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Abstract— This paper presents a detailed development of a 
mobile manipulator to perform fetch-and-carry tasks 
autonomously in a structured indoor environment. This system 
was specially designed to prevent human contact in the work 
environment during the Covid-19 pandemic situation. The system 
setup includes a Baxter manipulator mounted on a two-wheeled 
differential drive mobile robot. The ROS melodic platform 
installed on Nvidia Jetson TX1 embedded system was used for 
software development. Autonomous navigation and visual 
servoing are implemented using an Intel RealSense depth camera 
and a tracking camera which are collaborated with ROS 
Simultaneous Localization and Mapping (SLAM) and navigation. 
The system was validated under two experiments to 1) analyze the 
performance of mobile manipulator navigation and 2) validate the 
overall system performance. Through several trials in each 
experiment, it was demonstrated that the developed system can 
perform fetch-and-carry tasks with collision-free navigation 
consistently and repeatedly. 

 Index Terms—Mobile Manipulator, Autonomous Navigation, 
Robot Operating System (ROS), SLAM, Baxter Manipulator, Aruco 
Markers  

I. INTRODUCTION 

OVID-19 pandemic has immensely affected the 
manufacturing and service sectors restricting various daily 

activities. Therefore, researchers are investigating solutions to 
reduce human contact as much as possible to mitigate the spread 
of pathogens. Integration of mobile manipulator systems as a 
shield is becoming a powerful tool to prevent the fear of 
contamination. Either autonomous or teleoperated, mobile 
manipulators are well-suited to perform fetch-and-carry tasks in 
many different areas such as domestic services, aerospace, 
manufacturing, and agriculture [1]. In addition to these, 
operators engaged in robots generally require a significant 
amount of training and experience to operate and control a 
robotic mission. Therefore, researchers focus on developing 
fully autonomous mobile manipulator systems that can perform 
a specific task while safely interacting with an unknown 
environment that includes static and dynamic objects. 

In response to that, we have contributed to these requirements 
by developing a ROS (Robot Operating System)-based mobile 
manipulator robot that exhibits autonomous and intelligent 
behavior to perform a fetch-and-carry task in an indoor 
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workspace. The system is developed to reduce human 
responsibilities when performing the fetch-and-carry task in a 
structured environment. The robot includes three main 
sub-systems; i.e., a manipulator system (Baxter), a mobile robot, 
and the 3D vision system. Communication between these three 
systems is controlled via ROS by connecting to a host computer. 
The system is developed by undergoing a thorough study on 
robot kinematics, computer vision, visual servoing, SLAM, 
navigation, and object manipulation. The robot's autonomous 
navigation system is developed using the ROS navigation stack 
with real-time appearance-based mapping and localization 
techniques. The object detection and the manipulation 
techniques are developed using the Aruco marker-based visual 
servoing technique. The primary sensor of the robot is the Intel 
RealSense D435i camera, which is used in both navigation and 
target detection.  

One of the main challenges that one has to overcome when 
implementing SLAM and navigation methods for the mobile 
robot system is to minimize the errors in odometry. The system 
requires accurate odometry information to obtain fault-less 
localization during navigation. Wheel encoders are commonly 
used to acquire the odometry information of mobile robotic 
systems. In addition to that, some of the robots are developed by 
fusing the Internal Measurement Unit (IMU) and wheel encoder 
data to minimize the odometry errors.  When implementing a 
ROS navigation stack for the mobile robotic system, the robot’s 
transformation tree (TF) of the ROS navigation stack is 
published based on the odometry information. Because of this, 
the accuracy of the robot’s localization depends on the robot’s 
TF tree.  However, we have used the Intel RealSense T265 
tracking camera information to develop the robot’s TF tree by 
fusing the TF tree of the T265 camera to the robot’s TF tree 
instead of using the common approach of ROS. This approach 
avoids localization errors that occur due to wheel slipping and 
the robot’s vibration. 

