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Abstract— Warehouse automation is greatly beneficial in 
improving a wide variety of industries. However, the prevalent 
automation methods apply in industrial fields where systems are 
difficult to initialize and it is hard to recognize the system status. 
In this work, a 3D visual-guided robot arm system with marker 
detection and object detection is proposed. There are two main 
parts in this study, including system initialization and validation 
using marker detection and storage and retrieval using magazine 
detection. The system is composed of two cameras for the stereo 
system, a robot arm, and computer vision algorithms to form the 
system for detecting, classifying, and picking objects by a robot 
arm. Besides, magazines that can store items such as nuts and bolts 
and a frame that can store magazines into its grids are used. Firstly, 
the system is initialized by marker detection method which detects 
marker positions on a frame and saves frame and grid positions 
where the robot arm can approach to store or retrieve magazines. 
After that, using contour detection of deep learning method and 
Hough line transform, the correct magazine center position in a 
grid can be estimated. If an impact occurs such as an earthquake, 
the warehouse system must check the status to see if the system can 
be run perfectly. This study introduces solutions which avoid the 
above problem. The work also shows an error under 1mm between 
magazine position and grid position. 

 Index Terms— Robot arm, storing and retrieving, marker 
detection, contour segmentation, deep learning 

I. INTRODUCTION 

It is widely acknowledged that automation technologies have 
played a crucial role in industrial fields. A traditional warehouse 
automation system [1] mainly replaces manpower, reduces 
working space, and improves working accuracy using precise 
robot arms.  

With the rapid development of the automation system, the 
robot arm and the machine vision have been applied to a variety 
of systems. And many kinds of machine visions are used 
according to purposes, such as a single camera, 3D stereo 
camera, laser sensors, etc. However, 3D stereo cameras are more 
cost-effective than other 3D solutions, so this work uses a 3D 
stereo camera. The cameras can be installed in two ways: the 
cameras are rigidly mounted on the robot arm, called Eye-In-
Hand, or they are installed in a fixed position away from the 
robot arm, called Eye-To-Hand. In this work, the Eye-In-Hand 
solution is applied because cameras on a robot arm move 
together along a rail of the system to detect magazines and grids 
in frames. For the robot arm control with cameras, camera 
calibration and hand-eye robot calibration are necessary. 
Accurate calibration algorithms are especially important for 
target positioning, and they are affected by diverse factors that 
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should be considered, such as hardware specification, working 
distance, and quality of calibration board.  

This work aims to implement a system that combines a robot 
arm and 3D stereo cameras for a warehouse automation system. 
There are 3 main approaches in this work: Firstly, frame and grid 
position detection by the robot arm with the stereo camera. 
Secondly, object detection using a deep learning method and 
image processing. Lastly, storing and retrieving objects 
(magazine) by robot arm. 

The rest of this paper is organized as follows. In Section II, 
related work is discussed. We present our overview hardware in 
Section III. Section IV shows the warehouse automation system 
using 3D visual-guided robot arm control. Then, in Section V 
we present experimental results. Lastly, we conclude and discuss 
future work in Section VI. 

II.  RELATED WORK 

For the warehouse system, Schwarz et al. [2] proposed a 
combination between object detection, segmentation, and 
registration method to design a robotic system for the Amazon 
Picking Challenge 2016 tasks. They achieved a good result, 
obtaining second and third place in that competition. They also 
used a stereo camera system for visual-guided robotics grasping. 
Prakash et al. [3] designed a dynamic robot manipulator that can 
be applied to a warehouse automation system. They proposed an 
optimal controller by using a dual-loop control scheme with 
outer and inner loops. In which, the former used a kinematic loop 
to assign a joint velocity reference signal to the latter. The 
Hamilton-Jacobi-Bellman equation was used in the kinematic as 
a closed-form analytic solution. While the inner loop used a 
neural network for the tracking control scheme. As a result, the 
system obtained effective and productive implementation in 
real-time for robotics picking. Moreover, warehouse automation 
systems using visual and intelligent approaches have been 
considered. Team NAIST-Panasonic [4] used an array of RGB-
D cameras combined with a custom-made end effector for their 
robotic manipulator. They used YOLO-v2 [5-6] for object 
detection. While He et al. [7] proposed a novel policy, namely, 
Differentiated Probability Queuing on Automated Guided 
Vehicles for smart warehouse automation systems. In addition, 
for object contour detections, diverse methods have evolved 
from the traditional way to the deep-learning-based way. In 
computer vision, Sobel and Canny contour detection are the 

