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Abstract—Based on the Genetic Algorithm (GA) and Immune 
Genetic Algorithm (IGA), this letter discusses the mobile robot 
path planning with different velocity constraints. If the cost 
function for the optimal robotic path planning is defined as the 
distance travelled by a robot, the optimal solution thus means the 
shortest path. However, in some cases, a mobile robot may move 
in different velocities due to the different terrain conditions. Under 
such cases, the shortest path will not necessarily represent the 
shortest time. GA and IGA are utilized to solve the optimal robotic 
path planning issue considering obstacle avoidance and velocity 
constraints. Four different terrain conditions are applied in this 
study, and four different moving velocities are assumed, 
respectively. Simulation results indicate that both GA and IGA 
will work effectively to get the optimal path for mobile robotic 
navigation. There is little difference between both of their CPU 
execution time. In some cases, IGA will get the same results with 
those by GA, however, in some cases, IGA can get the better results 
than those by GA. 

Index Terms—Genetic Algorithm (GA), Immune Genetic 

Algorithm (IGA), mobile robot path planning, obstacle avoidance, 

velocity constraints. 

I. INTRODUCTION 

HE evolutionary algorithms, mimicking the biological 

mechanism to get an optimal design in specific constraints, 

have been widely applied to the control, path planning, and 

navigation in robot research, e.g., see [1]-[17]. Genetic 

Algorithm (GA) was first proposed by Holland 1975 [1] based 

on the genetic scheme and bio-evolution. Being a global search 

algorithm, it is capable of producing better solutions in complex 

situations through chromosome representation, reproduction, 

crossover, and mutation [1], [18]. 

    The basic theory of the immune system was first proposed by 

Jerne in 1973 [19]. Richter set up a mathematical model based 

on the theory proposed by Jerne [20]. Dasgupta proposed the 

immune system theory and discussed its model applicable to 

various research areas in 1997 [21]. Dote developed an 

algorithm to model the optimization problem of the immune 

system in 1988 [22]. The design concept of Immune Genetic 

Algorithm (IGA) simulates the immune system. According to 

the characteristics of antibodies to antigens, the antibodies react 

to antigens. Through calculation, the most suitable antibodies 

can be found. The best antibodies in the evolution of each 

generation can be selected. The antibodies and antigens are 

regarded as spatial solutions and fitness functions, respectively, 

and the similarity of antibody populations is used to increase 

the diversity of antibody populations, thereby reducing the 

possibility of falling into the regional optimal solution. 
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Therefore, in the process of solving, IGA can quickly converge 

to get an optimized solution and then improve the efficiency of 

the overall algorithm.  

In the research of the mobile path planning, if we divide the 

real map into many grids, and give the starting point as well as 

the end point, then many different paths can be selected to 

complete the moving mission. In general, the cost function for 

the optimal robotic path planning will be defined as the distance 

traveled by a robot, and the optimal solution thus means the 

shortest path, i.e., the shortest time. However, in some cases, a 

robot may move in different velocities due to the different 

terrain conditions. In this study, we consider the mobile robotic 

path planning issue based on this viewpoint. Under different 

terrain conditions, a robot will be assumed to move with 

different velocity constraints, and the shortest path will not 

necessarily represent the shortest time. Therefore, GA and IGA 

are considered in this study to complete the optimal robot 

navigation. 

    The rest of the letter is organized as follows. Section II 

discusses the design of GA. Section III states the design of IGA. 

Section IV gives the simulation and discussion. Finally, Section 

V draws the conclusion. 

II. DESIGN OF GENETIC ALGORITHM 

The Genetic Algorithm (GA) is operated by the following 

steps:  

Step 1: According to the number of the parent population, 

randomly initialize the path number. Here, the initialization is 

regarded as the first-generation parent population. 

Step 2: According to the fitness function, design the fitness 

value of each gene in the parent population. 

Step 3: Use reproduction to decide the gene groups of the 

mating pool.  

Step 4: Select genes from the mating pool to do crossover and 

replace the originally selected genes. 

Step 5: Select genes from the group after mating to operate 

mutation action, and replace the originally selected genes. 

Step 6: Jump back to Step 2 and recalculate the fitness value 

of the new generation of gene groups until the iteration is 

completed. The best gene of each generation will be output. 

A path from the starting point to the end point is defined as a 

gene. The initialization must generate the same number of paths 

as the genes in the parent population. The most important step is 

to ensure that the path of each gene must be continuous and 

unobstructed during the initialization process in order to 

complete a path without error.  
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In the genetic algorithm, by designing and calculating the 

fitness function, we can judge if a gene is good or worse. The 

good gene will get the chance to be selected, and the bad one 

will be eliminated. We design the fitness function as: 

𝑓𝑘 =
1

√𝑛𝑘∙𝑡𝑘
,                                    (1) 

in which 𝑓𝑘 represents fitness value of the 𝑘𝑡ℎ gene; n means 

the total number of walking grids; t is total moving time in the 

𝑘𝑡ℎ gene path. 

III. DESIGN OF IMMUNE GENETIC ALGORITHM 

The Immune Genetic Algorithm (IGA) is operated by the 

following steps:  

Step 1: According to the number of the parent population, 

randomly initialize the path number. Here, the initialization is 

regarded as the first-generation parent population. 

