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Smooth Second Order Sliding Mode Stabilization of
Underactuated Two-Link Manipulators: The

Acrobot and Pendubot Examples
Fazal ur Rehman, Ibrahim Shah, and Waseem Abbasi

Abstract—This paper investigates robust stabilization of un-
deractuated two-link manipulators. The well-known benchmark
robotic mechanisms of the Acrobot and the Pendubot are taken
as case studies. These systems belong to a broader class of
underactuated mechanical systems which find many important
practical applications. To achieve desired control performance
and robustness, we propose a unified control design framework
based on the application of a smooth second-order sliding mode
(SSOSM) control. Furthermore, we design swingup control laws
and use the SSOSM control as balancing control to achieve
global stabilization in the presences of disturbances. Simulation
results verify the effectiveness of the proposed control design
approach. The proposed control design framework can be applied
to nonlinear systems other than the two-link manipulators.

Index Terms—two-link manipulator, second-order sliding mode
control, Acrobot, Pendubot, underactuated systems.

I. INTRODUCTION

THE diverse and complex nature of the two link manip-
ulators have led researchers and scientist in this field

to analyze the system on a case-by-case basis. Examples of
underactuated mechanical systems (i.e., with less degrees of
freedom) are Acrobot, Pendubot, pendulum systems, TORA
system and ball and beam system. These systems are highly
nonlinear and exhibit a non-zero degree of underactuation.
Acrobot (tip robot) and Pendubot (pendulum robot) are the
two-link manipulators and represent the broader class of
underactuated mechanical systems which are useful in many
practical applications. The Acrobot has an actuated elbow
(link 1) and a passive shoulder (link 2) while the Pendubot
has a passive elbow (link 1) and an actuated shoulder (link
2). Capturing the features of two degrees of freedom planar
robotic mechanisms, the Acrobot [1] and the Pendubot [2]
are used as nonlinear benchmark systems for research and
education in control theory, robotics, mechatronics, and ex-
perimentation. Both the systems have attracted the attention of
many researchers in the last few decades and are the subject
of excellent research works in the literature.

The control objective for the Acrobot and the Pendubot is
same: to move the system from the downward stable position
(both links down) to the upward unstable position (both links
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upward), and stabilize it thereafter. In the literature, as for
other pendulum systems like the cart-pendulum and the Furuta
pendulum, this control objective is achieved with the design
of two controls. First, a swingup control is designed to move
the system from the downward unstable position close to the
upward unstable position. Second, a stabilizing or balancing
control is designed to balance the system at the upward
unstable position. Hence, control and stabilization of these
system is a challenging and active research problem in field
of control theory.

The swingup control is well studied by many researchers
and the literature is vast. Different control design techniques
used to achieve swingup include: without state feedback using
oscillatory inputs [3], [4], energy-based [5], [6], energy-based
control combined with neural and fuzzy neural network [7],
[8], Lyapunov based [9], intelligent control [10], fuzzy con-
trol [11], partial feedback linearization [12], adaptive sliding
mode [13], virtual holonomic constraints based design [14],
and impulse-momentum approach [15]. On the other hand,
methods for balancing control are typically limited to the
linearization of the dynamics around the equilibrium point
and then using linear control techniques like linear quadratic
regulator (LQR) and pole placement to design control. This
approach is adopted in most works, for example, [15]–[17].

The reason for using linear methods is that underactuation
makes difficult the application of standard nonlinear control
methods like exact feedback linearization and backstepping
for the design of balancing control. However, a balancing
control obtained using the above mentioned linear control
techniques has limited practical usefulness due to small region
of attraction. Further, the control is not robust to uncertainties
and external disturbances and hence results in degraded sys-
tem performance. A balancing control obtained form robust
nonlinear control techniques like sliding mode control (SMC)
[18], [19] will not suffer from these drawbacks. This is the
motivation behind this work.