Soonmyun Jang is currently a technical engineer with the Contrel 

technology Co., Ltd, Tainan, Taiwan, (email: jsm890803.3@gmail.com) 

Jenn-Jier James Lien is with the Department of Computer Science and 
Information Engineering, National Cheng Kung University, Tainan, Taiwan, 

(email: jjlien@csie.ncku.edu.tw) 

 

Minh-Tri Le, Soonmyun Jang, and Jenn-Jier James Lien 

3D Visual-Guided Robot Arm Control for  

a Warehouse Automation System 



 Minh-Tri Le, Soonmyun Jang, and Jenn-Jier James Lien  
 Journal of Robotics Society of Taiwan (iRobotics) 

2 

most popular methods. On the other hand, there are many deep 
learning solutions for contour or edge detection currently. One 
famous method is the holistically nested edge detection (HED) 
[8] which predicted contours in an image by a deep learning 
model. Yu et al. [9] improved the HED method to detect object 
contours and classify objects with fused activation maps. 
Furthermore, Hu et al. [10] introduced dynamic feature fusion 
for edge detection with a trainable adaptive weight fusion 
module which can solve multi-scale response problems in deep 
category-aware semantic edge detection (CASENet) [9].  

The first contribution of this work is to initialize and retool 
the warehouse automation system automatically. To set the 
system, initialization must be done at the beginning of any 
process, such as setting the initial position of the robot arm, 
tools, and frames (tray) for magazines. These processes can be 
done manually in typical automation systems. Besides, it should 
be retooled manually when external influences occur such as an 
earthquake. To reduce the time for this process, the frame 
position detection method is used in this work, which can detect 
frame coordinates by robot arm and 3D camera. If there is an 
external shock to the frame or robot arm, the system checks the 
status and retools automatically.  

The second contribution is to detect a center line of an object 
after a contour segmentation using a deep learning method. This 
work refers to [10], in which a dynamic feature fusion (DFF) 
network is used for semantic edge detection. However, the deep 
learning model cannot detect object position, it only does the 
segmentation and classification, so that post-processing of the 
output segmentation image is needed. Hough Transform method 
[11] is applied to the object lines and its center line. 

III. THE OVERVIEW OF HARDWARE AND FUNCTIONS IN THE 

WAREHOUSE AUTOMATION SYSTEM 

The system consists of a 6-DOF Epson ProSix C4-A601S 
robot arm, a stereo camera with two FLIR BFS-PGE-50S5C 
cameras, frames for storing magazines, and magazines (see in 
Fig.1). Frame is defined as f and includes Grid g and Marker mk. 
One frame means the shelf structure within four markers, with a 
size of 30mm x 30mm, of the entire storage. Grid is the partitions 
of the frame and it can be called cell. Marker is the ArUco 

marker of the OpenCV library for pose estimation. Markers have 
marker coordinates based on the top-left of the frame. The 
shapes of the storage frame and magazine are shown in Fig.2. 

The principle of the system is positioning the robot arm and 
allowable tolerance at a storage grid in the frame structure to 
retrieve a magazine. The position of magazines stored in the 
system must be set to move the robot arm to a target storage grid. 
To control the system, the robot, frames, and conveyor belt 
positions must be saved in advance. Then, the system can be run 
in two stages: initialization process, and storing and retrieving 
magazines processes. Fig.3 shows the flowchart of these two 
stages. Fundamentally, the computer commands and controls the 
robot and the cameras for every step. As in Fig.3a, the robot 
moves to markers on the frame and the cameras detects marker 
3D positions. Then, the computer computes each grid’s 
coordinate using saved markers’ positions. This scenario is to 
initialize the frame and grid coordinates to control the 
automation system. Fig.3b shows the procedure of storing and 
retrieving magazines using the robot arm and cameras. 