Most of the existing ROS-based mobile manipulator systems 
such as PR2 [2], Robotnik RB-1[3], Tiago [4], and Rob@work4 
[5] consists of multiple sensors such as laser scanners, LIDAR, 
and 3D vision systems. Localization techniques in these systems 
are developed based on ROS AMCL which uses multiple laser 
scanner data. They also use multiple sensor sources for obstacle 
detection as well. But in this research, we have set up the ROS 
navigation stack by using only the Intel RealSense D435i 
camera with the help of the TF tree developed based on the Intel 
RealSense T265 tracking camera. The developed ROS 
navigation technique with RealSense T265 tracking camera and 
D435i depth camera is tested and validated by experiments. In 
addition to that, the overall performance of the system is also 
validated. The main objective of this paper is to provide a 
complete overview of the developed system as a helpful guide 
for ROS developers. This guide will help any robotic developer 
to transform an existing robot manipulator system into an 
autonomous mobile manipulator system to perform a basic 
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fetch-and-carry task without adding multiple sensor sources. 
The following subsections provide a detailed description of the 
proposed mobile manipulator's hardware systems, software 
systems and control strategies. Experimentation tests and their 
results are presented and discussed in the final sections. 

II. HARDWARE ARCHITECTURE AND SYSTEM DESIGN 

The robot setup is developed with a 7-DOF, dual-arm Baxter 
manipulator system mounted on a differential drive 
two-wheeled mobile robot, as shown in Fig. 1. These 
subsystems are controlled by ROS melodic operated in the 
Nvidia Jetson TX1 platform. Autonomous navigation and visual 
servoing are implemented using the Intel RealSense D435i 
depth camera and T265 tracking camera which, also 
communicate with Nvidia TX1 via RealSense SDK [6] and the 
RealSense ROS wrapper [7]. 

 

 

Fig. 1.  The mobile manipulator system developed for fetch-and-carry tasks 

A. Baxter Manipulator System  

Baxter robot is an industrial hardware system consisting of 
two 7-DOF arms. The robot is approximately 3 feet tall with a 
weight of 75Kg.  Both Baxter's arms have angle position and 
joint torque sensing facilities. Baxter robot has three integrated 
cameras, and these cameras are located at the end effectors of 
each joint and the robot head. In addition to this, the Baxter 
robot also consist of sonar sensors, accelerometers, and 
range-finding sensors that allow it to perform collision-free 
manipulation [8]. 

B. Mobile Robot Development  

The mobile robot is a two-wheeled differential drive system 

with a platform constructed using mild steel. It has a length of 

0.8m, a width of 0.5m, and a height of 0.7m, as shown in Fig. 2. 

The mobile robot system is controlled by Arduino MEGA 

2560, which is communicated with the NVidia TX1 via ROS 

Serial package [9] with a baud rate of 512 kbps. The system is 

driven using a couple of MY1016Z3 brushed DC motors, each 

controlled separately using ELMO-VIO 25/60 motor control 

units. Since the motor controller requires an analog control 

signal to perform smooth motor controlling, MCP4922 Digital 

to Analog Converter (DAC) is used to generate the analog 

control signal from Arduino. The converter establishes an SPI 

communication between itself and Arduino with a frequency of 

10MHz. Feedback from the motors is acquired using AMS’s 

ASP5147P absolute magnetic encoders communicate with 

Arduino via Serial Peripheral Interface (SPI) with the 

frequency of 1MHz. Readings from the encoder are recorded 

every 1ms using the Arduino timer 1 interrupts. 

 

 

Fig. 2.  Mobile robot structure and dimensions 

 The mobile robot controller is designed based on the 

kinematic model given in (1). As shown in Fig. 3, in (1), R, L, 

Vl, and Vr represent the wheel radius of 0.175m, the wheel 

distance of 0.6m, the linear velocity of the left wheel, and the 

linear velocity of the right wheel respectively. In addition to 

that, Vx, Vy, ɷ, and 0 denote the robot’s linear and angular 

velocity components, and angular displacement.     
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Based on the wheeled mobile robot’s kinematic equation, 

the angular velocities of the left (ɷl) and right (ɷr) motors are 

calculated as shown in equations (2) and (3).  The G value in the 

equations represents the speed ratio between motor and wheel, 

which is 4.9:1 for this system. 
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Fig. 3.  Kinematic model of the mobile robot  

According to (2) and (3), a velocity feedback Proportional 

and Integral (PI) controller is designed to control the velocity of 

the system using the velocity feedback calculated from the angle 

values obtained from the wheel encoders. The control signals 

are calculated as 14-bit values to generate the analog motor 

control signals via the MCP4922 DAC. In this system, the   

MCP4922 DAC generates the maximum voltage (Vmax) of 4.2V 

for the highest 14-bit value of 4096. Therefore, the reference 

voltage (Vref) is selected as 2.1V. If the bit value of the control 

signal is K, then the input control voltage signal (Vcmd) is 

calculated as follows. 

