
iRobotics

Vol. 04, No. 1, March, 2021

1

Abstract— This paper presents a detailed development of a
mobile manipulator to perform fetch-and-carry tasks
autonomously in a structured indoor environment. This system
was specially designed to prevent human contact in the work
environment during the Covid-19 pandemic situation. The system
setup includes a Baxter manipulator mounted on a two-wheeled
differential drive mobile robot. The ROS melodic platform
installed on Nvidia Jetson TX1 embedded system was used for
software development. Autonomous navigation and visual
servoing are implemented using an Intel RealSense depth camera
and a tracking camera which are collaborated with ROS
Simultaneous Localization and Mapping (SLAM) and navigation.
The system was validated under two experiments to 1) analyze the
performance of mobile manipulator navigation and 2) validate the
overall system performance. Through several trials in each
experiment, it was demonstrated that the developed system can
perform fetch-and-carry tasks with collision-free navigation
consistently and repeatedly.

 Index Terms—Mobile Manipulator, Autonomous Navigation,
Robot Operating System (ROS), SLAM, Baxter Manipulator, Aruco
Markers

I. INTRODUCTION

OVID-19 pandemic has immensely affected the
manufacturing and service sectors restricting various daily

activities. Therefore, researchers are investigating solutions to
reduce human contact as much as possible to mitigate the spread
of pathogens. Integration of mobile manipulator systems as a
shield is becoming a powerful tool to prevent the fear of
contamination. Either autonomous or teleoperated, mobile
manipulators are well-suited to perform fetch-and-carry tasks in
many different areas such as domestic services, aerospace,
manufacturing, and agriculture [1]. In addition to these,
operators engaged in robots generally require a significant
amount of training and experience to operate and control a
robotic mission. Therefore, researchers focus on developing
fully autonomous mobile manipulator systems that can perform
a specific task while safely interacting with an unknown
environment that includes static and dynamic objects.

In response to that, we have contributed to these requirements
by developing a ROS (Robot Operating System)-based mobile
manipulator robot that exhibits autonomous and intelligent
behavior to perform a fetch-and-carry task in an indoor

This paper is submitted on March 5th, 2021. This work was supported in

part by Science and Technology Park, Chiang Mai University under grant
no.165/2563 and Office of the National Commission Ministry of Digital

Economy and Society under grant no.1028/63

I. Naotunna is a master-degree student in the Graduate Program in
Mechanical Engineering, Faculty of Engineering, Chiang Mai University,

Chiang Mai, Thailand 50200 (e-mail: naotunna_isira@cmu.ac.th).

T. Wongratanaphisan is with Department of Mechanical Engineering and
Center for Mechatronic System and Innovation, Chiang Mai University,

Chiang Mai, Thailand 50200 (e-mail: theeraphong.wong@cmu.ac.th).

workspace. The system is developed to reduce human
responsibilities when performing the fetch-and-carry task in a
structured environment. The robot includes three main
sub-systems; i.e., a manipulator system (Baxter), a mobile robot,
and the 3D vision system. Communication between these three
systems is controlled via ROS by connecting to a host computer.
The system is developed by undergoing a thorough study on
robot kinematics, computer vision, visual servoing, SLAM,
navigation, and object manipulation. The robot's autonomous
navigation system is developed using the ROS navigation stack
with real-time appearance-based mapping and localization
techniques. The object detection and the manipulation
techniques are developed using the Aruco marker-based visual
servoing technique. The primary sensor of the robot is the Intel
RealSense D435i camera, which is used in both navigation and
target detection.

One of the main challenges that one has to overcome when
implementing SLAM and navigation methods for the mobile
robot system is to minimize the errors in odometry. The system
requires accurate odometry information to obtain fault-less
localization during navigation. Wheel encoders are commonly
used to acquire the odometry information of mobile robotic
systems. In addition to that, some of the robots are developed by
fusing the Internal Measurement Unit (IMU) and wheel encoder
data to minimize the odometry errors. When implementing a
ROS navigation stack for the mobile robotic system, the robot’s
transformation tree (TF) of the ROS navigation stack is
published based on the odometry information. Because of this,
the accuracy of the robot’s localization depends on the robot’s
TF tree. However, we have used the Intel RealSense T265
tracking camera information to develop the robot’s TF tree by
fusing the TF tree of the T265 camera to the robot’s TF tree
instead of using the common approach of ROS. This approach
avoids localization errors that occur due to wheel slipping and
the robot’s vibration.