IV. THE WAREHOUSE AUTOMATION SYSTEM USING 3D 

VISUAL-GUIDED ROBOT ARM CONTROL 

The overview of the system is shown in Fig.4. There are 2 
main parts: 3D Transformation Estimation between the Robot 
Base and the Grid Centers in the Frame; and 2D Center Position 
Alignment between a Magazine and a Grid using DFF-Net [10] 
which is a deep learning solution for contour detection. Firstly, 
we find 3D frame coordinates and each grid position based on 
the robot arm. Four ArUco Markers mk (n=0, 1, m=0, 1) [12] 
are captured at four corners on a frame by the cameras on the 
robot arm (see in Fig.4a). With collected marker images 
 𝐼𝑚𝑘𝑛𝑚 (2448 x 2048, RGB), marker IDs and 3D position 

𝑇𝑚𝑘𝑛𝑚 
𝑐 (𝑅, 𝑡) based on the cameras can be obtained. However, 

due to inaccurate depth value of marker position detection, it is 
replaced by accurate depth value from a stereo camera. After 
that, according to the frame specification, each 3D grid position 

based on the frame coordinate 𝑝𝑔𝑛𝑚−𝑖𝑗  is calculated manually. 

The output 𝑇𝑔𝑖𝑗 
𝐵  of this procedure is saved to the system and 

used for the next step. Secondly, 3D magazine positions in a 
frame can be found using a deep learning method. And the status 

 
Fig. 1. The warehouse automation system. (1) Robot arm, (2) stereo 

camera c, (3) frame f (store magazines), and (4) magazine. 

 
Fig. 2. Shapes of storage frame and magazine. (a) shows the demotration 
of shape of a frame with 2x2 grids; (b) shows a magazine with its size; 

and (c) shows definition of frame: wg and hg are width and height of a 

grid, respectively, and thf is thickness of a frame. 



iRobotics 

Vol. 3, No. 4, December, 2020   

 

3 

of the system can be checked whether magazines are at the 
center of each grid or not. First, the robot moves in front of a 
selected grid position and the camera captures an image. Second, 
the captured image 𝐼𝑔 is put into DFF Net [10] which is a deep 

learning model for contour segmentation and classification (see 
in Fig.4e). There are two classes, magazine, and grid, in the 
system. After post-processing of two contour images, each 

center line will be detected and compared. If the magazine error 
𝐸𝑚𝑔 between a magazine center point 𝑃𝑚𝑔𝑐𝑛𝑡  and a grid center 

point 𝑃𝑔𝑐𝑛𝑡  is bigger than the requirement (less than 1mm), the 

system shows a warning alarm. If there is no error, the system 
completes the next procedure, which is magazine storing or 
retrieving.  

 
(a) 

 
(b) 

Fig. 3. The system scenario. (a) shows the initialization process, (b) shows the storing and retrieving magazine process 

 
Fig. 4. The global framework of 3D visual-guided robot arm control for warehouse automation system. (a) shows markers capture, (b) 3D coordinate 
transformation estimation, (c) shows 3D translation estimation, (d) shows grid capture, (e) shows contour segmentation, (f) 2D center alignment, and (g) 

shows storing and retrieving magazines process. 
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A. 3D Transformation Estimation 𝑇𝑔𝑖𝑗 
𝐵 (𝑅, 𝑡) from Robot 

Arm Base B to Grid Centers 𝑝𝑔𝑛𝑚−𝑖𝑗 
 (𝑥,  𝑦, 𝑧) via ArUco 

Process and Stereo Camera 

The main purpose of this section is to find 3D positions of a 
frame and grid centers based on the robot arm. There are three 
parts in this process as shown in Fig.4 (a, b, c). Firstly, the robot 
moves in front of markers on the frame, and the cameras capture 
marker images, and then markers’ ids and three-dimensional 
positions are detected by ArUco functions. Finally, the 
transformations between the robot arm base and the grid centers 
are computed and saved to the system. 