                         max

4096
cmd

V
V K                                          (4)

 

Hence, the actual control signal Vcontrol is represented as (5),   

                      control cmd refV V V                                               (5) 

According to the relationship generated by (4), the robot's 

motion can be defined based on the range of K values. K should 

be in 2048<K<4096 for the forward motion, K=2048 for the 

neutral conditions, and for the backward motion, K should be 

0<K<2048. Fig. 4 represents the overall control unit of the 

mobile robot. As shown in Fig. 4, digital pins 8, 9, 11, and 12 of 

Arduino Mega connects to the Enable channels EN+ and EN- of 

the motor controllers. When the robot operates, the motor 

controllers are activated by supplying a 5V signal to the EN+ 

channels of the motor controllers. The reference signal of 2.1V 

connects to the CREF- pins and the output channels of the 

MCP4922 DAC connect to the CREF+ channels of the motor 

controllers.  Using these voltages supplied to the CREF+ and 

CREF- channels, the required control signals are generated to 

drive the motors. 

C. 3D Vision System  

The vision system comprises an Intel RealSense D435i 

depth camera and an Intel RealSense T265 tracking camera. The 

D435i is a depth camera that can be used in both indoor and 

outdoor environments. It uses an Active IR stereo depth 

technology with a minimum depth of 0.105m and 1280 x 720 

depth resolution with a depth frame rate of up to 60 fps. The 

sensor resolution is 1980 x 1080 RGB with a 30 fps RGB frame 

rate. The T265 tracking camera includes two fish-eye lenses 

which provide a combined, close to hemispherical 163±5° field 

of view for robust tracking. However, to avoid unnecessary data 

overloading during the operation of the robot, the frame rates of 

the cameras are reduced to 15 fps.  In this system, the tracking 

data gathered from the T265 camera is used to identify the 

location of the robot. In addition to these cameras, the head and 

arm cameras of the Baxter robot can be used if necessary. The 

two RealSense cameras are connected to the Nvidia TX1 via a 

USB hub, and Intel RealSense Linux drivers are installed to 

Nvidia TX1 to communicate with the cameras. Since all vision 

tasks related to autonomous navigation and visual servoing will 

be carried out in the ROS environment, RealSense ROS wrapper 

libraries are used to collaborate RealSense cameras with ROS 

Simultaneous Localization and Mapping (SLAM), and 

navigation.    

D. Software Architecture  

A cluster of software running inside the Nvidia TX1 

development board with Ubuntu 18.04 operating system and 

Jetpack 4.2 drivers were installed. To operate the system, the 

Nvidia TX1 has to establish communication within all three 

subsystems simultaneously. ROS melodic software was used for 

this purpose. Baxter and Arduino SDKs are installed into the 

ROS workspace for programming and control. The vision 

system is communicated through the RealSense SDK 2.35 and 

RealSense ROS wrapper. The overall software architecture is 

shown in Fig. 5. Additionally, remote communication is 

achieved by establishing a remote desktop server between 

Nvidia TX1 and a remote desktop using a VNC server via a  Fig. 4.  Mobile robot controlling unit  
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Wi-Fi connection. Remote communication is required to control 

the system while in operation. 

 

Fig. 5.  Software architecture of the system   

E. Power Unit  

The developed mobile manipulator system is powered by 

two 12V lead-acid batteries. Although the system runs on DC 

voltage, an AC voltage is required to power up the Baxter robot. 

The AC voltage is generated by using a MeanWell TS1000 

inverter. The inverter produces an output voltage of 230V from 

two serially connected 12V batteries. The schematic diagram of 

the power unit of the system is shown in Fig. 6 

F. Simultaneous Localization and Mapping 

The mobile manipulator is developed to autonomously 

navigate through a map while searching the target and transport 

the object to the desired goal location. Therefore, before 

performing the tasks, it is necessary to create a map of the 

operating environment. The map is developed using the ROS 

RTAB-Map package [10]. RTAB-Map can be used to generate a 

3D map of the environment using 3D point cloud data using an 

RGBD-SLAM approach based on an incremental 

appearance-based global loop closure detector with real-time 

constraints.  

