
1 

Abstract—In this paper, a fuzzy PID control method based on 
Q-learning is proposed to control the motor so that it can adapt to 
different environments and meet the expectations of the request. 
There are two main parts: (1) a fuzzy control method is proposed 
to adjust the parameters KP, KI, and KD of the PID controller and 
(2) a Q-learning algorithm is proposed to learn the fuzzy rule base 
and the membership functions of the fuzzy variable. The fuzzy 
method is proposed to modify the parameters KP, KI, and KD of 
the PID controller, where the KP, KI, and KD of the PID controller 
will be automatically adjusted according to environmental 
changes or external disturbance. The Q-learning algorithm is 
proposed to learn the fuzzy rule base and the membership 
functions of the fuzzy variables. The Q-learning algorithm lets the 
fuzzy rule base and the membership functions of the fuzzy 
variable that originally relied on the expert rule can be obtained 
through repeated learning. A sliding mode is added in the 
Q-learning algorithm and fuzzy control to reduce the number of 
system parameters required in the learning process to improve 
the learning efficiency. The learning process is to learn 
membership functions of the fuzzy variables with the initial fuzzy 
rule base and the initial membership functions of the fuzzy 
variable, and then learn a new fuzzy rule base with the initial 
fuzzy rule base and the new membership functions of the fuzzy 
variable. Some experimental results of the voice coil motor, 
brushed DC motor, and Brushless DC motor are presented to 
illustrate that the proposed method can indeed effectively control 
these three motors. 

Index Terms—Fuzzy Control, Sliding Mode, PID Controller, 
Motor Control, Q-learning 

I. INTRODUCTION 

utomation equipment is widely used in industrial 
manufacturing today, and these equipment require power 

to complete their actions. Motors are the most widely used 
power source, and current industrial development still focuses 
on motors as the main power output. There are many types of 
motors. For Voice Coil Motor (VCM), it is suitable for 
short-stroke linear motion, high speed, and high 
acceleration/deceleration application environment. For brushed 
DC motor, the control conditions are relatively simple. It only 
needs to control the magnitude and polarity of the voltage to 
change the speed and direction of the motor. For Brushless DC 
(BLDC) motors, a sequential control voltage phase is required 
to change the speed and direction of the motor, but compared 
with the brushed DC motor, there is no need to consider the 
problem of the loss of the electric brush, so it has a longer 
service life. After installing the encoder on the motor as the 
feedback signal of the position or speed, and using the controller 
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to approach the feedback value to the control target value for 
closed loop control, it can be called a servo motor. As far as the 
industry is concerned, most of its control methods still use 
Proportional Integral Derivative (PID) controllers, which are 
characterized by simple system architecture and easy 
implementation, and have good performance for most types of 
systems. When the traditional PID controller [1] controls a 
highly complex system, its parameters are not easy to adjust, 
which makes it impossible to provide sufficient performance for 
the system. After Mamdani [2] carried out the first application 
of fuzzy control, fuzzy control became an alternative method [3]. 
Fuzzy control has the advantage of expert experience, and can 
be combined with traditional controllers to handle complex 
control systems. Various types of fuzzy PID controllers have 
been proposed. According to the application of fuzzy theory in 
PID controllers and their control architecture [4], they can be 
divided into two categories: (1) PID-type fuzzy controllers 
[5][6][7], and (2) fuzzy methods are used to tune the gain 
parameters of the PID controller or they are self-adaptive [8][9]. 
The structure of the PID-type fuzzy controller is similar to that 
of the conventional PID controller. It can be achieved by 
combining PI-type and PD-type fuzzy controllers with two 
different fuzzy rule bases, or combining a PD-type fuzzy 
controller with an integrator to achieve. The structure in which 
the gain parameters of the PID controller are automatically 
adjusted by a fuzzy method is to adjust the gain parameters of 
the traditional PID controller online by a fuzzy method, and the 
PID controller outputs control signals. In fuzzy control, the main 
adjustable parts are divided into two categories: (1) structure 
tuning, and (2) parameter tuning. The part related to the 
adjustment of structure is the structure of rules, the number of 
rules, the meaning of variables, and the division of each variable 
area. The part related to the adjustment of the parameters is the 
shape and position of membership functions, such as the 
adjustment of the center and width of the triangular membership 
function. For the automatic learning or adjusting the fuzzy 
control system, unsupervised learning can grasp the regularity 
of the input vector and construct the model without external 
information, so it is suitable for clustering of data and find out 
the corresponding rule. Supervised learning and Reinforcement 
Learning (RL) [10][11] are usually used to adjust rules or 
membership functions of the fuzzy system. Genetic Algorithm 
(GA) can be used to make structural adjustments, the method 
used is to search for all possible fuzzy rules in the space 
[12][13][14]. 

