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Abstract—This work implements the Real-Time Appearance 
Map (RTAB-MAP) algorithm on a unmanned aerial vehicle (UAV) 
to perform indoor localization task. The RTAB-MAP, based on a 
RGB-D camera, estimates the camera moving trajectory, mileage 
and local map according to the feature points between adjacent 
images to obtain globally consistent map information and camera 
locations. However, when using a camera for simultaneous 
localization and mapping (SLAM), images are prone to blurred 
by the fast motion of the vehicle, on which the camera is mounted, 
or the overlapping area of two consecutive image frames is too 
small, causing the feature matching failed. Therefore, this study 
combines an inertial measurement unit (IMU) to provide 
odometry data to solve the problem. In this study, when the 
communication between the experimental drone and ground 
station is well established, the ground station collects the sensory 
data from the drone and builds the map of the indoor 
environment through the RTAB-MAP method. According to the 
map, the system plans a path and sends waypoints to test the 
localization of the drone. Simulation and experimental results 
reveal that average trajectory errors are within ± 5 cm. 

Index Terms—Indoor Localization, RTAB-MA, SLAMP, UAV 

I. INTRODUCTION 

N order to make UAVs fly smoothly in indoor environments 
and carry out tasks, they must be equipped with sensors (such 

as laser range finder (LRF), infrared sensor, RGB camera, 
RGB-D camera, etc.) to obtain environment information (such 
as obstacles, walls, turns, etc.). The process, using algorithms 
and sensors to build the map of the environment and utilizing the 
map for localization at the same time, is called simultaneous 
localization and mapping (SLAM) [1]. If the established map is 
consistent with the environment, the system can use the map and 
features of the environment to perform further tasks. 

In the early days, LRFs were used for indoor localization for 
UAVs [2][3]. In recent years, some scholars have begun to use 
monoculars, binoculars, depth cameras for visual localization 
[4][5][6]. 

Ragot et al. compared two common methods for visual 
SLAM, ORB-SLAM and RTAB-MAP. In terms of mapping 
and trajectory estimation, the RTAB-MAP is quite superior and 
it has memory management function, which is suitable for 
real-time mapping in long-term or large-scale environment. On 
the contrary, the ORB-SLAM is faster and more accurate than 
RTAB-MAP in feature extraction and matching [7]. Hence, in 
this paper, we employ the RTAB-MAP as the main SLAM 
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algorithm and use the ORB-SLAM for feature extraction and 
feature matching to realize an indoor localization system on a 
quadrotor. 

This article is organized as follows. The RTAB-MAP 
algorithm is described in section II. A UAV localization 
simulation is conducted in Section III. System architecture is in 
section IV. Section V depicts the UAV localization experiments. 
Finally, some concluding remarks and future perspectives are 
given in section VI. 

II.  THE RTAB-MAP ALGORITHM 

The RTAB-MAP was originally regarded as a loop-closure 
detection method based on memory management, where 
long-term or large-scale mapping can be achieved by limiting 
the size of the map. After that, an open source library of 
RTAB-MAP has been developed and has become a complete 
SLAM algorithm. RTAB-MAP has the advantages of real-time 
mapping, stable odometer and stable positioning, and supports 
monocular camera, binocular camera, depth camera and laser. 
Fig. 1 is a block diagram of the visual based RTAB-MAP. Each 
block is described below. 

A. Sensor Data 

The main task of this step in RAB-MAP is to read and 
preprocess the camera image in visual SLAM. If it is a robot, it 
can read other sensor information, such as IMU, and 
synchronize the information with the camera. In addition to the 
visual SLAM, the laser can also be used as the main sensor. The 
RTAB-MAP can also use a camera and a laser at the same time.  

Sensor Data

Frontend

Visual Odometry

Backend

Map Optimization

Mapping

Loop-Closure Detection

          
Fig. 1. RTAB-MAP block diagram 

          
Fig. 2.  RealSense R200 (RGB-D camera)  

Jian-Xun Wu, Yuan-Pao Hsu, Member, RST 

The Indoor Localization of a Vision-Based 

Unmanned Aerial Vehicle 

I 

iRobotics

Vol. 4, No. 1, March, 2021



Jian-Xun Wu, Yuan-Pao Hsu  
Journal of Robotics Society of Taiwan (iRobotics) 

2 

odom base_link camera_link

Fig. 3. Visual odometer and TF frame of robot 
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Fig. 4. Memory management block diagram 

In this study, a RGB-D camera (Fig. 2) is selected as the 
main sensor. After camera calibration, the system reads the IMU 
data, and synchronizes the data with camera data to become the 
input message for the RTAB-MAP. 

