD were utilized as 

the main robot vision for 3D object detection in this paper. 
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Fig. 2. The block diagram of the proposed algorithm dual-arm synchronous 

manipulation. 

Recently, the most famous algorithm of the Convolutional 

Neural Network (CNN) has successfully addressed the 3D 

object detection problem in a comprehensive survey provided 

by [9]. However, in those implementations, employing the 

CNN algorithm in 3D data is still facing some drawbacks such 

as the requirement of a high computing platform or graphic 

processing unit (GPU) to achieve real-time performance. 

Therefore, in this paper, we propose a lightweight 3D object 

detection to tackle this problem that can run on the central 

processing unit (CPU). In 0, we illustrated the general 

flowchart of our proposed object detection algorithm. 

Start

Clustering Deep Learning      
3D Classification

Object Name

Yes

LiDAR
Point Clouds Voxel Grid Filter

3D Object 
Localization

End

Outlier Removal 
Filter

Objects

No

A

A

Auto Clustering Object LocalizationObject Classification

 

Fig. 3. Flowchart of the proposed two-stage 3D object detection. 
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Our proposed 3D object detection algorithm is consisting of 

a two-stage process. In the first stage, the LiDAR PCD is 

obtained from the robot head scanning process where it 

depicted in 0(a). Then, we apply a heuristic algorithm based on 

Euclidean distance to select point clouds located on robot 

workspace only as shown in 0(b). Next, those data are 

processed into the K-means clustering algorithm [10] to 

segment objects with the table. In the second stage, as there is 

no fixed amount number of point clouds in different scans form 

LiDAR we utilized a Voxel Grid (VG) filter to down sample the 

point cloud data into fixed shape occupancy grid [11]. As a 

result, a fixed shape binary voxel grid shape is feed into our 

proposed deep learning algorithm for the proposed 3D 

classifications algorithm to predict the objects' class. 

In the second stage, the segmented objects from the 

K-means clustering result are also fed into the object 

localization process. In this step, the set of point clouds is 

applied to a statistical outlier removal filter to remove noise 

points from the cluttered environment. Then, our proposed 

heuristic 3D object localization algorithm takes the filtered data 

to calculate the object position. Finally, the output from the 3D 

object classification with 3D object localization is merged to 

produce a complete 3D object detection procedure. So, to 

describe our proposed two-stage 3D object detection in detail, 

we explain it in three sub-section in the following. 

1) Auto Clustering 

Clustering points into sensible grouping are the key points 

of the pre-processing to achieve 3D point cloud object detection. 

Therefore, we use K-means algorithm as feature extraction to 

clustering the PCD located in the robot workspace. The elbow 

method is one of the heuristic methods by iterating all 

possible k candidates into the auto clustering problem [12]. We 

use the inertia attribute to identify the sum of squared error 

(SSE) distances of k samples to the nearest cluster center. As k  

increases, the Sum Squared Error (SSE) distance tends to 

decrease towards zero. Then, by visualizing the SSE value with 

a line chart for each k candidate. When the chart looks like an 

arm, the “elbow” on the arm is the k  parameter do define the 

total number of clusters in the given point cloud data. 

2) Object Classification 

As mentioned earlier, deep learning (DL) models have 

required a fixed shape of input data. In 0, it shows the voxel 

grid filter process to down sample the result from K-means 

clustered objects. The voxel data represent the fixed size of the 

discretized binary voxel occupancy grid at 16×16×16, where 

each voxel has a binary state of occupied or unoccupied. 

 
(a) (b) (c) 

Fig. 4. The example of down-sample point cloud data using the voxel grid 

method from (a) raw data goes to (b) filtered workspace (c) and voxelized. 

In this paper, a CNN classifier is proposed to predict the 

class of the down-sample voxel grid point clouds. In general, a 

CNN classifier consists of a convolution layer, a pooling layer, 

and a fully connected (FC) layer. Our CNN architecture is 

inspired by the famous 3D shape recognition VoxNet [13], that 

integrating a volumetric occupancy grid representation using 

3D CNN. The detail of the proposed CNN network architecture 

is shown in 0. Our proposed CNN-classifier model takes the 

input of the volumetric occupancy grid 16 × 16 × 16. This 

model uses 3D convolutional layers with a total of 3 layers. 