However, the application of SMC techniques to the Acrobot
and the Pendubot requires special consideration combined
with some novel approach because of the complexity of the
dynamics. First, we transform the dynamics of these systems
to normal forms which consist of a nonlinear subsystem and a
linear subsystem. Then we design sliding manifold for the non-
linear subsystem known as the Lagrangian zero dynamics and
apply smooth second-order sliding mode (SSOSM) to enforce
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sliding mode in the manifold along system dynamics such that
stability of the overall system is guaranteed. Although the
primary focus of this work is the design of SSOSM based
balancing controls, for completeness we also design swingup
controls to illustrate swingup and balancing. The application
of SSOSM which is both smooth and robust for the design of
balancing control of the Acrobot and the Pendubot in the presence
of disturbances is the novel contribution of this work.

The rest of the article is organized as follows. Section II
presents problem formulation. Section III presents the design
SSOSM based balancing controllers. Section IV presents the
design of swingup controllers. Section V presents simulation
results and discussion and finally section VI concludes the paper.

II. PROBLEM FORMULATION

Figure 1 shows the schematics of the Acrobot and the
Pendubot. The simulated physical parameters [1] are shown in
Table I. The dynamics of the Acrobot are described by:

m11(q2)q̈1 +m12(q2)q̈2 + c1(q, q̇) + g1(q1, q2) = 0,
(1a)

m21(q2)q̈1 +m22(q2)q̈2 + c2(q, q̇) + g2(q1, q2) = τ + d(t).
(1b)

The dynamics of the Pendubot are described by:

m11(q2)q̈1 +m12(q2)q̈2 + c1(q, q̇) + g1(q1, q2) = τ + d(t),
(2a)

m21(q2)q̈1 +m22(q2)q̈2 + c2(q, q̇) + g2(q1, q2) = 0. (2b)

In Eqs. (1) and (2) q = [q1, q2]T is the configuration vector;
m11(q2), m12(q2),m21(q2), and m22(q2) are the elements of
the positive definite symmetric inertia matrix; c1(q, q̇), and
c2(q, q̇) contains Coriolis and centrifugal terms; g1(q1, q2), and
g2(q1, q2) contains the gravitational terms, τ is the control
input and d(t) is the matched disturbance. Parameters in Eqs.
(1) and (2) are same for both the Acrobot and the Pendubot
and are given as:

m11(q2) = m1`
2
1 +m2(L2

1 + `22) + I1 + I2

+ 2m2L1`2 cos(q2),

m12(q2) = m2`
2
2 + I2 +m2L1`2 cos(q2),

m21(q2) = m12,

m22(q2) = m2`
2
2 + I2,

c1(q1, q̇1, q2, q̇2) = −m2L1`2 sin(q2)(2q̇1q̇2 + q̇22),

c2(q1, q̇1, q2, q̇2) = m2L1`2 sin(q2)q̇21 ,

g1(q1, q2) = −(m1`1 +m2L1)g sin(q1)

−m2`2g sin(q1 + q2),

g2(q1, q2) = −m2`2g sin(q1 + q2).

(3)

Both the Acrobot and the Pendubot have the following four
natural equilibrium points:

P1: (q1, q̇1, q2, q̇2) = (0, 0, 0, 0),
both link 1 and link 2 up; unstable
P2: (q1, q̇1, q2, q̇2) = (0, 0, π, 0),
link 1 up and link 2 down; unstable

P3: (q1, q̇1, q2, q̇2) = (π, 0, π, 0),
link 1 down and link 2 up; unstable
P4: (q1, q̇1, q2, q̇2) = (π, 0, 0, 0),
both link 1 and link 2 down; stable

The control objective is to drive the system from P4 to P1 and
balance it there afterward.