1) ArUco Marker Images Acquisition 

At the beginning of the process, ArUco marker images 
𝐼𝑚𝑘𝑛𝑚  must be acquired by the cameras. In order to do so, the 

robot arm position 𝑡𝑚𝑘𝑛𝑚 
𝐵  in front of the markers need to be 

saved by users in advance. Along with the saved positions, the 
robot arm moves to a marker and the cameras on the robot take 
a picture of the marker. This process is repeated 4 times until 4 
maker images are acquired. The sequence of the robot arm 
trajectories is top-left, top-right, bottom-right, and bottom-left 
of marker positions on a frame. 

2) 3D Transformation Estimation from Markers to 3D 

Camera and Marker ID Decoding 
With collected marker images 𝐼𝑚𝑘𝑛𝑚 , three-dimensional 

marker positions and marker ids can be detected by the ArUco 
library. We used Opencv library [13] for the process of marker 
detection and marker position estimation. The first function 
detectMarkers of the library is marker detection that can decode 
the marker pattern and get its id and detect 4 corners of it. Using 
marker corners data corners, the marker’s 3D position from the 
camera can be obtained through the function 
estimatePoseSingleMarkers of the library. Outputs from the 
function are a 3x1 rotation vector and a 3x1 translation vector 
𝑇𝑚𝑘𝑛𝑚 
𝑐  including a 3x1 translation, and then they are converted 

a to 4x4 transformation form for matrix operation as shown in 
(1) 

𝑇𝑚𝑘𝑛𝑚 
𝑐 = [

𝑅3×3 𝑡3×1
0 0 0 1

] (1) 

where, 𝑅3×3 = [

𝑅11 𝑅12 𝑅13
𝑅21 𝑅22 𝑅23
𝑅31 𝑅32 𝑅33

], 𝑡3×1 = [

𝑡𝑋
𝑡𝑌
𝑡𝑍

]: are rotation 

matrix and translation matrix 

Furthermore, due to the inaccuracy of 𝑡𝑍  value in the 
translation vector in 𝑇𝑚𝑘𝑛𝑚 

𝑐  from a single camera, it should be 

refined by depth information of the stereo camera.  

3) 3D Translation Estimation from Robot Arm Base to each 

Grid Center via Four Markers and Camera 

The computed markers’ three-dimensional transformations 
from the cameras are transformed to the 3D transformation of 
the markers based on the robot arm base, which is presented in 
(2). Note that transformation between the robot arm and the 

camera 𝑇𝑐 
𝐵  is calculated from approaches [14-17]. 

𝑇𝑚𝑘𝑛𝑚 
𝐵 = 𝑇𝑐 

𝐵 𝑇𝑚𝑘𝑛𝑚 
𝑐  (2) 

In the next step, each 3D grid position based on both the 
frame and the robot base is found by computed 3D 
transformation values of markers. First, according to the 

obtained 4 markers positions and the frame size, each grid 
position can be calculated. With a frame size and a grid size, a 
center of a grid position from the frame coordinate can be 
calculated by (3). 

pgnm−ij 
 (x,  y, z)

{
 
 

 
 𝑥 =

𝑡ℎ𝑓

2
+
𝑤𝑔

2
+ (𝑡ℎ𝑓 +𝑤𝑔) × 𝑗

𝑦 =
𝑡ℎ𝑓

2
+
ℎ𝑔

2
+ (𝑡ℎ𝑓 + ℎ𝑔) × 𝑖

𝑧 = 0

 (3) 

In (3), a value of nm which means row and column of 
marker position on the frame is 00 because the top-left marker 
position is the frame coordinate. And i and j indicate row and 
column of grid center position. While 𝑤𝑔 is width of a grid, ℎ𝑔 

is height of a grid and 𝑡ℎ𝑓 is thickness of a frame (see Fig.2). 