These layers use 16 filters of size 3, with stride 1 and Rectified 

Linear Unit (ReLU) activation functions followed by Batch 

Normalization (BN) along with two max-polling layers. The 

ReLU layer works as a sub-linear function that will output the 

input directly if it is positive, otherwise, it will be resulting zero. 

Then, the BN normalizes the output of a previous activation 

layer by subtracting the batch mean and dividing it with the 

batch standard deviation. Whereas, the pooling layer works as a 

subsampling layer to selects a maximum value from the 

previous layer with specific window size and stride. Finally, 

there are two fully connected layers at the end layers of the 

model, where the final layers use the SoftMax function to 

normalize the classifier output prediction. During the training, 

we utilized Adam optimizer with a learning rate of 0.0005 for 

updating the model weights. 

1 × 16 × 16 × 16
16 × 14 × 14 × 14

4

1024

16 × 3 × 3 × 316 × 7 × 7 × 7

FC

Class
Conv(16,3,1) / ReLU / 

BN / Max-Pool(2,2)

Conv(16,3,1) / 

ReLU / BN / 
Conv(32,3,1) / ReLU / 

BN / Max-Pool(2,2)

Softmax

 

Fig. 5. The proposed 3D classification of deep learning models. 

3) Object Localization 

In general, LiDAR scanners generate PCD based on the 

range of point densities. During the scanning process, there is a 

possibility of measurement error or occlusion that leads to 

sparse outlier data. Those outlier data are critical since they can 

clutter object detection results (false or corrupted result). 

Therefore, we used a statistical outlier removal (SOR) filter to 

tackle those problems [11]. SOR filter uses point neighborhood 

statistics to filter outlier data. This filter calculates the 

distribution of neighbor’s point distances in the given PCD. For 

each point, we compute the mean distance from it to all its 

neighbors. By assuming that the resulted distribution is 

Gaussian with a mean and a standard deviation, all points 

whose mean distances are outside an interval defined by the 

global distances mean and standard deviation can be considered 

as outliers and trimmed from the dataset. 

0 shows our SOR filter implementation in PCD data. To 

simplify the filter process, we implemented a lightweight SOR 

based on a two-dimensional filter. By looking from the top 

view of the clustered 3D PCD drawn in 0(a), we can aim 3D 
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PCD that laying in the single-axis plane shown in 0(b), which is 

represented as 2D PCD. This method is efficient, as we can 

filter the noise point cloud located out of the object without 

losing important information of the object.  

 

  

Fig. 6. Statistical outlier removal filter of point clouds. 

For object localization, we propose a heuristic 3D point 

cloud localization based on the 2D convex hull algorithm. The 

convex hull refers to a method to find the farthest outlier of the 

given set of points. There are many techniques to calculate 

convex hulls. The Quick Hull (QHull) algorithm is one of the 

most efficient methods because of its simplicity and speed [14]. 

It uses a divide and conquer approach similar to the quicksort 

algorithm. Therefore, we utilized convex hull results to define 

the position of extreme points and divided the exterior points 

into four groups bounded by rectangles illustrated in 0. 

 

Convex Hull
X2,Y2

X1,Y1

 
Fig. 7. Convex hull on 2D point clouds. 

As shown in 0. the green dots represent the 4 corner points 

of the rectangle bounding box. With those points, we also can 

aim the rotation of the objects from the slope of rectangle 

midpoints given by (1). 

 2 1

2 1

tan 1
y y

x x


 
   

 
 (1) 

We can obtain the 2D object position and rotation using the 

above-mentioned method. Moreover, we assumed that our 

target object has a solid shape. Therefore, by calculating the 

minimum and maximum height of the object point cloud we 

can match the bounding rectangle in the 3D perspective. 

B. Object Grasping 

Dual-arm synchronization to grasp an object is a significant 

problem to tackle for a humanoid robot. The challenge is 

comprised of identifying the grasping points and synchronous 

movement for both arms. We introduce an efficient algorithm 

to select a grasping point of the object based on 3D PCD. The 

result of object detection is utilized to calculate the grasping 

point and illustrated in 0. 

To calculate the grasping point, we used a geometric 

equation to calculate the middle point from given two points of 

each axis in a three-dimensional plane. 

 1 2 1 2 1 2, ,
2 2 2

x x y y z z
M

   
  
 

 (2) 

Where M , is the middle point for one arm grasping point. 