The strong nonlinearities in Eq. (3) show the high level of
difficulty in control design for the Acrobot and the Pendubot.
It is well known that the state space representations of Eq.
(1) and Eq. (2) are not directly suitable for control design
purposes even in the absence of uncertainties. To facilitate the
design of sliding mode control laws for the Acrobot and the
Pendubot, we use input and state transformations to put the
dynamics in Eqs. (1) and (2) in normal forms.

(a) The Acrobot (b) The Pendubot

Fig. 1: Schematics of the Acrbot and the Pendubot

For the Acrobot, Eq. (1), using the collocated partial
feedback linearizing control

τ = (m22−m21m
−1
11 m12)w+c2+g2−m21m

−1
11 (c1+g1), (4)

where w is a new control input, and the nonlinear coordinate

transformation [20]:

z1 =q1 + ψ(q2),

z2 =m11(q2)q̇1 +m12(q2)q̇2,
ξ1 =q2, ξ2

=˙q2,

ψ(q2) =

∫ q2

0

m−1
11 (θ)m12(θ)dθ,

(5)

transforms the nominal dynamics of the Acrobot in Eq. (1)
into the normal form:

z̈ =
1

a+ b cos(ξ)

(
k1 sin(ϕ1(z, ξ)) + k2 sin(ϕ2(z, ξ))

+ b sin(ξ)ξ̇ż
)
, (6a)

ξ̈ = w, (6b)

where
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TABLE I: Simulated physical parameters of the Acrobot and the Pendubot

System m1(kg) m2(kg) L1(m) L2(m) `1(m) `2(m) I1(kg.m2) I2(kg.m2)

Acrobot 1 1 1 2 0.5 1 0.083 0.33

Pendubot 1 1 1 2 0.5 1 0.083 0.33

ϕ1(z, ξ) = z − ξ

2
− w1 tan−1

(
w2 tan

(
ξ

2

))
,

ϕ2(z, ξ) = z +
ξ

2
− w1 tan−1

(
w2 tan

(
ξ

2

))
,

w1 =
2c− a√
a2 − b2

,

w2 =

√
a− b
a+ b

,

a = m1`
2
1 +m2(L2

1 + `22) + I1 + I2,

b = 2m2L1`2,

c = m2`
2
2 + I2,

k1 = (m1`1 +m2L1)g,

k2 = m2`2g.

(7)

For the Pendubot, Eq. (2), using the noncollocated partial
feedback linearizing control

τ = (m12−m11m
−1
21 m22)w+c1+g1−m11m

−1
21 (c2+g2), (8)

where w is a new control input, and the nonlinear coordinate
transformation [20]:

z1 =q1 + ψ(q2),

z2 =m21(q2)q̇1 +m22(q2)q̇2,
ξ1 =q2, ξ2

=˙q2,

ψ(q2) =

∫ q2

0

,m−1
21 (θ)m22(θ)dθ,

(9)

transforms the nominal dynamics of the Pendubot in Eq. (2)
into the normal form:

z̈ =
1

c+ b cos(ξ)

(
k sin(ϕ(z, ξ))− b sin(ξ)

((
ż

− cξ̇

c+ b cos(ξ)

)2 − cξ̇2

c+ b cos(ξ)

))
, (10a)

ξ̈ = w, (10b)

where

ϕ(z, ξ) = z + ξ − w1 tan−1

(
w2 tan

(
ξ

2

))
,

w1 =
2c√
c2 − b2

,

w2 =

√
c− b
c+ b

,

a = m1`
2
1 +m2(L2

1 + `22) + I1 + I2,

b = m2L1`2,

c = m2`
2
2 + I2,

k = m2`2g.

(11)

The transformed dynamics (6) and (10) of the Acrobot and

the Pendubot are of the following more general:

z̈ = f(z, ż, ξ, ξ̇), (12a)

ξ̈ = w +D(z, ż, ξ, ξ̇, t), (12b)

where D(z, ż, ξ, ξ̇, t) is included to represent the lumped effect
of all uncertainties/disturbances after transformation.