B. 2D Center Position Alignment between Magazine and 

Grid using DFF-Net for Storage and Retrieval 

1)   DFF-Net [10]: Training and Inference Frameworks 

Manually labeled dataset with magazine and grid classes 
based on the Cityscapes dataset is used. The input image is RGB 
and its size is 2448 x 2048 pixels. The labels of the dataset are 
contours segmentation of objects and their image format is 
grayscale. Basically, this architecture is composed of two main 
parts: feature extractor with the pre-trained ResNet and 
adaptive weight fusion module (see Fig.4e). The feature 
extractor blocks are connected to the residual blocks in the 
ResNet. In the feature extractor, single maps including object 
contours of all classes are extracted from Side1, Side2, and 
Side3 feature normalizations while K channel maps are 
extracted from Side5 feature normalization. Each map from the 
Side5 layer has contours of one class for classification so that 
the number of maps is the number of classes K. On the other 
hand, the number of maps from Side5-w feature normalization 
is 4K and they proceed to generate adaptive weights for 
concatenation of the maps from Side1-3 and Side5. And then 
the concatenated maps are fused to classified output results by 
adding 4 maps as shown in Fig.3e. For the training process, the 
estimation loss of outputs of both Side5 and Fusion are 
minimized in (4). For the inference process, the loss function is 
not used, and output images are used for center line estimation 
of a magazine and a grid in the next steps. 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑠𝑖𝑑𝑒5 + ℒ𝑓𝑢𝑠𝑒 (4) 

2)   2D Center Alignment between Magazine and Grid 

This section introduces how to find center lines of detected 
object contours from the deep learning model. 

2.1. Hough Line Transform 
Hough line transform is a popular solution to detect shapes. 

It uses two terms (ρ, θ) to represent a line equation in (5), where 
ρ is the perpendicular distance between origin to the line, and θ 
is the angle between the horizontal axis of the image plane and 
the perpendicular line. The parameters (ρ, θ) are changed by 
minimum unit, and a line generated according to the parameters 
temporary, and the line and the pixels of the image are 
compared. After comparing the pixels and the line, if the 
comparison result is higher than the threshold of the function, 
then the function returns the detected lines. This process is 
repeated with changing parameters until most of the lines are 
found. 
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𝜌 = 𝑥 ∗ 𝑐𝑜𝑠(𝜃) + 𝑦 ∗ 𝑐𝑜𝑠(𝜃) (5) 
2.2. Vertical Contour Lines Detection. 

Using the Hough line transform solution, contour lines in an 
input image are found. However, in order to find a center line 
of an object, only two vertical lines are needed. Firstly, set a 
threshold of angle of a line for Hough line detection to get only 
vertical lines. In this project, the threshold was θ≤10° and 
θ≥350°. Secondly, two vertical lines by the threshold are 
obtained in the magazine contour image Sc=0, while four vertical 
lines are obtained in the grid contour image Sc=1. After that, the 
rightmost line of the left grid and the leftmost line of the right 
grid are chosen to proceed to the next step. Fig.5 illustrates 
vertical lines, where LmgL, LmgR are the left and right Hough lines 
of magazine contour. LgL, LgR are the left and right Hough lines 
of grid contour. 

 With 2 vertical lines, a center line can be found by an 
average method. There are two parameters in Hough line 
transform, which are angle and distance. From both the left line 
and the right line, angles and distances averaged angle and 
distance of a center line (see Fig.5). 

 2.3 2D Magazine Position Error Estimation. 

In this part, finally, 2D magazine position and grid position 
can be compared for the error estimation. One center point in 
each center line is needed where is in the horizontal center line 
of the image. The center points are the intersection points 
between the horizontal center line of the image and two vertical 
center lines of a magazine and a grid. Each center point 𝑃𝑚𝑔𝑐𝑛𝑡  

and 𝑃𝑔𝑐𝑛𝑡  in each center line from the previous step can be 

compared as: 

𝐸𝑚𝑔 = 𝑃𝑚𝑔𝑐𝑛𝑡 − 𝑃𝑔𝑐𝑛𝑡 (6) 

  

V. EXPERIMENTAL RESULTS 

In this section, there are two experimental results. The first 
experiment shows an accuracy test of the marker detection with 
frame movement. Lastly, storing and retrieving test using the 
marker detection and the deep learning solution is implemented. 
In the experiments, Intel i7 CPU and NVidia RTX 2070 are 

used and two operation systems, Windows 10 and Ubuntu 16.04 
are used. 

A. Experimental Result of Marker Detection Accuracy 

This experiment shows the accuracy of the marker 

detection according to the different positions of a frame.  