There have been many studies on fuzzy PID controllers and 
adaptive fuzzy controllers. In order to propose a method that 
conforms to the motor control, this paper will combine the 
above two methods and use the Q-learning algorithm in 
reinforcement learning [15][16][17] to adjust the structure and 
parameters of the fuzzy controller and make the parameters of 
the PID controller have self-adaptability. 
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II.  Q-LEARNING FUZZY PID CONTROL ARCHITECTURE  

The Q-learning fuzzy PID controller proposed in this paper 
mainly uses the fuzzy method to adjust the parameters KP, KI

and KD of the PID controller to make it adaptive. Then the 
Q-learning algorithm is added, so that the fuzzy rule base and 
the membership functions of fuzzy variables that originally 
relied on expert rules can be obtained through repeated learning, 
and the sliding mode is added to the Q-learning algorithm and 
fuzzy control[18][19], in order to reduce the number of system 
parameters required in the learning process, thereby improving 
the efficiency of learning. There are two main parts: (1) adjust 
the PID controller by the fuzzy method and (2) learn the fuzzy 
rule base and the membership functions of the fuzzy variables 
by the Q-learning algorithm. 

A. Adjust the PID Controller by the Fuzzy Method 

The fuzzy PID controller in this paper is used to adjust the KP, 
KI, and KD in the PID controller according to the error e and the 
error change Δe of the motor input command and feedback, with 
the membership functions and the fuzzy rule base in the 
controller. After the error e is input to the PID controller, the 
PID controller calculates the output motor command. Therefore, 
the fuzzy PID controller can adjust the appropriate KP, KI and 
KD parameters according to environmental changes or external 
disturbance. The control diagram is shown in Fig. 1.
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Fig. 1. Fuzzy PID control architecture. 

The selection of the domain of the fuzzy controller's input 
variables e and Δe and output variables ΔKP, ΔKI, and ΔKD are 
defined as follows: 

]80 ,80[e (1) 

]6 ,6[e (2) 

]0.8 ,8.0[ PPP KKK  (3) 

]0.4 ,4.0[ III KKK  (4) 

]0.8 ,8.0[ DDD KKK  (5) 

In the selection of fuzzy linguistic items, five items are 
defined in the respective domains of the input variables e and Δe 
and the output variables ΔKP, ΔKI, and ΔKD, which are 
expressed as follows:

 
 

   43210 ,,,,,,,,)( AAAAAPBPSZONSNBeT  (6) 

   43210 ,,,,,,,,)( BBBBBPBPSZONSNBeT  (7) 

   43210 ,,,,,,,,)( CCCCCPBPSZONSNBKT P  (8) 

   43210 ,,,,,,,,)K( DDDDDPBPSZONSNBT I  (9) 

   43210 ,,,,,,,,)K( EEEEEPBPSZONSNBT D  (10) 

where NB, NS, ZO, PS, and PB are respectively used to denote 
Negative Big, Negative Small, Zero, Positive Small, and 
Positive Big. 

The triangular membership function is used to describe the 
fuzzy set of input variables e and Δe. As shown in Fig. 2 and Fig. 
3, μA(e) and μB(Δe) represent the degrees of certainty of these 
two input variables, respectively. In the definition of the fuzzy 
sets of output variables ΔKP, ΔKI, and ΔKD, the fuzzy singleton 
is used to describe the fuzzy set of output variables.  As shown 
in Fig. 4, Fig. 5, and Fig. 6,μC(ΔKP), μD(ΔKI), and μE(ΔKD) are 
their respective degrees of certainty. 

NB NS ZO PS PB

0 80-80 -40 40

μA(e)

Fig. 2. Membership functions of the fuzzy input variable e. 