Step 2: Calculate the fitness value of each gene in the parent 

population according to the designed fitness function. 

Step 3: Calculate: (i) the similarity of fitness values between 

genes and genes; (ii) the expected reproductive rate; (iii) the 

probability for the genes to be selected and copied to the mating 

pool. 

Step 4: Select genes to the mating pool according to the 

selection probability. 

Step 5: Select genes from the mating pool to do crossover and 

replace the originally selected genes. 

Step 6: Select genes from the group after mating to operate 

mutation action, and replace the originally selected genes. 

Step 7: Because the good genes of each generation are 

retained, inferior genes with poor fitness values will be deleted 

in the process. Therefore, it is necessary to judge whether the 

number of gene groups is the same as that of the designed parent 

population. If they are different, a new gene path must be 

generated to complement the number of gene groups. 

Step 8: Jump back to Step 2 and recalculate the fitness value 

of the new generation of gene groups until the iteration is 

completed. The best gene of each generation will be output. 

The calculation of similarity is derived from the theory 

proposed by Jerne [19]. A variety of antibodies are produced by 

lymphocytes to fight against foreign antigens. Although each 

antibody has a specific antigen to fight against, there are still a 

lot of similarities between antibodies. For this part, IGA defines 

how similar the information contained in each gene of the parent 

population will be.  

Assume that there are n genes in the gene group of each 

generation, and the length of each gene is expressed as 𝑚 × 1, 

that is, each gene is a vector of m elements. Two genes are 

represented as 𝐮 = {𝑢1, 𝑢2, ⋯ , 𝑢𝑚}  and 𝐯 = {𝑣1, 𝑣2, ⋯ , 𝑣𝑚} , 

respectively, and the fitness values of the two genes are 𝑓𝐮 and 

𝑓𝐯, respectively. Let 𝜀 represent the threshold for the similarity 

of genes, and 𝜀 > 0. Then, the similarity of two genes  𝑓𝐮 and 𝑓𝐯 

can be set as the following 𝑄𝑠(𝐮, 𝐯) [23]: 

1 − 𝜀 ≤ 𝑄𝑠(𝐮, 𝐯) =
𝑓𝐮

𝑓𝐯
≤ 1 + 𝜀.                   (2) 

Next, we discuss the expected reproductive rate. If there are n 

genes in the gene group, the probability of the 𝑘𝑡ℎ gene being 

selected for reproduction in the whole group can be calculated 

by the following equation: 

𝑒𝑘 =
𝑓𝑘

(𝐶𝑘)𝛽,                                    (3) 

in which 𝑒𝑘 means the expected reproductive rate; 𝑓𝑘 represents 

fitness value of the 𝑘𝑡ℎ  gene; 𝐶𝑘  is the number of gene 

similarities calculated for the 𝑘𝑡ℎ gene satisfying Eq. (1); 𝛽 is 

one of the important setting parameters influencing the fitness 

value of genes and the number of similarity in the expected 

reproductive rate. 

Concerning the selection probability, it can be calculated by 

the following equation: 

𝑃𝑠𝑘=
𝑒𝑘∙𝑛

∑ 𝑒𝑖
𝑛
𝑖=1

 ,                                    (4) 

in which 𝑃𝑠𝑘 represents the probability of the  𝑘𝑡ℎ gene being 

selected for mating and mutation; 𝑒𝑘  is the expected 

reproductive rate calculated in Eq. (4); ∑ 𝑒𝑖
𝑛
𝑖=1  represents the 

sum of the expected reproductive rates of all genes in this 

generation; n represents the number of parent population. Here, 

the probability of each gene being copied to the mating pool is 

redefined. Finally, just like the roulette type selection in the 

genetic algorithm, the greater the fitness value of the 

recalculated gene, the more the path meets the requirement. 

Then, it has more chance to be selected for reproduction, and 

entering the mating pool to reproduce the next generation. 

IV. SIMULATION AND DISCUSSION 

In this study, we design two kinds of grid-based maps by the 

size of Case (1) 30×30 ; Case (2) 50×50 , and discuss the 

following two terrain cases, respectively: Case (a) Without 

terrain variation; Case (b) Four different terrain conditions and 

four different moving velocities, respectively. For the size of 

30×30 grid-map, we have designed the experiments with three 

sets of different starting points and end points as Case (i) {(11, 

25), (30, 07)}; Case (ii) {(30, 07), (02, 28)}; Case (iii) {(02, 28), 

(17, 14)}. For the size of 50×50 grid-map, we have designed 

the experiments with five sets of different starting points and end 

points as Case (I) {(46, 48), (07, 26)}; Case (II) {(04, 02), (28, 

44)}; Case (III)  {(22, 03), (29, 19)}; Case (IV)  {(29, 19), (42, 

26)}; Case (V)  {(42, 07), (22, 03)}. Moreover, the Open Vehicle 

Routing Problem (OVRP) is also discussed with: Case (A) The 

grid-based map with the size of 30×30, starting points and end 

points as {(01, 03), (17, 14)}, and four intermediate nodes; Case 

(B) The grid-based map with the size of 50×50, starting and end 

points as {(26, 28), (15, 36)}, and nine intermediate nodes. Both 

GA and IGA are utilized to do the path planning. We use 100, 

300, and 500 iterations. The number of the genes in the parent 

population is 10. The number of genes in the mating pool is 10. 