1) Test Procedure. 
First, the system set an initial position of the frame 

𝑓0: (0,  0,  0) and generate 12 different frame position cases as 
shown in Table I. In which: x, y, z: are horizontal axis, up-down 
axis, and forward-backward axis, respectively. Secondly, four 
marker positions based on the robot arm are saved to the system 
using the marker detection method. Third, according to the 
generated frame positions, the robot arm moves to one frame 
position along x, y, z-axis with a distance of 1mm. Fourth, the 
marker detection is executed as the second step. After that, the 
third and fourth steps are repeated until the test cases are 
finished. Finally, with the collected marker positions, accuracy 
is computed using metrics. 

2) Frame Moving Positions for the Test. 
The frame position control system has two directions that 

can move the frame, which are x and z directions. In this test, 12 
different position cases were generated (see Table I). 

3) Metrics. 
Average error and standard deviation (ST_DEV) metrics are 

used as shown in (7) and (8). In the metrics, 𝑃𝑖  is the ith 

 
Fig. 5. The description of  the 2D magazine error calculation. 

TABLE I 

THE DIFFERENT FRAME POSITION CASES  

fi (x, y, z) 

(mm, mm, 
mm) 

Position fi (x, y, z) 

(mm, mm, 
mm) 

Position 

f0 (0, 0, 0) Initial    

f1 (−1, 0, 0) 

Left 

f7 (0, 0, -1) 

Closer f2 (−2, 0, 0) f8 (0, 0, -2) 

f3 (−3, 0, 0) f9 (0, 0, -3) 

f4 (1, 0, 0) 

Right 

f10 (0, 0, 1) 

Away f5 (2, 0, 0) f11 (0, 0, 2) 

f6 (3, 0, 0) f12 (0, 0, 3) 
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translation position between the frame and the markers. 
Average error metric literally indicates average values of 
marker detection errors, while standard deviation shows 
stability of errors.  

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (𝐸𝑎𝑣𝑔) =∑ (|(𝑃𝑖 − 𝑃0) − 𝑓𝑖|)/𝑘
𝑘=12

𝑖=1
 (7) 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √
∑ (|(𝑃𝑖 − 𝑃0) − 𝑓𝑖| − 𝐸𝑎𝑣𝑔)

2𝑘=12
𝑖=1

𝑘 − 1
 

where: fi is the ith frame position 

(8) 

4) Result. 
The requirement of allowance error in this work is less than 

1mm for x, y, and z direction of marker position. As shown in 
Table II, the results show all errors are under 1mm. However, 
there are still big errors of z-axis when compared to x and y 
errors. Fig.6 shows stable x and y errors but unstable z errors. 
The reason for the big error on z-axis is because the camera’s 
hardware specification for z-axis has low precision which is 
about 0.36mm. This precision can be improved by changing the 
baseline or using other cameras.  

B. Experimental Result of Contour Detection using DFF-Net 

1) Data Collection. 
In order to collect the dataset, frame and magazine images 

are captured using the stereo camera and the robot arm. After 
that, the dataset is labeled using a labelling tool which is 
Labelme [18] (see in Fig.7). There are 2 classes, which are 
frame and magazine, and the image size is 2448 x 2048. 
Although the dataset of this case has only one kind of magazine, 
the model can be trained with other shapes of magazines. For 
augmentation of data, collected images are rotated and copied 
with [-20, 0, 20] degree. 350 images were collected for the work 
and they are increased to 1,050 images. For training, validating, 

and testing sets, the dataset separated to 900, 100, and 50, 
respectively. 

2) Metric 
To evaluate the segmentation performance of DFF-Net, F1 

score metric is used. F1 score is obtained by Precision and 
Recall metrics which are the popular methods as in (). F1 
method is to find balance between Precision and Recall. A good 
model should have a high F1 score with balanced Precision and 
Recall. To get Precision and Recall, different types of results 
from comparison outputs and ground truths.  

𝐹1 = 2𝑥
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (9) 

3) Training Results. 
In the test case, 50 testing images are used for Precision, 

Recall, and F1 score as shown in Table III. Training time was 
approximately 20 hours with 50 epochs and 1 batch size with a 
NVidia GPU RTX 2070. 