 

 

 

Fig. 7.  Robot TF tree   

 
Fig. 6.  Power distribution diagram of the system 
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    To perform accurate SLAM and navigation with ROS, it is 

necessary to provide the correct transformation (TF) tree of the 

robot. Generally, most of the ROS applications use the REP 105 

coordinate frame system to set up the TF tree of robots [11]. In 

the traditional REP 105 setup, the odometry frame always 

directly links to the base frame of the robot. But in this system, 

we have developed the robot’s TF tree with respect to the T265 

tracking camera’s odometry frame, as shown in Fig.7. The 

implemented TF setup gives an accurate transformation directly 

from the odometry data provided by the T265 tracking camera. 

This approach helps to avoid the odometry errors caused due to 

wheel slipping and quick rotations. 

 

 

Fig. 8.  Example scenario of map generation with RTAB-MAP 

 

 

 

Fig. 9.  Generated 2D occupancy grid map  

During the mapping process, RTAB-Map generates the 2D 

grid map and a 2D projected map, as shown in Fig. 8. Fig. 8(a) 

shows the initial configuration of the map generation process. 

Here, a TF tree of the robot setup is configured correctly, and 

point cloud data is correctly subscribed to the RTAB-Map to 

initiate mapping. Fig. 8(b) shows the example 3D mapping 

scenario of the map generation process, and Fig. 8(c) shows the 

generated 2D sample grid map from the RTAB–Map. Finally, 

the 2D project map generated from the RTAB-Map by point 

cloud data, and the robot path during the mapping process is 

shown in Fig. 8(d). The map data and the image data are saved 

to the RTAB-Map database. The robot's navigation uses saved 

map data and image data. The generated 2D occupancy grid 

map from RTAB-Map is shown in Fig. 9. 

G. Navigation 

After generating the map, the saved map data can be used to 

perform the robot's navigation. Map-based navigation is done 

using a configured ROS navigation stack according to the 

system requirement. Fig.10 shows the general setup of the ROS 

navigation stack for the developed mobile manipulator system 

 

Fig. 10.  ROS navigation stack configuration of the robot  

Localization and path planning are the main components of 

map-based navigation. As shown in Fig. 10, RTAB-Map 

provides the localization by finding the loop closure based on 

the image data saved in the RTAB-Map database during the map 

generation process. The loop closure detector uses a 

bag-of-words approach to determine if a new image detected by 

the D435i camera is from a new location or a location it is 

already visited. Once a loop closure is found, the odometry is 

corrected, and the real-time point cloud data will be aligned to 

the map.  

There are two main concerns in path planning.i.e.; computing 

a safe path to travel without collision and sending direct speed 

commands to the controller to allow the robot to follow the 

generated path. As shown in Fig. 10, the move_base node [12] is 

responsible for path planning in the ROS navigation stack. Path 

planning also contains two sub-levels known as the global 

planner level and the local planner level. Both the local and 

global planners are calculated based on the information 

provided by the local and global costmaps. Global costmap is 

generated by inflating the obstacles on the static map provided 

by RTAB-Map. The global costmap is used to generate the 

global plan for the navigation using the navfn package [13], 

which is developed based on the Dijkstra algorithm [14]. The 

local costmap deals with the real-time data provided by the 

D435i camera. In this setup, the point-cloud provided by the 

D435i camera, and fake laser scan data generated using the 

depth images from the D435i depth camera are used to detect the 

obstacles. An example configuration of the generated laser scan 

model visualization in Rviz and the actual robot position is 

shown in Fig. 11 
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Fig. 11.  Fake laser model visualization in rviz and corresponding robot position 

With the help of odometry data provided by the T265 tracking 

camera and the local costmap data, the selected local planner 

package develops a local path. There are different local planner 

packages available in ROS that implement different algorithms 

and approaches for this task. This system uses the 

teb_local_planner ROS package [15], which uses the 

timed-elastic-band algorithm [16]. Based on the calculated local 

path, the move_base node sends the robot velocity data to the 

Arduino Mega 2560 and based on the velocity commands 

provided robot follows the local path. 