NB NS ZO PS PB

0 6-6 -3 3

μB(∆e)

Fig. 3. Membership functions of the fuzzy input variable Δe. 

NB NS ZO PS PB

0 0.8KP-0.8KP-0.4KP 0.4KP

μC(ΔKP)

Fig. 4. Membership functions of the fuzzy input variable ΔKP. 

NB NS ZO PS PB

0 0.4KI-0.4KI -0.2KI 0.2KI

μD(ΔKI)

Fig. 5. Membership functions of the fuzzy output variable ΔKI. 

NB NS ZO PS PB

0 0.8KD-0.8KD -0.4KD 0.4KD

μE(ΔKD)

Fig. 6. Membership functions of the fuzzy output variable ΔKD. 

In the establishment of the fuzzy rule base, the fuzzy rule 
base of ΔKP, ΔKI, and ΔKD constructed in this paper are 
respectively shown in Table I, Table II, and Table III. 

TABLE I 
FUZZY RULE BASE OF ΔKP 

ΔKP 
e 

NB(A0) NS(A1) ZO(A2) PS(A3) PB(A4) 

Δe 

NB(B0) PB(C4) PS(C3) PS(C3) PS(C3) ZO(C2) 

NS(B1) NS(C1) NS(C1) NS(C1) ZO(C2) NS(C1) 

ZO(B2) NS(C1) NS(C1) ZO(C2) PS(C3) NS(C1) 

PS(B3) NS(C1) ZO(C2) PS(C3) PS(C3) NS(C1) 

PB(B4) ZO(C2) PS(C3) PS(C3) PB(C4) NB(C0) 
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TABLE II 

FUZZY RULE BASE OF ΔKI 

ΔKI 
e 

NB(A0) NS(A1) ZO(A2) PS(A3) PB(A4) 

Δe 

NB(B0) NB(D0) NB(D0) NS(D1) NS(D1) ZO(D2) 

NS(B1) NS(D1) NS(D1) NS(D1) ZO(D2) PS(D3) 

ZO(B2) NS(D1) NS(D1) ZO(D2) PS(D3) PS(D3) 

PS(B3) NS(D1) ZO(D2) PS(D3) PS(D3) PS(D3) 

PB(B4) ZO(D2) PS(D3) PS(D3) PB(D4) PB(D4) 

TABLE III 

FUZZY RULE BASE OF ΔKD 

ΔKD 
e 

NB(A0) NS(A1) ZO(A2) PS(A3) PB(A4) 

Δe 

NB(B0) PS(E3) ZO(E2) ZO(E2) ZO(E2) PB(E4) 

NS(B1) NB(E0) NS(E1) NS(E1) ZO(E2) PS(E3) 

ZO(B2) NB(E0) NS(E1) NS(E1) ZO(E2) PS(E3) 

PS(B3) NB(E0) NS(E1) NS(E1) ZO(E2) PS(E3) 

PB(B4) PS(E3) ZO(E2) ZO(E2) ZO(E2) PB(E4) 

In the selection of fuzzification interface and defuzzification 
method, the Sugeno's fuzzy inference method and weighted 
average method is adopted so that the output of the fuzzy system 
can be expressed by 
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where y ∈ {Cj3, Dj3, Ej3} is the definite value represented by the 
fuzzy single point output. 

B. Learn the Fuzzy Rule Base and Membership Functions of 

Fuzzy Variables by the Q-learning Algorithm 

The Q-learning fuzzy PID controller proposed in this paper 
mainly adds the Q-learning algorithm, so that the fuzzy rule base 
and the membership functions of fuzzy variables that originally 
relied on expert rules can be obtained through repeated learning. 
A sliding mode is added to the Q-learning algorithm and fuzzy 
control to reduce the number of system parameters required in 
the learning process, thereby improving the efficiency of 
learning. The control architecture diagram is shown in Fig. 7. 
The learning process is to first learn the membership functions 
of the new fuzzy variable from the initial fuzzy rule base and the 
membership functions of the fuzzy variable, and then learn the 
new fuzzy rule from the initial fuzzy rule base and the 
membership functions of the new fuzzy rule base. The design 
architecture can be divided into three main projects: 1) 
establishing a sliding plane, 2) using Q-learning to learn and 
adjust membership functions of fuzzy variables, and 3) using 
Q-learning to compare the fuzzy rule base for learning and 
adjustment. 
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Fig. 7. Q-learning fuzzy PID control architecture 