The mutation probability is 80%, and the crossover probability 

is 10%. In IGA, 𝜀 is 95% and 𝛽 is 2. Some of the simulation 

results are shown in Figs 1-14.  

All the simulation results are in compliance with the 

restrictions on the mobile robot path movement, such as the 

obstacle avoidance effect of turning and moving on different 

terrain conditions. 
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Fig. 1.  Path planning by the parent population (the 0th generation) of GA in 

Case (1)-(a)-(i) 30×30 grid-map, without terrain variation, starting point and 

end point {(11, 25), (30, 07)}. 

 
Fig. 2.  Path planning by the 1th generation of GA in Case (1)-(a)-(i) 30×30 grid-

map, without terrain variation, starting point and end point {(11, 25), (30, 07)}. 

 
Fig. 3.  Optimal path planning by GA in Case (1)-(a)-(i) 30×30 grid-map, 

without terrain variation, starting point and end point {(11, 25), (30, 07)}. 

 
Fig. 4.  Path planning by the parent population (the 0th generation) of IGA in 

Case (1)-(a)-(i) 30×30 grid-map, without terrain variation, starting point and 

end point {(11, 25), (30, 07)}. 

 
Fig. 5.  Path planning by the 1th generation of IGA in Case (1)-(a)-(i) 30×30 

grid-map, without terrain variation, starting point and end point {(11, 25), (30, 

07)}. 

 
Fig. 6.  Optimal path planning by IGA in Case (1)-(a)-(i) 30×30 grid-map, 

without terrain variation, starting point and end point {(11, 25), (30, 07)}. 

 
Fig. 7.  Path planning by the parent population (the 0th generation) of GA in 

Case (2)-(b)-(I) 50×50 grid-map, four different terrain conditions, starting point 

and end point {(46, 48), (07, 26)}. 

 

Fig. 8.  Path planning by the 1th generation of GA in Case (2)-(b)-(I) 50×50 

grid-map, four different terrain conditions, starting point and end point {(46, 

48), (07, 26)}. 
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Fig. 9.  Optimal path planning by GA in Case (2)-(b)-(I) 50×50 grid-map, four 

different terrain conditions, starting point and end point {(46, 48), (07, 26)}. 

 

 
Fig. 10.  Path planning by the parent population (the 0th generation) of IGA in 

Case (2)-(b)-(I) 50×50 grid-map, four different terrain conditions, starting point 

and end point {(46, 48), (07, 26)}. 

 
Fig. 11.  Path planning by the 1th generation of IGA in Case (2)-(b)-(I) 50×50 

grid-map, four different terrain conditions, starting point and end point {(46, 
48), (07, 26)}. 

 

 
Fig. 12.  Optimal path planning by IGA in Case (2)-(b)-(I) 50×50 grid-map, 

four different terrain conditions, starting point and end point {(46, 48), (07, 26)}. 

 
Fig. 13.  Optimal path planning by GA in Case (2)-(b)-(B) 50×50 grid-map, 
four different terrain conditions, OVRP with s starting point and end point as 

{(26, 28), (15, 36)} and nine intermediate nodes. 

 
Fig. 14.  Optimal path planning by IGA in Case (2)-(b)-(B) 50×50 grid-map, 
four different terrain conditions, OVRP with starting point and end point as 

{(26, 28), (15, 36)} and nine intermediate nodes. 

The original shortest path planning is also changed after 

calculation by algorithms due to terrain changes. By using GA 

and IGA, it is not easy to fall into the local solutions. It still can 

be seen from the simulation results that even if the number of 

iterations has been completed, there are still some fragments of 

imperfect paths. However, it is very close to the optimal 

solution for the entire problem. IGA is better than GA in fitness 

performance in various path planning cases. Under the cases 

discussed in this research for mobile robot path planning, IGA 

in some cases performs better than GA even though there is 

little difference between their CPU execution time. 

V. CONCLUSION 

In this study, we consider the mobile robotic path planning 

issue based on the fact that a robot may move under different 

terrain conditions. A robot will be assumed to move with 

different velocity constraints and the shortest path will not 

necessarily represent the shortest time. Since both Genetic 

Algorithm (GA) and Immune Genetic Algorithm (IGA) own 

the characteristic of not easy falling into the local solution, we 

can utilize them to solve the optimal robotic path planning issue 

considering different terrain cases. Four different terrain 

conditions are applied in this study, and thus four different 

moving velocities are assumed, respectively. Moreover, the 

Open Vehicle Routing Problem (OVRP) is also discussed. 

Simulation results show that both GA and IGA will work 

effectively to get the optimal path for mobile robotic navigation. 

There is little difference between both of their CPU execution 

time. In some cases, IGA will get the same results with those 
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by GA, however, in some cases, IGA can get the better results 

than those by GA. 
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