 To obtain a better navigation performance, the navigation 

stack parameters should be properly tuned based on the robot’s 

configuration. Table I shows a few navigation stack parameters 

that are tuned to obtain a better performance of the experimental 

setup. In addition to that, other minor parameters are also tuned 

to increase the performance of the system. The safety of the 

system and the quality of path planning are the primary concerns 

of parameter selection 

TABLE I 

NAVIGATION STACK PARAMETERS 

Parameter Category  Parameters 

Velocity and 
Acceleration 

Maximum linear velocity: 0.35 m/s 
Maximum Angular velocity: 0.4 rad/s 

Linear acceleration limit: 1m/s2 

Angular acceleration limit: 1rad/s2 
Maximum backward velocity: 0.1m/s 

    

Global Planner 

Parameters 

lethal_cost: 253 
neutral_cost: 66 

cost_factor: 0.55 

    

Local Planner 

Parameters 

xy_goal_tolerance: 0.25    

yaw_goal_tolerance: 0.2        

min_obstacle_dist: 0.7 
Footprint model radius: 0.6m 

   

Costmap Parameters 

Obstacle range: 0.7 m 
Obstacle layers’ observation sources: 

pointcloud/Scan 

Global costmap inflation radius: 0.4m 
Local costmap inflation radius: 0.3m 

Cost scaling factor: 3 

  

   Fig. 12 shows an example scenario of map-based 

navigation in the developed experimental setup with example 

images of rviz simulation and the real-time robot motion. Fig. 

12(a) shows the robot’s approach to the goal location, at which 

the obstacle is not in the minimum obstacle range of the 

costmap. Therefore, the navigation stack provides a straight path 

to the goal location, as shown in the rviz simulation. Fig. 12(b) 

shows the obstacle detecting scenario. The behavior of the local 

costmap and the local planner with the obstacle can be observed 

in the rviz simulation of Fig. 12. Lastly, Fig. 12(c) and Fig. 12(d) 

show the obstacle avoidance and goal-approaching 

scenarios.

 

 

 

 

Fig. 12.   Example scenario of navigation: (a) Navigation without obstacles, (b) 
Obstacle detection, (c) Avoiding the obstacle, and (d) Reaching to the goal 
location.  

III. METHOD 

As explained in section II, the developed mobile 
manipulator system can autonomously navigate through a 
constructed map of a workplace. This section describes the 
development of the Aruco marker-based fetch-and-carry 
methodology and mobile manipulator's control algorithm.  An 
experimental setup is developed to demonstrate the 
fetch-and-carry task from the developed mobile manipulator 
system. In this setup, the robot navigates through different 
waypoints of the constructed map while searching for the target 
box. Once the target box is detected, the robot approaches the 
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target box and picks it up using Baxter's left arm. Finally, the 
robot arrives at the goal location and places the box at the goal. 
The overall control algorithm of the experimental setup is 
shown in Fig. 13. 

 

Fig. 13.   Mobile manipulator control algorithm 

 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 14.  Aruco marker detection: (a) Box with Aruco markers, (b) ID 0 detection 
with D435i camera, and (c) ID 2 detection with Baxter left-arm camera. 

In this experiment, Aruco marker-based pose estimation 
technique is used to identify the pose of the target object in both 
mobile manipulator navigation and object manipulation. A ROS 
python library for Aruco marker detection and pose estimation 
is implemented using the Aruco library for augmented reality 
based on OpenCV [17]. The cv_bridge plug-in is used to 
implement the OpenCV library with ROS. RealSense D435i 
camera is used for goal identification, and the left-arm camera of 
the Baxter with the resolution of 640x800 is used for marker 
detection in object manipulation. The Aruco marker poses with 
respect to the camera frames can be obtained from the pose 
estimation algorithm developed using the OpenCV Aruco pose 
estimation library.  Fig. 14(a) shows the box that is used in the 
experiment, and the samples of marker detection from both 
cameras are shown in Fig. 14(b) and Fig. 14 (c). As shown in 
Fig. 14 (a), there are two Aruco markers placed on the Box. The 
marker on the front side is used to identify the box during the 
navigation and the marker on the top is used to estimate the pose 
during the manipulation. 

A. Target Reaching  

As explained in section II, the mobile manipulator system is 
developed with a ROS navigation stack to navigate using a 
known map. When the robot reaches a pre-defined waypoint in 
the map, the robot starts to search the Aruco markers by 
rotating 360 degrees around the self-axis. In this experiment, 
the target locations are defined with the Aruco marker ID 0, and 
the goal locations are defined with the ID 2 of the 4X4 Aruco 
dictionary. Once the marker is detected, the marker pose is 
calculated with respect to the robot’s base frame. Then the 
angular error β of the marker with respect to the robot base 
frame is calculated using the tangent of marker x and y 
coordinates with respect to the base frame given in (6). 