1) Establishing a Sliding Plane 

In the original fuzzy PID, the input of the fuzzy controller is 
2 inputs, which are the error e and the error change Δe, so that 
when Q-learning is learning and adjusting the fuzzy controller, 
there are 28 parameters in the part of the membership functions 
that need to be learned and adjusted. There are 375 parameters 
in the fuzzy rule base that need to be learned and adjusted. After 
the sliding plane is established, the error e and the error change 
Δe can be processed, as shown in equation (12):  

ees  (12) 

where λ is the expansion parameter and s is the output of the 

sliding plane. The output s obtained after sliding plane 

processing can be used as the input of the fuzzy controller, so 

that when Q-learning learns and adjusts the fuzzy controller, 

there are only 14 parameters in the membership functions that 

need to be learned and adjusted. In the part of the fuzzy rule base, 

only 75 parameters need to be learned and adjusted, which 

greatly improves the efficiency of Q-learning in learning and 

adjusting the fuzzy controller. 

2) Using Q-Learning to Learn and Adjust Membership 

Functions of Fuzzy Variables 

First define the membership functions of the initial fuzzy 
variable of the fuzzy controller and the fuzzy rule base. The 
membership functions of the fuzzy variable is equally 
distributed based on the value range of the sliding plane output s. 
The membership functions of the fuzzy variable are shown in 
Fig. 8. The fuzzy rule base is based on the common ΔKP, ΔKI, 
and ΔKD fuzzy rule base designed with the error e and the error 
change Δe in the references, and the fuzzy rule of its symmetry 
axis is taken as the fuzzy rule of single input s. The rule bases are 
shown in Table IV, Table V, and Table VI. 

TABLE IV 
FUZZY RULE BASE OF ΔKP FOR SINGLE INPUT S 

ΔKP 

s NB NS ZO PS PB 

u PB NS ZO PS NB 

TABLE V 
FUZZY RULE BASE OF ΔKI FOR SINGLE INPUT S 

ΔKI 

s NB NS ZO PS PB 

u NS NB ZO PS PB 

TABLE VI 

FUZZY RULE BASE OF ΔKD FOR SINGLE INPUT S 

ΔKD 

s NB NS ZO PS PB 

u PS NS NS ZO PB 

Then define the states and actions of Q-learning to build the 
Q table. The input of the fuzzy controller is the state, and the 
adjustment value of the membership function is the action. The 
relationship between the state and the input variable sliding 
plane output s is shown in Table VII, and the relationship 
between the adjustment value α and β of the action and the 
membership function is shown in Fig. 8. The Q table for 
Q-learning to learn the membership function is shown in Table 
VIII. 
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TABLE VI 

THE RELATIONSHIP BETWEEN THE STATE AND THE INPUT VARIABLE SLIDING 

PLANE OUTPUT S 

when s < -60 then state = 2 
when -60 ≤ s < -20 then state = 1 

when -20≤ s < 20 then state = none 

when 20 ≤ s < 60 then state = 1 
when s ≥ 60 then state = 2 

NB NS ZO PS PB

0 80+β-(80+β) -(40+α) 40+α

s

Fig. 8. The relationship between the adjustment value α and β of the action and

the membership function. 

TABLE VIII 
THE Q TABLE FOR Q-LEARNING TO LEARN MEMBERSHIP FUNCTIONS 

Q-Table 

State Action 

s -9 -6 -3 0 3 6 9 

1 α0 α1 α2 α3 α4 α5 α6

2 β0 β1 β2 β3 β4 β5 β6

none 0 0 0 0 0 0 0 

After setting the state, action and Q table, we have to defined 

the reward function of Q-learning. This paper designs the 

reward function with the error e and the error change Δe. The 

goal is to hope that the error e is small and the error change Δe is 

large. The reward function is defined by 

 
ee

eeR






1

1

1

1
, (13) 

3) Using Q-learning to Compare the Fuzzy Rule Base for 

Learning and Adjustment 

Use membership functions of the adjusted fuzzy variable 

and the defined fuzzy rule base of single input s as the initial 

value to learn and adjust the fuzzy rule base, then define the 

state and action of Q-learning to establish Q-table. The input of 

the fuzzy controller is the state, the fuzzy rule adjustment value 

of ΔKP, ΔKI, and ΔKD belongs to the action. The relationship 

table between the state and the input variable sliding plane 

output s is shown in Table IX, the action and fuzzy rule base 

adjustment value γP, γI, γD relation table shown in Table X, 

Table XI, and Table XII. The Q-table for Q-learning to learn the 

fuzzy rule base are shown in Table XIII, Table XIV, and Table 

XV. 