In (12) the first block represents the Lagrangian zero
dynamics for the second block. Treating ξ as control input for
the first block, the form reduces the control of the Acrobot
(1) and the Pendubot (2) to the control of the reduced order
z−subsystem in (12a). To stabilize the Acrobot (1) and the
Pendubot (2), we stabilize their transformed normal forms in
Eqs. (6) and (10), first taking the more general form (12) into
consideration.

Stability of the nominal ξ−subsystem in (12b), in general
and for the Acrobot and Pendubot in Eqs. (6) and (10)
in specific, does not imply stability of the Lagrangian zero
dynamics in (12a), i.e., the following second order Lagrangian
zero dynamics

z̈ = f(z, ż, 0, 0), (13)

are unstable and hence we conclude that stability of (12b) does
not imply stability the overall system (12).

Therefore we analyze stability of the Lagrangian zero
dynamics in Eq. (12a) with z as output. If z ≡ 0 then the
zero dynamics are governed by Eq. (12a), with (z = 0, ż =
0, z̈ = 0), as below:

f(0, 0, ξ, ξ̇) = 0. (14)

If the first order zero dynamics in (14) are stable then
stabilization of the z−subsystem (12a) will render the overall
system (12) stable. To make the z−subsystem (12a) stable we
need the following condition to be satisfied

f(z, ż, ξ, ξ̇) = −αż − βz, (15)

with α > 0, β > 0 as design constants. To meet condition
(15) we design the sliding manifold as below:

σ = f(z, ż, ξ, ξ̇) + αż + βz. (16)

When sliding mode is established in (16), condition (15) is
satisfied and the dynamics in (12a) become

z̈ + αż + βz = 0, (17)

which is a stable linear system for α > 0, β > 0. The
stability of ξ−subsystem follows from the stability of the zero
dynamics in (14) and hence the overall system (12) becomes
stable.

Assumption 1. The origin in the system state space is an
equilibrium point of the open loop Lagrangian zero dynamics
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subsystem (12a) i.e., f(0, 0, 0, 0) = 0.

Assumption 2. The manifold f(0, 0, ξ, ξ̇) = 0 in Eq. (14) is
stable.

Assumption 3. The existence of well defined relative degree

and controllability requires
∂f

∂ξ
6= 0 and

∂f

∂ξ̇
6= 0.

Assumption 4. The transformed uncertainties D(z, ż, ξ, ξ̇, t)

is bounded as
∣∣D(z, ż, ξ, ξ̇, t)
∣ ∣∣∣ ≤ D0

Remark 1. Assumption 1 is satisfied for the Acrobot (6) and
the Pendubot (10).

Remark 2. Eq. (14) leads to an algebraic equation for
the Acrobot (6) and hence, keeping in view Assumption 1,
Assumption 2 is satisfied for the Acrobot (6).

Remark 3. Neglecting higher order terms, Eq. (14) leads to an
algebraic equation for the Pendubot (10) and hence, keeping in
view Assumption 1, Assumption 2 is satisfied for the Pendubot
(10).

Remark 4. Assumption 3 is not satisfied for the Acrobot (6)
and the Pendubot (10). We modify the definition of sliding
manifold σ in Eq. (16) to satisfy Assumption 3.

III. SMOOTH SECOND ORDER SLIDING MODE CONTROL
OF THE ACROBOT AND PENDUBOT

This section presents second order sliding mode control of
the Acrobot and the Pendubot.

A. Acrobot

The dynamics in (6a) show that, after z converges to zero,
the ξ−dynamics are governed by the algebraic equation:

k1 sin(ϕ1(0, ξ)) + k2 sin(ϕ2(0, ξ)) = 0, (18)

and by Assumptions 1 and 2 (Remark 2) the solution of
this equation is ξ = 0 and hence ξ tends to zero upon the
stabilization of z−subsystem (6a).