                                   tan( )
Fx

Fy
                          (6) 

The robot is then rotated to satisfy the angular error 
condition of   -0.05< β <0.05 radians. The reason for this initial 
rotation is to minimize the error produced by the ROS 
navigation stack when reaching the target. Once the robot 
satisfies the angular error condition, the target location is 
calculated with respect to the map frame according to the 
following method. 

Rotation angle yaw (ψ) of the robot, can be calculated using 
the robot orientation, which is published by the move_base 

node in the form of a quaternion, 0 1 2 3q q iq jq kq       as 

shown in (7). 

                        1 0 3 1 2

2 2
2 3

2( )
tan ( )

1 2( )

q q q q

q q
  


 

                      (7) 

For the pose of the robot with respect to the map (xrm, yrm, zrm 

, ψ) and pose of the marker with respect to the robot base frame 
(xb, yb, zb), the pose of the marker with respect to the map frame 
(xm, ym, zm) is given by (8). 

    

cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 0

0 0 0 0
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m b t
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m b

rm
m b

x
x x x

y
y y

z
z z

 

 

 
    

        
       

 

       (8) 
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Where xt is the distance from the object to the robot goal 
position, it should always be larger than the defined inflation 
radius of the Navigation Stack to avoid unnecessary recovery 
behaviors.  

Then the calculated xm and ym values are sent to the 
move_base node to plan the path to navigate closer to the 
object. Once the robot comes closer to the object, the 
manipulator system is brought closer to the object smoothly by 
sending velocity commands until the defined forward error 
conditions (forward error < 0.5 m) and angular error conditions 
( -0.05< β <0.05) of the marker are satisfied with respect to the 
base frame. After satisfying the conditions, the manipulation 
command is sent to the Baxter robot to perform pick-and-place 
tasks. 

B. Object Manipulation  

 During the mobile manipulator operation, The Baxter’s 
arms follow a predefined pose sequence to perform object 
handling. The Baxter joint trajectory action server is used to 
move the arms according to the specified joint angles.  The joint 
trajectory action is a ROS node that provides an action interface 
for tracking trajectory execution. It passes trajectory goals to 
the controller and reports success when they have finished 
executing. When the robot's operation starts, both the arms 
move to the predetermined navigation pose from its default 
neutral pose, as shown in Fig. 15(a). The defined navigation 
pose avoids unnecessary collisions with the obstacles during 
the system navigation by keeping both arms inside the 
boundary of the robot’s footprint. Therefore, the mobile 
manipulator control algorithm is programmed to maintain this 
predefined navigation pose during autonomous navigation. 

 

Fig. 15.  Baxter performing object picking task: (a) Navigation pose, (b) 
Searching pose, (c) Reaching to the box, (d) Grab the box using grippers, (e) 
Picking the box, and (d) Return to the Navigation pose.   

When performing the object picking task, once the robot 
reaches the object location, the arms move to the predefined 
searching pose as shown in Fig. 15(b).As mentioned before, the 

pose estimation of the box is done based on the Aruco marker, 
located at the top of the target box, which has the average 
dimensions of 20cm x 15cm x 12cm. The Baxter’s left-arm 
camera is used to identify the Aruco marker. Then using the 
OpenCV Aruco pose estimation library, the 6D pose of the 
Aruco marker  Par=(Xar,Yar,Zar,rollar,pitchar,yawar)T is 
calculated. Then, the Aruco marker pose with respect to 
Baxter’s base frame is calculated using the ROS tf2 package. 
Next, the inverse kinematics of Baxter’s left arm is calculated 
using Baxter’s Solve_Position_IK_Request ROS service. It is 
an inbuilt ROS service of the Baxter robot to calculate the 
inverse kinematics. Based on the calculated joint angles the 
object is picked as shown in Fig. 15(c) and Fig.15 (d). Finally, 
both the arms reach back to the navigation pose and prepare for 
the navigation as Fig.15 (e) and Fig. (f). After that, the robot 
navigates to the goal location, and using a similar method, 
Baxter places the object on the goal location. 

IV. EXPERIMENT AND RESULTS 

The developed system was validated with two experiments. 
The first experiment was conducted to analyze the performance 
of the mobile manipulator navigation while the second 
experiment is conducted to validate the overall system 
performance by performing fetch-and-carry tasks. All the 
experiments were performed inside the first floor of the main 
engineering building of Chiang Mai University. The 2D map of 
the floor area is shown in Fig. 16(a), and the generated 2D map 
of the floor is shown in Fig. 16(b). 