TABLE IX 

 THE RELATIONSHIP TABLE BETWEEN THE STATE AND THE INPUT VARIABLE 

SLIDING PLANE OUTPUT S 

when s < -60 then state = 1 

when -60 ≤ s < -20 then state = 2 

when -20 ≤ s < 20 then state = 3 
when 20 ≤ s < 60 then state = 4 

when s ≥ 60 then state = 5 

TABLE X 

THE ACTION AND ΔKP FUZZY RULE BASE ADJUSTMENT VALUE ΓP RELATION 

TABLE 

ΔKP 

s NB NS ZO PS PB 

u PB or γP(0,n) NS or γP(1,n) ZO or γP(2,n) PS or γP(3,n) NB or γP(4,n) 

 

TABLE XI 

THE ACTION AND ΔKI FUZZY RULE BASE ADJUSTMENT VALUE ΓI RELATION 

TABLE 

ΔKI 

s NB NS ZO PS PB 

u NS or γI(0,n) NO or γI(1,n) ZO or γI(2,n) PS or γI(3,n) PB or γI(4,n) 

TABLE XII 
THE ACTION AND ΔKD FUZZY RULE BASE ADJUSTMENT VALUE ΓD RELATION 

TABLE 

ΔKI 

s NB NS ZO PS PB 

u PS or γD(0,n) NS or γD(1,n) NS or γD(2,n) ZO or γD(3,n) PB or γD(4,n) 

TABLE XIII 

 THE Q-TABLE FOR Q-LEARNING TO LEARN THE ΔKP FUZZY RULE BASE 

ΔKP 

State Action 

s NB NS ZO PS PB 

1 γP(0,0) γP(0,1) γP(0,2) γP(0,3) γP(0,4) 

2 γP(1,0) γP(1,1) γP(1,2) γP(1,3) γP(1,4) 

3 γP(2,0) γP(2,1) γP(2,2) γP(2,3) γP(2,4) 

4 γP(3,0) γP(3,1) γP(3,2) γP(3,3) γP(3,4) 

5 γP(4,0) γP(4,1) γP(4,2) γP(4,3) γP(4,4) 

TABLE XIV 
THE Q-TABLE FOR Q-LEARNING TO LEARN THE ΔKI FUZZY RULE BASE 

ΔKI 

State Action 

s NB NS ZO PS PB 

1 γI(0,0) γI(0,1) γI(0,2) γI(0,3) γI(0,4) 

2 γI(1,0) γI(1,1) γI(1,2) γI(1,3) γI(1,4) 

3 γI(2,0) γI(2,1) γI(2,2) γI(2,3) γI(2,4) 

4 γI(3,0) γI(3,1) γI(3,2) γI(3,3) γI(3,4) 

5 γI(4,0) γI(4,1) γI(4,2) γI(4,3) γI(4,4) 

TABLE XV 
THE Q-TABLE FOR Q-LEARNING TO LEARN THE ΔKD FUZZY RULE BASE 

ΔKD 

State Action 

s NB NS ZO PS PB 

1 γD(0,0) γD(0,1) γD(0,2) γD(0,3) γD(0,4) 

2 γD(1,0) γD(1,1) γD(1,2) γD(1,3) γD(1,4) 

3 γD(2,0) γD(2,1) γD(2,2) γD(2,3) γD(2,4) 

4 γD(3,0) γD(3,1) γD(3,2) γD(3,3) γD(3,4) 

5 γD(4,0) γD(4,1) γD(4,2) γD(4,3) γD(4,4) 

In this paper, the reward function is designed based on the 
error e and the error change Δe. The goal is to hope that the error 
e is small and the error change Δe is large. The reward function 
is defined by 

 
ee

eeR






1

1

1

1
, (14) 