We note that in Eq. (6a), the denominator term (a+ b cos(ξ))
is strictly positive for −π2 < ξ < π

2 , and hence to achieve the
stable system in Eq. (17), we choose the sliding manifold as
below:

σ = k1 sin(ϕ1(z, ξ)) + k2 sin(ϕ2(z, ξ)) + αż + βz. (19)

The last term b sin(ξ)ξ̇ż in Eq. (6a) is taken into account
in controller synthesis but excluded in the design of sliding
manifold in Eq. (19) for the following reasons:

i. including this term in the sliding manifold makes Assump-
tion 3 invalid.

ii. being a third order, is small near the origin.
iii. the coefficient α of ż in the sliding manifold (19) can be

chosen sufficiently large to dominate the state dependent
coefficient b sin(ξ)ξ̇ of ż in this term.

Reasons (ii) and (iii) are crude assumptions but simulation
results justify their validity.

Since σ does not depend explicitly on ξ̇, the relative degree of

system (19) is 2. For the control w to appear, we take twice
the time derivative of σ along the dynamics (6) and achieve:

σ̈ = g(z, ż, ξ, ξ̇) + u, (20)

where g(z, ż, ξ, ξ̇) is a drift term containing the uncertain term
∂f

∂ξ
D(z, ż, ξ, ξ̇, t) and

u = h(z, ż, ξ, ξ̇)w, (21)

h(z, ż, ξ, ξ̇) =
∂f

∂ξ
. (22)

To enforce sliding mode in relative degree 2 system (20) we
use the following smooth second order sliding mode control
law [21]:

u = −s2 −K1|σ|(ρ−2)/ρsign(σ)−K2|σ̇|(ρ−2)/(ρ−1)sign(σ̇),
(23)

where ρ ≥ 2 and K1 > 0, K2 > 0 are design constants.

The uncertain bounded drift term g(z, ˙z, ξ, ˙ξ) in (20) is estimated
with following observer [21] (m = 2) as s2 =
ĝ(z, ż, ξ, ξ̇):

ṡ0 =s1,

ṡ1 =v1 + u,

v1 =−λ2|Λ|1/3|s1 − σ̇|2/3sign(s1 − σ̇) + s2, ṡ2

= −λ1|Λ|sign(s2 − v1),

(24)

where λ2 and λ1 are design parameters and Λ > 0 is Lipshitz
constant of g̈(z, ż, ξ, ξ̇). Further the observer also estimate σ̇
as s1 = ˆ̇σ.

Theorem 1. The closed loop system (20), (23), (24) is finite
time stable and hence σ, σ̇ converge to 0 in finite time.

Proof. The proof can be found in [21].

In terms of the actual coordinates (q1, q̇1, q2, q̇2) we have:

σ = k1 sin(q1) + k2 sin(q1 + q2) + αq̇1 +
αq̇2 (1 + h0)

2

+ β
(
q1 +

q2
2

+ w1 tan−1 (w2 tan (q2/2))
)
,

(25)

σ̇ = k1q̇1 cos(q1) + k2(q̇1 + q̇2) cos(q1 + q2) + βq̇1

+
βq̇2 (1 + h0)

2
+ αh1,

(26)

and h(z, ż, ξ, ξ̇) in Eq. (21) is:

h(z, ż, ξ, ξ̇) =
1

2
k1(−1− h0) cos(q1) +

1

2
k2(+1− h0)

(cos(q1 + q2)) +
αb (2q̇1 + q̇2 (1 + h0)) sin(q2)

2a+ 2b cos(q2)
,

(27)

where
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h0 =
w1w2 sec2 (q2/2)

1 + w2
2 tan2 (q2/2)

,

h1 =
1

2a+ 2b cos(q2)

(
b sin(q2)q̇2

(
2q̇1 + q̇2

(
1 + h0

))
h2

+ 2k1 sin(q1) + 2k2 sin(q1 + q2)
)
.