Therefore, for calculating the dual-arm grasping point, the 

same equation is used to calculate for the other arm. However, 

to allow synchronous grasping, we use an affine transformation 

matrix to offset the reference grasping point for each arm. As a 

result, the robot will synchronize grasp the object with 

additional offset, also concerning the rotation of the object. The 

detailed affine transformation is given by the equation. 

 
' cos sin

' sin cos

x

y

tx x

ty y

 

 

       
        

       
 (3) 

Where  is the new grasping point,  is the object 

rotation,  is the offset distance in the 2D axis. Note that, we 

are not transforming the z axis, we assume the grasping height 

stayed in the middle of the object. 

 
Fig. 8. The coordinates grasping point is represented by a triangular symbol on 

each side (blue triangle for the left arm and green triangle for right arm). 

C. Object Placement 

We maintained synchronous manipulation by referring to 

object width using the Euclidian distance of the left arm and 

right arm grasping points. So, after the robot grasps the object, 

it can move the object to a predefined target location. However, 

using a direct trajectory planner faced an issue when there is an 

obstacle in the trajectory path. Therefore, we propose a 

manipulation trajectory planner adopted from a normal 

distribution graph for obstacle avoidance as shown in the 

following equation.  

 

2
1

21
( )

2

x

f x e





 

 
  

   (4) 

Where  is the mean of distribution or obstacle position, 

 is the standard deviation or obstacle width, and x is the 

Euclidean distance of the trajectory path. Based on the focus of 

this paper, the path avoidance of Gaussian distribution is 

applied only on the z-axis and illustrated in 0. 

 

Fig. 9. The sample of Gaussian distribution plots. 
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IV. EXPERIMENT RESULTS 

To evaluate the performance of the proposed algorithm, 

first, we describe the experimental setup. Then, we conducted 

and evaluated the proposed methods into 3D object detection 

and synchronous dual-arm manipulation trajectory.  

A. Experimental Setup 

All experimental processes are tested using the real 

THORMANG-Bear robot (see Section 錯誤! 找不到參照來

源。). In the robot, we used the Robot Operating System (ROS) 

as the main software architecture. As a result, an additional 

operating computer (OPC) is required to integrate with two 

existing computers inside the robot. OPC acts as the central 

processing to execute the overall proposed algorithm in this 

paper with Intel i7-8750H CPU @ 2.20GHz. 

Our experiments are conducted on the typical box objects 

that are available in daily life with four different shapes and 

illustrated in 0. Moreover, our entire code was implemented 

using ROS with the Python programming language. In this 

regard, the standard Python deep learning library (Keras), point 

cloud library (PCL), and mathematics library (SciPy) were used 

to implement the proposed algorithm. 

 
Fig. 10. Experimental objects. 

B. 3D Object Detection Result 

In this subsection, we divided our two-stage 3D object 

detection into three-part. First, we showed our auto k-means 

clustering. As we mentioned earlier, we use the elbow method 

to choose k  the parameter and drawn the graph result in 0. 

Moreover, we assumed the given point datasets are in 

two-dimensional shown in 0. Therefore, the 2D points are 

obtained from the top perspective of the 3D data. This method 

can reduce computer power, where the K-means algorithm runs 

on lower-dimensional data.  

 

Fig. 11. Auto clustering using the elbow method. 

Auto K-means run the clustering on the elbow method for a 

range of k  values from 1 to 9 and computes an average score 

for each cluster. Therefore, the distortion score is computed by 

the sum of square error distances from each PCD to its assigned 

center. This approach is shown in 0 in which a blue line 

resembles an arm and the “elbow” (the point of inflection on the 

curve) is indicating the underlying model fits the best point. So, 

the “elbow” will be annotated with a dashed vertical line. 

The objective of the elbow algorithm is to find the best k  

parameter to cluster point clouds based on multi-object 

detection. We showed the result of multi-object clustering 

based on k  value selected by the elbow algorithm in 0. In total, 

we use 4 experimental objects shown in 0, where each object is 

segmented by four different colors. 

 

Fig. 12. Clustered point clouds result from the auto k-means algorithm. 

Second, we collected a 1200 PCD dataset based on the 

experimental object show in 0. The key performance to 

evaluate a CNN-classifier model is by looking at loss and 

accuracy value. Therefore, trends of loss value should go down 

to interpret how badly the model in predicting each training 

iteration. In contrast, the accuracy value shows how accurate 

was the model's prediction on each epoch. A higher accuracy 

value is the essence of a classifier model. Moreover, to clarify 

our CNN-classifier model performance, we demonstrated a 

confusion matrix to evaluate the model on the validation dataset. 