In the control architecture of this paper, the motor position 
control of the voice coil motor experimental platform will be 
discussed. The physical diagram is shown in Fig. 9, and the 
control architecture diagram is shown in Fig. 10. The physical 
diagram of the Brushless DC motor experimental platform of 
motor speed control is shown in Fig. 11, and the control 
architecture diagram is shown in Fig. 12. The motor speed 
control of the brushed DC motor of the two-wheel 
self-balancing vehicle is shown in Fig. 13, and the control 
architecture diagram is shown in Fig. 14. 
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Fig. 9. Physical diagram of the voice coil motor experimental platform. 
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Fig. 10. Position control structure of voice coil motor. 
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Fig. 11. Physical diagram of the Brushless DC motor experimental platform. 
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Fig. 12. Speed control architecture of Brushless DC motor. 

Fig. 13. Physical diagram of two-wheeled self-balancing vehicle. 
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Fig. 14. Speed control structure of brushed DC motor of two-wheel 
self-balancing vehicle. 

III. EXPERIMENTAL RESULTS 

A. Position Control of the Voice Coil Motor Experimental 

Platform 

In the process of learning and adjusting the membership 
functions of the fuzzy variable of the fuzzy controller by 
Q-learning, it is mainly to sequentially give the motor of the 
voice coil motor experiment platform 100% position command 
and 0% position command, a total of 2 position commands. 
Then repeat these two commands 100 times in sequence. The 
membership functions of the fuzzy variables before and after 
learning are shown in Fig. 15. The fuzzy rule base of ΔKP, ΔKI, 
and ΔKD before and after learning are shown in Table XVI, 
Table XVII, and Table XVIII. 

NB NS ZO PS PB

0 74-74 -43 43

s
Initial membership function

Adjusted membership function

Fig. 15. The membership functions of the fuzzy variables before and after 
learning. 

TABLE XVI 
THE FUZZY RULE BASE OF ΔKP BEFORE AND AFTER LEARNING 

ΔKP 

s NB NS ZO PS PB 

uold PB NS ZO PS NB 

unew PB NB PS NB NS 

TABLE XVII 

THE FUZZY RULE BASE OF ΔKI BEFORE AND AFTER LEARNING 

ΔKI 

s NB NS ZO PS PB 

uold NB NS ZO PS PB 

unew NB NB PS NB PB 

TABLE XVIII 

THE FUZZY RULE BASE OF ΔKD BEFORE AND AFTER LEARNING 

ΔKD 

s NB NS ZO PS PB 

uold PS NS NS ZO PB 

unew NB NB ZO NB PS 

In the experiment of position control command response, 
there are mainly four comparative control methods: (1) PID, (2) 
fuzzy PID (FSPID), (3) fuzzy PID based on the membership 
functions of Q-learning (QMFSPID), and (4) Fuzzy PID based 
on Q-learning membership functions and fuzzy rule base 
(QMFFSPID). The position control command response is 
shown in Fig. 16, and the comparison of the Integral Square 
Error (ISE) and settling time is shown in Table XIX. 
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Fig. 16. Position control command response of voice coil motor. 

TABLE XIX 

THE COMPARISON BETWEEN INTEGRAL SQUARE ERROR (ISE) AND SETTLING 

TIME OF VOICE COIL MOTOR 

 PID FSPID QMFSPID QMFFSPID 

ISE 341.22 308.77 305.64 286.30 

Settling Time (ms) 98 88 87 80 

B. Speed Control of the Brushless DC Motor Experimental 

Platform 

In the process of learning and adjusting the membership 
functions of the fuzzy variable of the fuzzy controller by 
Q-learning, it is mainly to sequentially order 80% speed 
command, 0% speed command, -80% speed command and 0% 
speed command on the motor of the brushless DC motor 
experiment platform. There are 4 speed commands in total, and 
these 4 commands are repeated 100 times in sequence. The 
membership functions of the fuzzy variables before and after 
learning are shown in Fig. 17. The fuzzy rule base of ΔKP, ΔKI,

and ΔKD before and after learning are shown in Table XX, Table 
XXI, and Table XXII. 

NB NS ZO PS PB

0 83-83 -46 46

s
Initial membership function

Adjusted membership function

Fig. 17. The membership functions of the fuzzy variables before and after 

learning. 