B. Visual Odometry 

The purpose of the visual odometry is to estimate the 

motion between two consecutive images of the camera and 

gives a rough local map. RGB-D camera or stereo camera can 

be applied as image input source. Before the visual odometer 

works, we need to know the relative pose of the camera to the 

robot in order for the TF in ROS to convert coordinate frames 

between visual odometer and robot frame. Fig. 3 shows the TF 

framework after executing the visual odometer node. 

For estimating the motion of the camera from two 

consecutive images, the RTAB-MAP extracts features from 

current RGB image. Then, after doing feature matching and 

optimization with the previous image, the camera posture is 

obtained by running the motion estimation algorithm. And 

finally, the optimized camera posture is attained 

We choose ORB [9] to be the feature extraction and 

matching algorithm [10], and EPNP (3D-2D) to be the motion 

estimation method [11]. The RANSAC [12] and Bundle 

Adjustment [13] algorithms are for the optimization of 

matching points and motion estimation, respectively. 

C. Loop-Closure Detection 

Posture optimization is important in SLAM. In the process 

of mapping, when the path continues to extend, errors will 

inevitably be accumulated and may result in wrong posture and 

map. Therefore, RTAB-MAP uses the loop-closure detection 

method to identify the scene that it has previously reached to 

optimize the pose. However, after a long time of mapping, the 

required processing time will increase with the size of the 

internal map, causing the real-time mapping becomes more 

difficult. Therefore, RTAB-MAP adopts a memory 

management to limit the number of locating points during 

loop-closure detection. This solves the problem that it can't do 

mapping in a long time or a large environment.  

Fig. 4 is the block diagram of the memory management. 

STM is the entry point when receiving a new image. All images 

in WM are used to participate in the operation of loop-closure 

detection. When the WM size exceeds a threshold, the image 

that is most unlikely to form a loop-closure will be transferred 

to LTM. If the loop-closure detection of an image is detected, 

WM retrieves the images related to the detected image from 

LTM to speed up the detection process. This makes sense. 

Imaging, when we see a familiar scene, it is likely we will soon 

see scenes nearby the familiar scene. 

D. Map Optimization 

Although RTAB-MAP has good performance in 
loop-closure detection, it still has errors. In the visual loop 
detection, when two postures are different but the similarity is 
very high or even the same, this may produce false loop-closure 
detection and add more errors into the whole map. 

For this, in RTAB-MAP, users can choose g2o [9], gtsam 
[10] or Toro [11] to detect the error loop-closure detection. 
When loop-closure detection or some localization points are 
transferred to LTM, a graphic optimization will be carried out. 
According to [12], the above three algorithms have been tested 
in an environment with eight corridors. The results show that 
there is no obvious overlap in the optimization results by using 
g2o. Therefore, we choose g2o as the algorithm for map 
optimization in this study. 

III. THE UAV LOCALIZATION SIMULATION 

The quadrotor indoor localization is simulated in the 
simulation environment of the gazebo [13] in Ubuntu operating 
system. Using robot localization node, which combines visual 
odometer and IMU data, and adjusting TF, a stable SLAM can 
be achieved. Finally, the UAV is controlled to complete the 
indoor localization. 

A. Indoor Localization Simulation 

The purpose of this simulation is to control a UAV to fly 
accurately according to the planned waypoints in a known 
indoor environment. This article carries out two flight modes, 
vertical takeoff-landing and square path flight. During each 
flight, the error between the trajectory estimated by 
RTAB-MAP and the real trajectory are calculated per second. 

Fig. 5. Simulation environment for vertical takeoff-landing 
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4. TABLE I 
5. ERRORS OF TAKEOFF-LANDING SIMULSTION 

Error of trajectory 

Average(m) Max(m) 

1st 0.017 0.079 

2nd 0.014 0.054 

3rd 0.019 0.137 

4th 0.015 0.111 

5th 0.012 0.035 

Average 0.015 0.083 

Error between return point and starting point 

x(m) y(m) 

1st 0.035 -0.008 

2nd -0.043 -0.005 

3rd 0.019 -0.040 

4th 0.047 -0.014 

5th -0.024 -0.002 

Average 0.007 -0.014 

6. Fig. 6. Error of 5th trial of vertical takeoff-landing 

1) Simulation of Vertical Takeoff-Landing 

In the simulation environment in Fig. 5, the drone flies 
vertically to altitude of 2 meters and descends along the same 
path. The yellow arrow is the flight path. The results are shown 
in TABLE I. The average error, the maximum trajectory 
displacement and errors between starting point and return point 
are calculated respectively. Fig. 6 shows the trajectory error of 
the 5th trial of vertical takeoff-landing. The x-axis is in second 
and the y-axis is in meter. The loop-closure detection occurs at 
25 seconds and 34.5 seconds causing the errors rapidly 
decreased. 