 

(a) 

 

(b) 

Fig. 16.  2D Map of the experimental area: (a) Detailed 2D map of the 
experimental area, and (b) Generated occupancy grid map. 

A. Performance Analysis of the Navigation System   

The performance of the system navigation is analyzed by a 
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navigation task to the pre-defined waypoints of the generated 
map, as shown in Fig. 17 (b). The experiment is conducted to 
evaluate the accuracy of navigation of the system along with 
the given map. This experiment includes 15 trials, and the 
entire set of data is recorded while the robot navigates from the 
waypoint O to waypoint A, waypoint A to waypoint B, and 
waypoint B to waypoint O as shown in Fig. 17. The Cartesian 
coordinates of the waypoint O, A, and B are (0, 0), (22.5, 2.0), 
and (22.5, 9.0) respectively. 

 

Fig. 17.  Waypoints locations  

To analyze the navigation performance of the developed 
system, the local planner and the robot's actual path are observed 
at each trial. Root Mean Square Deviation (RMSD) is used to 
validate the navigation performance of the system. In this 
experiment, RMSD value between the local planner and the 
robot’s actual path (RMSD)LR is calculated to analyze the 
performance of the developed mobile robot controller. If the 
local position, robot position, and the number of data points are 
given by the (Xl,Yl), (Xr,Yr), and n; the (RMSD)LR can be 
calculated as shown in (9). 

          2 2

1 1

1 1
( ) ( )

n n

LR l r l rRMSD X X Y Y
n n

          (9) 

      In addition to that, the goal reaching accuracy was also 
calculated by measuring the final robot position of the robot 

once the robot completes the full path OABO. The 
robot’s final position and the orientation is measured based on 
the odometry data provided by the Intel RealSense T265 
camera. 

 

 

Fig. 18.  Local path and the robot’s actual path recorded in the second trial   

Fig. 18 shows the local path and the robot’s actual paths 
during trial 2. When carefully observed, it was seen that the 
robot followed the local planner without having any 
considerable deviation. However, when comparing the robot’s 
actual path and the local planner, there is a slight deviation in the 
robot’s actual path from the local planner when navigating from 
point A to point B. The main reason for that is the floor area of 
point A to point B is an empty area compared to the floor area of 
path OA. Therefore, RGB-D data provided by the depth camera 
was not enough to perform precise loop closure in an empty 
area. One possible explanation would be that there are no 
objects for the depth camera to detect, to tie the submaps 
together and perform loop closure. However, the odometry 
provided by the T265 tracking camera reduces this error in the 
empty environment. 

      According to the position and orientation errors measured at 
the final goal location O, it was observed that the robot did not 
always stop at the exact goal location O (0, 0) after completing 

the path OABO.  The same was observed in the robot’s 
path shown in Fig. 18.  The position and orientation errors can 
also be reduced by minimizing the goal tolerances and the 
footprint size. However, reducing the goal tolerance to a lower 
value creates unwanted oscillations when reaching the goal 
points.  In addition to that, the localization errors affect the 
accuracy of reaching the goal. However, when compared with 
the size of the robot, the position errors and orientation errors of 
the existing setup is acceptable. Table II shows the overall 
navigation performance of the system during the experiment. 

 

                                       TABLE II 

OVERALL NAVIGATION PERFORMANCE OF THE SYSTEM 

Performance measurement  Value 

Average (RMSD)LR       0.2 m 
Minimum distance from the final goal point O    0.15m 

Maximum distance from the final goal point O    0.41m 

Maximum angular error at the final goal point O       0.02 rad 
Minimum  angular error at the final goal point O       0.15 rad 

Average measured xy goal tolerance       0.21m 

Average measured yaw goal tolerance       0.11 rad 
Number of successful trials       15 

Number of unsuccessful trials        0 

  

B. Overall System Performance 

The developed system was validated by performing 

fetch-and-carry tasks inside the same floor area as shown in 

Fig. 16. The selected floor consists of a three corridors, a room 

with objects, and a vacant living-area. In this experiment, the 

robot’s main tasks were to select an object in a random position 

on the map, move it to the desired target, place it in the target 

position and return it to the starting position. Fig. 19 shows the 

initial position of the robot (O), goal location (G), and the 

object locations (P, Q, R, S) where the object is placed during 

the experiment. This test consists of 15 experiments, and in 

each experiment, the location of the object is randomly selected 

from one of the locations (P, Q, R, S) mentioned above. The 2D 

coordinates of the P, Q, R, S, and G with respect to the initial 

position O (0, 0) are (14.5, 3.0), (20.0, 7.5), (22.0, 9.5), (24.5, 

8.5), (0.0, -1.5) respectively. 
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Fig. 19.  Waypoints locations  

 

The robot completed all 15 trials during the experiment. Fig. 