TABLE XX 
THE FUZZY RULE BASE OF ΔKP BEFORE AND AFTER LEARNING 

ΔKP 

s NB NS ZO PS PB 

uold PB NS ZO PS NB 

unew PB ZO PB ZO NB 

TABLE XXI 

THE FUZZY RULE BASE OF ΔKI BEFORE AND AFTER LEARNING 

ΔKI 

s NB NS ZO PS PB 

uold NB NS ZO PS PB 

unew NS PS PS PB PB 

TABLE XXII 
 THE FUZZY RULE BASE OF ΔKD BEFORE AND AFTER LEARNING 

ΔKD 

s NB NS ZO PS PB 

uold PS NS NS ZO PB 

unew NB PS NS PB NB 

In the experiment of speed control command response, there 
are mainly 4 comparative control methods: (1) PID, (2) FSPID, 
(3) QMFSPID, and (4) QMFFSPID. The speed control 
command response is shown in Fig. 19, and the comparison 
between the ISE and the settling time is shown in Table XXIII. 

Fig. 19. Speed control command response of brushless DC motor. 

TABLE XXIII 
THE COMPARISON BETWEEN THE ISE AND THE SETTLING TIME OF BRUSHLESS 

DC MOTOR 

 PID FSPID QMFSPID QMFFSPID 

ISE 154.41 98.23 89.79 88.73 

Settling Time (ms) 92 55 50 48 

C.Motor Speed Control of Two-Wheeled Self-Balancing 

Vehicle 

In the process of learning and adjusting the membership 
functions of the fuzzy variable of the fuzzy controller by 
Q-learning, it is mainly to sequentially order 80% speed 
command, 0% speed command, -80% speed command and 0% 
speed command, a total of 4 speed commands. Then repeat these 
4 commands 100 times in sequence. The membership functions 
of the fuzzy variables before and after learning are shown in Fig. 
20. The fuzzy rule base of ΔKP, ΔKI, and ΔKD before and after 
learning are shown in Table XXIV, Table XXV, and Table 
XXVI. 

NB NS ZO PS PB

0 83-83 -43 43

s
Initial membership function

Adjusted membership function

Fig. 20. The membership functions of the fuzzy variables before and after 
learning. 

TABLE XXIV 
 THE FUZZY RULE BASE OF ΔKP BEFORE AND AFTER LEARNING 

ΔKP 

s NB NS ZO PS PB 

uold PB NS ZO PS NB 

unew PB PS PB ZO NS 

TABLE XXV 

THE FUZZY RULE BASE OF ΔKI BEFORE AND AFTER LEARNING 

ΔKI 

s NB NS ZO PS PB 

uold NB NS ZO PS PB 

unew NS ZO PS PB NB 
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TABLE XXVI 

THE FUZZY RULE BASE OF ΔKD BEFORE AND AFTER LEARNING 

ΔKD 

s NB NS ZO PS PB 

uold PS NS NS ZO PB 

unew NS NS PS PB NS 

In the experiment of speed control command response, there 
are mainly 4 comparative control methods: (1) PID, (2) FSPID, 
(3) QMFSPID, and (4) QMFFSPID. The speed control 
command response is shown in Fig. 21, and the comparison 
between the ISE and the settling time is shown in Table XXVII. 

Fig. 21. Motor speed control command response of two-wheeled self-balancing 
vehicle. 

TABLE XXVII 

THE COMPARISON BETWEEN THE ISE AND THE SETTLING TIME OF 

TWO-WHEELED SELF-BALANCING VEHICLE 

 PID FSPID QMFSPID QMFFSPID 

ISE 64.03 53.47 51.71 50.03 

Settling Time (ms) 160 155 145 140 

IV. CONCLUSIONS 

In this paper, a framework with the Q learning algorithm is 
proposed to adjust the membership functions of fuzzy variables 
and the rule base of the fuzzy PID controller. Moreover, in order 
to improve the learning efficiency and reduce the complexity of 
the Q learning algorithm for learning the parameters of the fuzzy 
controller, the sliding mode concept is used to reduce the 
number of parameters required by the fuzzy controller. From the 
experimental results of the voice coil motor, brushed DC motor, 
and brushless DC motor, we can see that the proposed method 
does have better motor control results. 
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