So, in 0, we illustrated the result of our classification model in 

terms of loss, accuracy, and confusion matrix respectively. 

0 shows the result of our proposed model is comparable 

with the VoxNet model [13]. As the original VoxNet model use 

volumetric occupancy grid with size 32×32×32, we changed 

into size of 16×16×16. This adjustment is to make an equal 

comparison with our proposed model by using the same size 

input data. Therefore, while the result of those two models is 

equivalent to 90% accuracy and 0.3 in loss value. However, our 

proposed model is superior in terms of the model’s weight size, 

as it only has 0.5 MB of the weight parameter size. This means 

the model only has a 38981 trainable parameter which is lower 

~40% from the adopted VoxNet model. As a result, it achieves 

an inference time of 0.34ms, running on the CPU of our 

experimental computer. 

                           (a)                                                           (b) 
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(c) 

Fig. 13. Multi-object classification model’s performance based on (a) loss, (b) 

accuracy, and (c) confusion matrix. 

In total, 396 validation dataset or (33%) of the collected 

dataset is used to evaluate the confusion matrix. Therefore, as 

shown in flowchart 0, for real-time usage of the clustering, 

results from the K-means algorithm are feed sequentially to our 

3D classification model to detect the object name. 

Triangle

Rectangle

Circle

Elipse

 

Fig. 14. 3D multi-object detection result. 

Third, while the object classification process is running, the 

result from clustering segmentation which is also provided to 

the 3D object localization process parallel. Therefore, by 

calculating the convex of the point clouds, we can draw the 

object localization by the 3D bounding rectangle. Additionally, 

we utilized the result of the bounding box by considering the 

object rotation to determine the object grasping points. 

Wherefore, the width of the object is used for the reference 

parameter in the dual-arm synchronization algorithm. 

Overall, those three stages represent our two-stage 3D 

object detection heuristic algorithm in using point clouds data 

that is based on the K-means clustering, deep learning 3D 

classification, and convex hull localization in 0. 

C. Synchronous Manipulation Trajectory 

In this section, we discuss the result of the experiment in the 

real environment that utilizing a real THORMANG-Bear robot. 

First, we set the object placement target location, then using the 

result of 3D object detection for defining the start point, and 

finally using the obstacle width and location for the  and  

parameter in the given (4) for the synchronous manipulation 

trajectory. The procedure of the proposed trajectory planning is 

shown in 0. 

0 shows our trajectory planning from the starting point in 

, ,  and . Then, we set 

target location by changing only in  axes into 0.5 m. The green 

cylindrical shape in the middle represents an obstacle to avoid 

during object placement trajectory planning, at location 

 with 0.05 m width. Therefore, by taking those defined 

parameters, the gaussian trajectory planning result is the 

carriage in  axes with obstacle height offset of 0.03 m. So, the 

highest peak is located at 0.72 m. 

 
Fig. 15. 3D-plot of the gaussian trajectory planning for obstacle avoidance. 

We illustrated the trajectory planning of the Gaussian 

trajectory with obstacle avoidance in 0. In this regard, first, the 

robot grasps the detected object with both arms, then with using 

gaussian trajectory planning in 0, the synchronous dual-arm 

manipulation moves the object to the predefined target location 

with obstacle avoidance. A brief video of experiments is 

available at shorturl.at/frFJV. 

 
(a) (b) (c) 

Fig. 16. Real-view robot grasping (a), avoiding obstacle (b), and object 

placement. 

V. CONCLUSIONS 

In this paper, we presented synchronous dual-arm 

manipulation methods in which we used a modified upper body 

of THORMANG3 robot to place an object with obstacle 

avoidance. The proposed method consists of two algorithms. 

First, on the light-weight two stages 3D object detection 

includes point clouds auto clustering, deep-learning object 

classification, and convex hull localization is presented. Second, 

a heuristic synchronous dual-arm manipulation based on the 

Gaussian distribution to calculate the trajectory for obstacle 

avoidance is proposed. In the experiments results, the 3D object 

classification algorithm was able to detect four different shape 

objects that can run on CPU reached 91% accuracy, with 

0.34ms inference time. Moreover, the manipulation trajectory 

adopted from Gaussian distribution avoids obstacles in the 

single-axis successfully. The presented method can easily 

extend to multi-dimensional. In the future work multi objects 

obstacle avoidance can be taken into consideration. 
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