20 shows the operation sequence during the fetch-and-carry 

task performed when the object is placed at the location S. In 

this experiment, the robot navigates to the pre-defined 

waypoints, as shown in the sequence number 1-8 in Fig. 20. 

The robot then searches for the Aruco marker ID 0, located at 

the front side of the box. The searching scenario is shown in 

sequence number 9-11 in Fig. 20. Once the marker is detected, 

the robot reaches the object, as shown in the sequence 12-13 in 

Fig. 20. Sequence 14-16 shows the box manipulation scenario 

and sequence 17-25 shows the navigation process to the goal 

location from the object location. In the goal location, the 

Aruco marker ID 2 is placed to identify the exact goal location.

According to the Aruco pose estimation, the robot accurately 

reaches the goal location (sequence 27-29) as in Fig. 20. The 

robot then places the object on the table at the goal location 

(sequence 30-31). Finally, the robot returns to the initial 

position, as in the sequence 32-35. 

V.  CONCLUSION AND FUTURE WORKS 

This paper demonstrates the development of a mobile 
manipulator capable of performing fetch-and-carry tasks. The 
developed system can successfully self-navigate in an indoor 
environment and manipulate an object. When considering the 
overall performance of the developed system, it can be seen that 
the system performs well within a simple environment with the 
help of the existing 3D vision system. Therefore, this can be 
introduced as a reasonable and straightforward solution for 
basic mobile manipulation tasks in various industrial and 
domestic environments. This system can be used to minimize 
human intervention in the workplace when carrying out 
fetch-and-carry tasks especially during the Covid-19 pandemic. 
The Navigation system is developed with the Intel RealSense 
camera setup, as explained in section III. The localization is 
done based on the RTAB-Map package using the RGB-D data 
provided by the of the D435i camera. Therefore, poor lighting 
conditions may sometimes cause a problem for the localization. 

However, in good lighting conditions, the system 
performed well without causing any significant issues. This 
system functions well in an object-dense environment. As 
explained in section IV, in an empty area, the system cannot 
perform a precise localization due to the lack of data provided 
by the 3D camera to the RTAB-Map node. However, the

Fig. 20.  Fetch-and-carry operation sequence of the robot 
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 odometry provided by the RealSense T265 tracking camera 
reduces this error. Nevertheless, the maximum range of the 
RealSense D435i camera is approximately 10m. Therefore, the 
developed system may not perform well in an empty area more 
extensive than a 10m x 10m area.  

Obstacle detection is also carried out by the RealSense 
depth camera, located at a distance of 0.57m from the base 
frame. As the overall robot setup's height is only 1.5m, the 
obstacles locate with a height of more than 1m above from the 
base frame cannot be identified. Also, due to the limitations of 
the obstacle detection, the navigation stack is developed with a 
larger global inflation radius, and it will limit the system 
navigation to space which is less than 1.5m.  Introducing laser 
scanners will improve system navigation within a small area. 
However, the developed system can still avoid obstacles safely. 

 A fundamental object manipulation technique is used in 
this experimental setup. Therefore, the system can be further 
developed by introducing complex object manipulation 
techniques such as grasp planning, redundancy avoidance, and 
complex geometry manipulation. Currently, the system is 
developed to operate either the arm or base exclusively. 
Introducing a close kinematic chain for this system will 
improve the system's efficiency, allowing it to perform more 
sophisticated tasks.  

Finally, the system has limited capabilities to deal with 
unexpected failures. Significantly, the system cannot deal with 
dynamic obstacles present on the left, right, and backside of the 
robots. It may cause unnecessary collisions with the robot. 
Also, the robot is unable to restart from the recovery state if it 
gets stuck during navigation. These issues can be solved by 
adding a multiple-camera setup, a complex state machine 
technique and a machine learning technique to carry out task 
execution by introducing possible failures.   
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