The final control τ for the Acrobot (1) is given by (4) with w
given by (21) and u given by (23) and (24). Fig. 2 shows
simulation results for the Acrobot (1) further discussed in
Section V.

B. Pendubot

The dynamics in (10a) show that, after z converges to zero,
the ξ−dynamics are governed, neglecting the higher order
terms, by the algebraic equation:

k sin(ϕ(0, ξ)) = 0, (28)

and by Assumptions 1 and 2 (Remark 2) the solution of
this equation is ξ = 0 and hence ξ tends to zero upon the
stabilization of z−subsystem (10a).

We note that in Eq. (10a), the denominator term (c+b cos(ξ))
is strictly positive for −π2 < ξ < π

2 , and hence to achieve the
stable system in Eq. (17), we choose the sliding manifold as
below:

σ = k sin(ϕ(z, ξ)) + αż + βz. (29)

The last term in Eq. (10a) is taken into account in controller
synthesis but excluded in the design of sliding manifold in Eq.
(29) for the following reasons:

i. including this term in the sliding manifold makes Assump-
tion 3 invalid.

ii. being higher order, is small near the origin.

Reason (ii) is a crude assumption but simulation results justify
its validity. Similar to the Acrobot case we take twice the time
derivative of σ along the dynamics (10) and achieve:

σ̈ = g(z, ż, ξ, ξ̇) + u, (30)

where g(z, ż, ξ, ξ̇) is a drift term containing the uncertain term
∂f

∂ξ
D(z, ż, ξ, ξ̇, t) and

u = h(z, ż, ξ, ξ̇)w, (31)

h(z, ż, ξ, ξ̇) =
∂f

∂ξ
. (32)

To enforce sliding mode in relative degree 2 system (30) we
use Theorem 1 with control law (23) and observer (24)

The sliding variable σ in Eq. (29) in terms of the actual
coordinates (q1, q̇1, q2, q̇2) is:

σ = k sin(q1 + q2) + α(q̇1 + h0q̇2)

+ β
(
q1 + w1 tan−1 (w2 tan (q2/2))

)
,

(33)

σ̇ = k(q̇1 + q̇2) cos(q1 + q2) + β(q̇1 + h0q̇2) + αh1, (34)

and h(z, ż, ξ, ξ̇) in Eq. (31) is:

h(z, ż, ξ, ξ̇) = k(1− h0) cos(q1 + q2)

+
1

(a+ 2b cos(q2))3

(
2αbc sin(q2)

((
q̇1 + h0q̇2

)
(a+ 2b cos(q2))− cq̇2 + (a+ 2b cos(q2))q̇2

))
,

(35)

where

h0 =
1

2

( w1w2 sec2
(
q2/2

)
1 + w2

2 tan2
(
q2/2

)),
h1 =

1

(a+ 2b cos(q2))3

(
k(a+ 2b cos(q2))2 sin(q1 + q2)

− b sin(q2)
(
(
(
q̇1 + h0q̇2

)
(a+ 2b cos(q2))− cq̇2)2

− c(a+ 2b cos(q2))q̇22
))
.

The final control τ for the Pendubot (2) is given by (8) with
w given by (21) and u given by (23) and (24). Fig. 3 shows
simulation results for the Pendubot (2) further discussed in
Section V.

IV. SWINGUP CONTROL OF THE ACROBOT AND THE
PENDUBOT

For global stabilization, from the downward stable equi-
librium position q1 = π, q2 = 0 to the upward unstable
equilibrium position q1 = 0, q2 = 0, we design swingup
control laws for the Acrobot and the Pendubot in this section
and use the SSOSM control as balancing control.