2) Simulation of Square Path Flight 

In Fig. 7, the UAV flies around the tree along a square path. 

The yellow arrow is the flight path. The errors are shown in 

Table 2. 

In TABLE II, it has about 130 position errors being 

calculated, in which each error is the displacement between the 

RTAB-MAP visual estimation and the real trajectory during 

flying along the square path. 

Although the maximum displacement error is about 46 cm, 

thanks to the correction of loop-closure detection, the average 

displacement error is only about 4.9 cm, and the average errors 

of x and y between the return point and starting point are 

-1.1cm and -2.1cm, respetively. 

Fig. 7. Simulation environment for square path flight 

7. TABLE II 
8. ERROR OF SQUARE PATH SIMULATION 

Error of trajectory 

 Average(m) Max(m) 

1st 0.053 0.467 

2nd 0.046 0.291 

3rd 0.053 0.428 

4th 0.048 0.394 

5th 0.043 0.267 

Average 0.049 0.369 

Error between return point and starting point 

x(m) y(m) 

1st 0.031 -0.044 

2nd -0.140 0.036 

3rd -0.004 -0.004 

4th 0.045 -0.041 

5th 0.014 -0.050 

Average -0.011 -0.021 

IV. SYSTEM ARCHITECTURE 

Fig. 8 shows the architecture of the experimental system. 
The system has a computer with Ubuntu operating system, a 
UAV, a ground station and a router. All of them need to be 
connected under the same network domain. The computer 
controls the UAV through TCP/IP [14] communication 
protocol and secure shell(SSH) [15] transmission protocol for 
sharing topics. Fig. 9 is the block diagram of steps for the UAV 
to perform indoor localization experiments. 

ROSMaster

Server Client

SSH

QGroundControl

Router

4. Fig. 8. Environment architecture 
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4.  Fig. 9. Indoor positioning block diagram of UAV 

5. TABLE III 
6.  ERROR OF TAKEOFF-LANDING EXPERIMENTS 

Error of trajectory 

Average(m) max(m) 

1st 0.053 0.467 

2nd 0.046 0.291 

3rd 0.053 0.428 

4th 0.048 0.394 

5th 0.043 0.267 

Average 0.049 0.369 

Estimated error between return point and starting point 

x(m) y(m) 

1st 0.031 -0.044 

2nd -0.140 0.036 

3rd -0.004 -0.004 

4th 0.045 -0.041 

5th 0.014 -0.050 

Average -0.011 -0.021 

7.  
8. TABLE IV 

9. ERROR OF TAKEOFF-LANDING BETWEEN THE RETURN POINT 
AND THE STARTING POINT 

Actual error between return point and starting point 

x(m) y(m) 

1st  0.034 0.010 

2nd 0.019 0.004 

3rd 0.051 0.002 

4th 0.020 0.008 

5th 0.039 0.018 

Average 0.032 0.008 

10.  

V. THE UAV LOCALIZATION EXPERIMENTS 

This section presents the experimental results of indoor 
localization for the quadrotor. The two flight modes as the 
simulation are performed in the experiments. Because GPS 
can't be used as the reference of real trajectory indoors, and no 
other sensors can accurately calculate the posture of the UAV. 
Therefore, in the ROS, setpoints are taken as the real trajectory 
in our experiments. 

We use the Intel aero quadrotor for the experiments [21]. 
The accelerometer, gyroscope, compass and barometer sensors 

are calibrated in the ground station, and the PID control 
parameters are also adjusted in advance. 

A. Experimental Results of Takeoff-Landing 

In this experiment, the flight altitude is 40 cm. As shown in 
TABLE III, the average error, the maximum displacement and 
errors of return point to the starting point are calculated 
respectively. TABLE IV shows the actual errors between the 
return point and the starting point. 