Most of the existing ROS-based mobile manipulator systems
such as PR2 [2], Robotnik RB-1[3], Tiago [4], and Rob@work4
[5] consists of multiple sensors such as laser scanners, LIDAR,
and 3D vision systems. Localization techniques in these systems
are developed based on ROS AMCL which uses multiple laser
scanner data. They also use multiple sensor sources for obstacle
detection as well. But in this research, we have set up the ROS
navigation stack by using only the Intel RealSense D435i
camera with the help of the TF tree developed based on the Intel
RealSense T265 tracking camera. The developed ROS
navigation technique with RealSense T265 tracking camera and
D435i depth camera is tested and validated by experiments. In
addition to that, the overall performance of the system is also
validated. The main objective of this paper is to provide a
complete overview of the developed system as a helpful guide
for ROS developers. This guide will help any robotic developer
to transform an existing robot manipulator system into an
autonomous mobile manipulator system to perform a basic

Isira Naotunna, and Theeraphong Wongratanaphisan

Development of an Autonomous Mobile

Manipulator System for Fetch-and-Carry Tasks

C

I.Naotunna, and T.Wongratanaphisan.
Journal of Robotics Society of Taiwan (iRobotics)

2

fetch-and-carry task without adding multiple sensor sources.
The following subsections provide a detailed description of the
proposed mobile manipulator's hardware systems, software
systems and control strategies. Experimentation tests and their
results are presented and discussed in the final sections.

II. HARDWARE ARCHITECTURE AND SYSTEM DESIGN

The robot setup is developed with a 7-DOF, dual-arm Baxter
manipulator system mounted on a differential drive
two-wheeled mobile robot, as shown in Fig. 1. These
subsystems are controlled by ROS melodic operated in the
Nvidia Jetson TX1 platform. Autonomous navigation and visual
servoing are implemented using the Intel RealSense D435i
depth camera and T265 tracking camera which, also
communicate with Nvidia TX1 via RealSense SDK [6] and the
RealSense ROS wrapper [7].

Fig. 1. The mobile manipulator system developed for fetch-and-carry tasks

A. Baxter Manipulator System

Baxter robot is an industrial hardware system consisting of
two 7-DOF arms. The robot is approximately 3 feet tall with a
weight of 75Kg. Both Baxter's arms have angle position and
joint torque sensing facilities. Baxter robot has three integrated
cameras, and these cameras are located at the end effectors of
each joint and the robot head. In addition to this, the Baxter
robot also consist of sonar sensors, accelerometers, and
range-finding sensors that allow it to perform collision-free
manipulation [8].

B. Mobile Robot Development

The mobile robot is a two-wheeled differential drive system

with a platform constructed using mild steel. It has a length of

0.8m, a width of 0.5m, and a height of 0.7m, as shown in Fig. 2.

The mobile robot system is controlled by Arduino MEGA

2560, which is communicated with the NVidia TX1 via ROS

Serial package [9] with a baud rate of 512 kbps. The system is

driven using a couple of MY1016Z3 brushed DC motors, each

controlled separately using ELMO-VIO 25/60 motor control

units. Since the motor controller requires an analog control

signal to perform smooth motor controlling, MCP4922 Digital

to Analog Converter (DAC) is used to generate the analog

control signal from Arduino. The converter establishes an SPI

communication between itself and Arduino with a frequency of

10MHz. Feedback from the motors is acquired using AMS’s

ASP5147P absolute magnetic encoders communicate with

Arduino via Serial Peripheral Interface (SPI) with the

frequency of 1MHz. Readings from the encoder are recorded

every 1ms using the Arduino timer 1 interrupts.

Fig. 2. Mobile robot structure and dimensions

 The mobile robot controller is designed based on the

kinematic model given in (1). As shown in Fig. 3, in (1), R, L,

Vl, and Vr represent the wheel radius of 0.175m, the wheel

distance of 0.6m, the linear velocity of the left wheel, and the

linear velocity of the right wheel respectively. In addition to

that, Vx, Vy, ɷ, and 0 denote the robot’s linear and angular

velocity components, and angular displacement.

l0 0

x

r

y
0 0

-R R

L Lω
VRcos(φ) Rcos(φ)

V =
V2 2

V
Rsin(φ) Rsin(φ)

2 2

 
 

   
    
          

 
  

 (1)

Based on the wheeled mobile robot’s kinematic equation,

the angular velocities of the left (ɷl) and right (ɷr) motors are

calculated as shown in equations (2) and (3). The G value in the

equations represents the speed ratio between motor and wheel,

which is 4.9:1 for this system.