A. Acrobot

We partially linearize the dynamics of the Acrobot with
respect to q2. Solving Eq. (1a) for q̈1 we get:

q̈1 = −m−1
11 (c1 + g1 +m12q̈2) . (36)

Putting q̈1 into Eq. (1b) and using the following collocated
Partial Feedback Linearizng (PFL) control

τPFL2 = (m22 −m21m
−1
11 m12)wswingup

+ c2 + g2 −m21m
−1
11 (c1 + g1),

(37)

where wswingup is a new control to be designed, the dynamics
of the Acrobot become:

m11q̈1 + c1 + g1 = −m12wswingup, (38a)
q̈2 = wswingup. (38b)

To stabilize Eq. (38b) we choose the following control law

wswingup = −Kdq̇2 −Kpq2, (39)

with Kd, Kp as positive design constants. Once q2 is sta-
bilized, wswingup becomes zero and the q1−dynamics, in
accordance with Eq. (36) (equivalently, Eq. (38a)), become(

m1`
2
1 +m2(L2

1 + `22) + I1 + I2 + 2m2L1`2
)
q̈1

− g
(
m1`1 +m2L1 +m2`2

)
sin(q1) = 0.

(40)

Fig. 4 shows closed loop response of the Acrobot (1) with
wswingup using Kd = 12.0, Kp = 36.0 for the initial condition

__________________________________________________________________________________________________________________
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q(0) = [π, 0, 2π, 0]
T . The pendulum behavior in Eq. (40) is

shown Fig. 4a.

Fig. 5 shows a successful swingup using wswingup with Kd =
12.0, Kp = 36.0 and then balancing by the SSOSM controller
in the presence of external disturbance for the initial condition
q(0) = [π, 0, 2π, 0]

T .

B. Pendubot

We partially linearize the dynamics of the Pendubot with
respect to q1. Solving Eq. (2b) for q̈2 we get:

q̈2 = −m−1
22 (c2 + g2 +m21q̈1) . (41)

Putting q̈2 the result in Eq. (2a) and using the following
collocated Partial Feedback Linearizng (PFL) control

τPFL1 = (m11 −m12m
−1
22 m21)wswingup

+ c1 + g1 −m12m
−1
22 (c2 + g2),

(42)

where wswingup is a new control to be designed, the dynamics
of the Pendubot become:

q̈1 = vswingup, (43a)
m22q̈2 + c2 + g2 = −m21wswingup. (43b)

To stabilize (43a) we choose the following control law

wswingup = −Kdq̇1 −Kpq1, (44)

with Kd, Kp as positive design constants. Once q1 is sta-
bilized, wswingup becomes zero and the q2−dynamics, in
accordance with Eq. (41) (equivalently, Eq. (43b)), become(

m2`
2
2 + I2

)
q̈2 −m2`2g sin(q2) = 0. (45)

Fig. 6 shows closed loop response of the Pendubot (2) with
wswingup with Kd = 10.0, Kp = 125.0 for the initial
condition q(0) = [π, 0, 0, 0]

T . The Pendulum behavior in Eq.
(45) is shown Fig. 6b.

Fig. 7 shows a successful using wswingup with Kd = 10.0,
Kp = 125.0 and then balancing by the SSOSM controller in
the presence of external disturbance for the initial condition
q(0) = [π, 0, 0, 0]

T .

V. SIMULATION RESULTS AND DISCUSSION

This section presents simulation results and discussion for
the design examples.

The Acrobot: Fig. 2 shows closed loop response of the
Acrobot with SSOSM control u (23) (ρ = 3, K1 = 75,
K2 = 50), observer (24) (λ1 = 1, λ2 = 3), sliding parameters
(α = 8, β = 16). The controller stabilizes the system from the
initial condition q(0) =

[
−π6 , 0,

π
3 , 0
]T

to the upward unstable
equilibrium position q = [0, 0, 0, 0]

T in less than 6 seconds.
The control effort is smooth. Fig. 4 shows closed loop response
with wswingup (39) with parameters Kd = 12.0, Kp = 36.0.
The controller stabilize the q1−dynamics as desired but the
q2−dynamics behave as in (40). Fig. 5 shows successful swing
up, from q2 = π to q2 = 0, with wswingup (39) and then
balancing with u (23) in the presence of external disturbance

d(t) = 2 sin(πt).