B. Experimental Results of Square Path 

The experimental results in TABLE V and VI show that the 
actual position (x, y) error (TABLE VI) and estimated value (x, 
y) error (the second half of TABLE V) of return point to 
starting point are all not more than 7 cm. And the average error 
between estimated postures and setpoints of each waypoint is 
within 4.2 cm. These prove that the system can accurately 
complete the indoor positioning task. 

Fig. 10. Indoor environment for experiment 

9. TABLE V 
10. ERROR OF SQUARE PATH EXPERIMENTS 

Error of trajectory 

Average(m) max(m)

1st 0.039 0.111 

2nd 0.043 0.104 

3rd 0.038 0.108 

4th 0.047 0.119 

5th 0.041 0.097 

Average 0.042 0.108 

Estimated error between return point and starting point 

x(m) y(m) 

1st -0.076 -0.040 

2nd -0.051 -0.024 

3rd -0.070 -0.046 

4th -0.067 -0.037 

5th -0.062 -0.031 

Average -0.065 -0.036 

11.  
12. TABLE VI 

13. ERROR OF SQUARE PATH FLIGHT BETWEEN THE RETURN 
POINT AND THE STARTING POINT 

Actual error between return point and starting point 

x(m) y(m) 

1st  0.071 0.035 

2nd 0.066 0.041 

3rd 0.052 0.032 

4th 0.070 0.039 

5th 0.064 0.021 

Average 0.065 0.034 

Trial 
Error 

Trial Error 

Trial 
Error 

Trial Error 

Trial Error 

Trial Error 



5 

Fig. 11. Diagram of network jitter 

VI. CONCLUSION AND FUTURE PERSPECTIVE 

A. Discussion and Conclusion 

The system connects the drone and the server under the same 
domain through Wi-Fi. Due to the network jitter, as shown in Fig. 
11, it causes high delays at certain times randomly. Therefore, 
if the drone encounters network jitter during flight, it will not 
be able to communicate with the server and lost its current 
location information. In severe cases, the jitter may last for 2-3 
seconds, during this period of time the drone could fly along 
any direction. Until the end of the jitter, the UAV recognizes 
the current position again through the map and returns to the 
setting waypoint. This makes the drone could not fly stably for 
a long period of time. 

The system calculates the errors between the RTAB-MAP 
estimation trajectory and the real trajectory per second in the 
simulation. However, the real trajectory could not be obtained 
in our experiments. Therefore, in experiments the errors are the 
differences between the estimated postures and the waypoints. 
Anyhow, the simulation and experimental results show that the 
average errors of trajectory are less than 5 cm. In terms of 
distance, the purpose is to verify the indoor localization effect 
of a UAV when using visual-based RTAB-MAP. So we restrict 
the drone flying only along a 50 cm x 50 cm square path in the 
experiment. 

B. Contribution of this Study 

RTAB-MAP is a very mature method. Most related papers 
have used mobile robots with camera or laser to go with 
RTAB-MAP in indoor localization. There are few or even no 
related papers choosing UAVs as targets to run RTAB-MAP in 
indoor localization. Therefore, this paper implements an indoor 
localization system on a quadrotor, using RTAB-MAP algorithm, 
combined with RGB-D camera and IMU sensor, for self-
localization. Simulation and experimental results show that the 
integrated system can accurately perform indoor localization 
task. 

C. Future Work 

The integrated indoor positioning system in this study can 
be improved in the following aspects in the future. 

1) In this paper, due to the network jitter, all actions will be 
stopped for a certain period of time randomly, which deeply 
affects the mapping. In the future, we should choose a router 
with better performance to reduce the delay and network 
jitter. So the UAV and server can communicate with each 
other stably. 

2) We choose the Intel aero UAV, whose performance (such as 
CPU and GPU) is not good enough to perform SLAM tasks. 
So the images have to be sent to the server through wireless 
network for image processing. But this will encounter the 
problem of 1). Therefore, UAVs with better equipment 
should be selected in the future. Such that the server only 
needs to send commands to control the well-equipped UAV 
to get rid of the network jitter problem. 

3) The UAV performs only translational flight in this work. In 
the future, rotational flight should be added to make the 
system more flexible. 

4) We use only RGB images to complete the indoor positioning. 
In the future, we should add depth information to the system. 
So the system has more functions like obstacle avoidance and 
path planning to carry out the complete indoor navigation 
task. 
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