 1 1(2) (2)
deg

2 2
r

G V L G V L
rads s

R R

 




  
  (2)

 1 1(2) (2)
deg

2 2
l

G V L G V L
rads s

R R

 




  
  (3)

iRobotics

Vol. 04, No. 1, March, 2021

3

Fig. 3. Kinematic model of the mobile robot

According to (2) and (3), a velocity feedback Proportional

and Integral (PI) controller is designed to control the velocity of

the system using the velocity feedback calculated from the angle

values obtained from the wheel encoders. The control signals

are calculated as 14-bit values to generate the analog motor

control signals via the MCP4922 DAC. In this system, the

MCP4922 DAC generates the maximum voltage (Vmax) of 4.2V

for the highest 14-bit value of 4096. Therefore, the reference

voltage (Vref) is selected as 2.1V. If the bit value of the control

signal is K, then the input control voltage signal (Vcmd) is

calculated as follows.

 max

4096
cmd

V
V K (4)

Hence, the actual control signal Vcontrol is represented as (5),

 control cmd refV V V  (5)

According to the relationship generated by (4), the robot's

motion can be defined based on the range of K values. K should

be in 2048<K<4096 for the forward motion, K=2048 for the

neutral conditions, and for the backward motion, K should be

0<K<2048. Fig. 4 represents the overall control unit of the

mobile robot. As shown in Fig. 4, digital pins 8, 9, 11, and 12 of

Arduino Mega connects to the Enable channels EN+ and EN- of

the motor controllers. When the robot operates, the motor

controllers are activated by supplying a 5V signal to the EN+

channels of the motor controllers. The reference signal of 2.1V

connects to the CREF- pins and the output channels of the

MCP4922 DAC connect to the CREF+ channels of the motor

controllers. Using these voltages supplied to the CREF+ and

CREF- channels, the required control signals are generated to

drive the motors.

C. 3D Vision System

The vision system comprises an Intel RealSense D435i

depth camera and an Intel RealSense T265 tracking camera. The

D435i is a depth camera that can be used in both indoor and

outdoor environments. It uses an Active IR stereo depth

technology with a minimum depth of 0.105m and 1280 x 720

depth resolution with a depth frame rate of up to 60 fps. The

sensor resolution is 1980 x 1080 RGB with a 30 fps RGB frame

rate. The T265 tracking camera includes two fish-eye lenses

which provide a combined, close to hemispherical 163±5° field

of view for robust tracking. However, to avoid unnecessary data

overloading during the operation of the robot, the frame rates of

the cameras are reduced to 15 fps. In this system, the tracking

data gathered from the T265 camera is used to identify the

location of the robot. In addition to these cameras, the head and

arm cameras of the Baxter robot can be used if necessary. The

two RealSense cameras are connected to the Nvidia TX1 via a

USB hub, and Intel RealSense Linux drivers are installed to

Nvidia TX1 to communicate with the cameras. Since all vision

tasks related to autonomous navigation and visual servoing will

be carried out in the ROS environment, RealSense ROS wrapper

libraries are used to collaborate RealSense cameras with ROS

Simultaneous Localization and Mapping (SLAM), and

navigation.

D. Software Architecture

A cluster of software running inside the Nvidia TX1

development board with Ubuntu 18.04 operating system and

Jetpack 4.2 drivers were installed. To operate the system, the

Nvidia TX1 has to establish communication within all three

subsystems simultaneously. ROS melodic software was used for

this purpose. Baxter and Arduino SDKs are installed into the

ROS workspace for programming and control. The vision

system is communicated through the RealSense SDK 2.35 and

RealSense ROS wrapper. The overall software architecture is

shown in Fig. 5. Additionally, remote communication is

achieved by establishing a remote desktop server between

Nvidia TX1 and a remote desktop using a VNC server via a Fig. 4. Mobile robot controlling unit

I.Naotunna, and T.Wongratanaphisan.
Journal of Robotics Society of Taiwan (iRobotics)

4

Wi-Fi connection. Remote communication is required to control

the system while in operation.

Fig. 5. Software architecture of the system

E. Power Unit

The developed mobile manipulator system is powered by

two 12V lead-acid batteries. Although the system runs on DC

voltage, an AC voltage is required to power up the Baxter robot.