There are examples of contour detection and center line 
detection of magazine and grid as shown in Fig.8. After the 
center line detection procedure, two center lines can be 
compared by pixel unit. For instance, in Fig.9, the distance 
between two lines is 14 pixels, and the camera specification is 
0.14mm/pixel, so that the real distance can be calculated: 14-

 
Fig. 6. Graph of marker detection accuracy test with 4 markers 

 

TABLE II 

MARKER POSITIONS ERROR DATA OF ACCURACY TEST 

 

Marker 0 Marker 1 Marker 2 Marker 3 Average 

(x, y, z) 

(mm, mm, mm) 

(x, y, z) 

(mm, mm, mm) 

(x, y, z) 

(mm, mm, mm) 

(x, y, z) 

(mm, mm, mm) 

(x, y, z) 

(mm, mm, mm) 

𝐸avg (0.05, 0.03, 0.32) (0.05, 0.01, 0.15) (0.03, 0.12, 0.09) (0.04, 0.09, 0.08) (0.04, 0.06, 0.16) 

ST_DEV (0.01, 0.01, 0.16) (0.01, 0.02, 0.10) (0.02, 0.07, 0.05) (0.02, 0.03, 0.06) (0.01, 0.03, 0.09) 

 

TABLE III.  

PRECISION, RECALL AND F1 RESULTS ON FRAME AND 

MAGAZINE DATASET 

No. Images Precision (%) Recall (%) F1(%) 

50 62.7 75.9 68.7 
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pixel x 0.14 mm/pixel = 1.96 mm. 

4) Problems 
In some situations, magazines cannot be detected correctly 

as below (see in Fig.10). And sometimes the system detects the 
interior frames so that it cannot distinguish correct frame 
surfaces. To solve the problems mentioned above, the model 
must be trained with datasets with various magazine and frame 
positions.  

VI. CONCLUSION AND FUTURE WORK 

In the work, a solution of storing and retrieving objects using 
a stereo camera and a robot arm is introduced. The warehouse 
automation system with 3D vision, which can check the status 
periodically, was developed. Furthermore, when there are 
external effects such as earthquakes, the system can be retooled 
automatically by frame coordinate detection with ArUco 
markers. Especially, this is a suitable system where the ground 

    
(a) 

    
(b) 

Fig. 7. The illustration of data collection. (a) shows images which were captured using the robot arm and two cameras; (b) shows labeled images. 

 

    
(a) (b) (c) (d) 

Fig. 8. The illustration of the results of contour detection and center line detection. (a) shows an input image; (b) shows magazine class; (c) 
shows frame class; and (d) shows center line error. 

 

   
(a) (b) (c) 

Fig. 9. The illustration of the error estimation; Red: magazine center line; Yellow: grid center line. (a) shows an error of -0.7 mm; (b) shows 

an error of +6.1 mm; and (c) shows an error of -7.4 mm. 

   
(a) (b) (c) 

Fig. 10. The illustration of the wrong magazine detection. (a) shows magazine be too close to the grid’s left side; (b) shows magazine be too 
close to the grid’s right side; and (c) shows magazine be too far from the grid’s front. 
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can be unstable, like in Taiwan, because earthquakes are 
detected frequently so that many factories suffer from it and 
must reset the system manually.  

Moreover, using a deep learning method, the system can 
check whether magazines are in the right place or not in the 
frame. Deep learning methods are applied in many industrial 
fields these days. In the project, different shapes of magazines 
are also detected precisely after training magazines. It is very 
flexible to install various systems.  

Although an efficient and flexible system has developed, 
some problems should be solved in the future. Firstly, the deep 
learning method has no object detection function, only contour 
detection. Therefore, it takes more time to find the object 
position by Hough line transform. To solve this, object detection 
layers can be added to the deep learning model, so that it will 
reduce time and processes because deep learning is executed on 
GPU. Secondly, the marker detection method has restrictions to 
be adapted to other systems because markers should be attached 
on frames, and marker size must be big enough to be detected 
by cameras. Besides, the stereo system cannot detect the depth 
of magazines, but only the depth of markers. Therefore, other 
deep learning methods that can detect 3D positions of frames 
and magazines without markers should replace marker detection 
in future works. Lastly, under a dark environment, the exposure 
time of cameras must be higher, and therefore affects working 
time. Adding additional light on the robot arm can be a solution 
for diverse environments. 
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