The Pendubot: Fig. 3 shows closed loop response of the
Pendubot with SSOSM control u (23) (ρ = 3, K1 = 125,
K2 = 100), observer (24) (λ1 = 1, λ2 = 3), sliding param-
eters (α = 8, β = 16). The controller stabilizes the system
from the initial condition q(0) =

[
−π6 , 0,

π
3 , 0
]T

to the upward
unstable equilibrium position q = [0, 0, 0, 0]

T in less than 4
seconds. The control effort is smooth. Fig. 6 shows closed
loop response with wswingup (44) with parameters Kd = 10.0,
Kp = 125.0. The controller stabilize the q1−dynamics as
desired but the q2−dynamics behave as in (45). Fig. 7 shows
successful swing up, from q2 = π to q2 = 0, with wswingup
(44) and then balancing with u (23) in the presence of external
disturbance d(t) = 5 sin(πt).

VI. CONCLUSION

The application of smooth second order sliding mode con-
trol was investigated for two-links manipulator taking the
benchmark systems of the Acrobot and the Pendubot as case
studies. The enhance control performance and robustness was
demonstrated with simulation results. Moreover the control
action is smooth. Both smoothness and robustness of control
action are highly demanded for mechanical control systems
operating under uncertainty conditions. For completeness,
swingup controls were designed and successful swingup fol-
lowed by balancing were demonstrated.
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Fig. 2: Acrobot - Closed loop response with SOSM control u (23) (ρ = 3, K1 = 75, K2 = 50), observer (24) (λ1 = 1,
λ2 = 3), sliding parameters (α = 8, β = 16), initial condition q(0) =

[
−π6 , 0,

π
3 , 0
]T

, applied disturbance d(t) = 2 sin(πt)
from t = 10 (s) to t = 12 (s).
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Fig. 3: Pendubot - Closed loop response with SOSM control u (23) (ρ = 3, K1 = 125, K2 = 100), observer (24) (λ1 = 1,
λ2 = 3), sliding parameters (α = 8, β = 16), initial condition q(0) =

[
−π6 , 0,

π
3 , 0
]T

, applied disturbance d(t) = 5 sin(πt)
from t = 10 (s) to t = 12 (s).
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Fig. 4: Acrobot - Closed loop response with Swingup Controller wswingup (39), Kd = 12, Kp = 36, initial condition
q(0) = [π, 0, 2π, 0]

T , applied disturbance d(t) = 2 sin(πt) from t = 10 (s) to t = 12 (s)
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Fig. 5: Acrobot - Closed loop response with wswingup (39), Kd = 12, Kp = 36, and u (23) (ρ = 3, K1 = 75, K2 = 50),
observer (24) (λ1 = 1, λ2 = 3), sliding parameters (α = 8, β = 16), initial condition q(0) = [π, 0, 2π, 0]

T , applied disturbance
d(t) = 2 sin(πt) from t = 10 (s) to t = 12 (s)
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Fig. 6: Pendubot - Closed loop response with Swingup Controller wswingup (44), Kd = 10, Kp = 125, initial condition
q(0) = [π, 0, 0, 0]

T , applied disturbance d(t) = 5 sin(πt) from t = 10 (s) to t = 12 (s)
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Fig. 7: Pendubot - Closed loop response wswingup (44), Kd = 10, Kp = 125, and u (23) (ρ = 3, K1 = 125, K2 = 100),
observer (24) (λ1 = 1, λ2 = 3), sliding parameters (α = 8, β = 16), initial condition q(0) = [π, 0, 0, 0]

T , applied disturbance
d(t) = 5 sin(πt) from t = 10 (s) to t = 12 (s)
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