The AC voltage is generated by using a MeanWell TS1000

inverter. The inverter produces an output voltage of 230V from

two serially connected 12V batteries. The schematic diagram of

the power unit of the system is shown in Fig. 6

F. Simultaneous Localization and Mapping

The mobile manipulator is developed to autonomously

navigate through a map while searching the target and transport

the object to the desired goal location. Therefore, before

performing the tasks, it is necessary to create a map of the

operating environment. The map is developed using the ROS

RTAB-Map package [10]. RTAB-Map can be used to generate a

3D map of the environment using 3D point cloud data using an

RGBD-SLAM approach based on an incremental

appearance-based global loop closure detector with real-time

constraints.

Fig. 7. Robot TF tree

Fig. 6. Power distribution diagram of the system

iRobotics

Vol. 04, No. 1, March, 2021

5

 To perform accurate SLAM and navigation with ROS, it is

necessary to provide the correct transformation (TF) tree of the

robot. Generally, most of the ROS applications use the REP 105

coordinate frame system to set up the TF tree of robots [11]. In

the traditional REP 105 setup, the odometry frame always

directly links to the base frame of the robot. But in this system,

we have developed the robot’s TF tree with respect to the T265

tracking camera’s odometry frame, as shown in Fig.7. The

implemented TF setup gives an accurate transformation directly

from the odometry data provided by the T265 tracking camera.

This approach helps to avoid the odometry errors caused due to

wheel slipping and quick rotations.

Fig. 8. Example scenario of map generation with RTAB-MAP

Fig. 9. Generated 2D occupancy grid map

During the mapping process, RTAB-Map generates the 2D

grid map and a 2D projected map, as shown in Fig. 8. Fig. 8(a)

shows the initial configuration of the map generation process.

Here, a TF tree of the robot setup is configured correctly, and

point cloud data is correctly subscribed to the RTAB-Map to

initiate mapping. Fig. 8(b) shows the example 3D mapping

scenario of the map generation process, and Fig. 8(c) shows the

generated 2D sample grid map from the RTAB–Map. Finally,

the 2D project map generated from the RTAB-Map by point

cloud data, and the robot path during the mapping process is

shown in Fig. 8(d). The map data and the image data are saved

to the RTAB-Map database. The robot's navigation uses saved

map data and image data. The generated 2D occupancy grid

map from RTAB-Map is shown in Fig. 9.

G. Navigation

After generating the map, the saved map data can be used to

perform the robot's navigation. Map-based navigation is done

using a configured ROS navigation stack according to the

system requirement. Fig.10 shows the general setup of the ROS

navigation stack for the developed mobile manipulator system

Fig. 10. ROS navigation stack configuration of the robot

Localization and path planning are the main components of

map-based navigation. As shown in Fig. 10, RTAB-Map

provides the localization by finding the loop closure based on

the image data saved in the RTAB-Map database during the map

generation process. The loop closure detector uses a

bag-of-words approach to determine if a new image detected by

the D435i camera is from a new location or a location it is

already visited. Once a loop closure is found, the odometry is

corrected, and the real-time point cloud data will be aligned to

the map.

There are two main concerns in path planning.i.e.; computing

a safe path to travel without collision and sending direct speed

commands to the controller to allow the robot to follow the

generated path. As shown in Fig. 10, the move_base node [12] is

responsible for path planning in the ROS navigation stack. Path

planning also contains two sub-levels known as the global

planner level and the local planner level. Both the local and

global planners are calculated based on the information

provided by the local and global costmaps. Global costmap is

generated by inflating the obstacles on the static map provided

by RTAB-Map. The global costmap is used to generate the

global plan for the navigation using the navfn package [13],

which is developed based on the Dijkstra algorithm [14]. The

local costmap deals with the real-time data provided by the

D435i camera. In this setup, the point-cloud provided by the

D435i camera, and fake laser scan data generated using the

depth images from the D435i depth camera are used to detect the

obstacles. An example configuration of the generated laser scan

model visualization in Rviz and the actual robot position is

shown in Fig. 11

I.Naotunna, and T.Wongratanaphisan.
Journal of Robotics Society of Taiwan (iRobotics)

6

Fig. 11. Fake laser model visualization in rviz and corresponding robot position

With the help of odometry data provided by the T265 tracking

camera and the local costmap data, the selected local planner

package develops a local path. There are different local planner

packages available in ROS that implement different algorithms

and approaches for this task. This system uses the

teb_local_planner ROS package [15], which uses the

timed-elastic-band algorithm [16]. Based on the calculated local

path, the move_base node sends the robot velocity data to the

Arduino Mega 2560 and based on the velocity commands

provided robot follows the local path.

 To obtain a better navigation performance, the navigation

stack parameters should be properly tuned based on the robot’s

configuration. Table I shows a few navigation stack parameters

that are tuned to obtain a better performance of the experimental

setup. In addition to that, other minor parameters are also tuned

to increase the performance of the system. The safety of the

system and the quality of path planning are the primary concerns

of parameter selection

TABLE I

NAVIGATION STACK PARAMETERS

Parameter Category Parameters

Velocity and
Acceleration

Maximum linear velocity: 0.35 m/s
Maximum Angular velocity: 0.4 rad/s

Linear acceleration limit: 1m/s2

Angular acceleration limit: 1rad/s2
Maximum backward velocity: 0.1m/s

Global Planner

Parameters

lethal_cost: 253
neutral_cost: 66

cost_factor: 0.55

Local Planner

Parameters

xy_goal_tolerance: 0.25

yaw_goal_tolerance: 0.2

min_obstacle_dist: 0.7
Footprint model radius: 0.6m

Costmap Parameters

Obstacle range: 0.7 m
Obstacle layers’ observation sources:

pointcloud/Scan

Global costmap inflation radius: 0.4m
Local costmap inflation radius: 0.3m

Cost scaling factor: 3

 Fig. 12 shows an example scenario of map-based

navigation in the developed experimental setup with example

images of rviz simulation and the real-time robot motion. Fig.

12(a) shows the robot’s approach to the goal location, at which

the obstacle is not in the minimum obstacle range of the

costmap. Therefore, the navigation stack provides a straight path

to the goal location, as shown in the rviz simulation. Fig. 12(b)

shows the obstacle detecting scenario. The behavior of the local

costmap and the local planner with the obstacle can be observed

in the rviz simulation of Fig. 12. Lastly, Fig. 12(c) and Fig. 12(d)

show the obstacle avoidance and goal-approaching

scenarios.

Fig. 12. Example scenario of navigation: (a) Navigation without obstacles, (b)
Obstacle detection, (c) Avoiding the obstacle, and (d) Reaching to the goal
location.

III. METHOD

As explained in section II, the developed mobile
manipulator system can autonomously navigate through a
constructed map of a workplace. This section describes the
development of the Aruco marker-based fetch-and-carry
methodology and mobile manipulator's control algorithm. An
experimental setup is developed to demonstrate the
fetch-and-carry task from the developed mobile manipulator
system. In this setup, the robot navigates through different
waypoints of the constructed map while searching for the target
box. Once the target box is detected, the robot approaches the

iRobotics

Vol. 04, No. 1, March, 2021

7

target box and picks it up using Baxter's left arm. Finally, the
robot arrives at the goal location and places the box at the goal.
The overall control algorithm of the experimental setup is
shown in Fig. 13.

Fig. 13. Mobile manipulator control algorithm

(a)

(b)

(c)

Fig. 14. Aruco marker detection: (a) Box with Aruco markers, (b) ID 0 detection
with D435i camera, and (c) ID 2 detection with Baxter left-arm camera.

In this experiment, Aruco marker-based pose estimation
technique is used to identify the pose of the target object in both
mobile manipulator navigation and object manipulation. A ROS
python library for Aruco marker detection and pose estimation
is implemented using the Aruco library for augmented reality
based on OpenCV [17]. The cv_bridge plug-in is used to
implement the OpenCV library with ROS. RealSense D435i
camera is used for goal identification, and the left-arm camera of
the Baxter with the resolution of 640x800 is used for marker
detection in object manipulation. The Aruco marker poses with
respect to the camera frames can be obtained from the pose
estimation algorithm developed using the OpenCV Aruco pose
estimation library. Fig. 14(a) shows the box that is used in the
experiment, and the samples of marker detection from both
cameras are shown in Fig. 14(b) and Fig. 14 (c). As shown in
Fig. 14 (a), there are two Aruco markers placed on the Box. The
marker on the front side is used to identify the box during the
navigation and the marker on the top is used to estimate the pose
during the manipulation.

A. Target Reaching

As explained in section II, the mobile manipulator system is
developed with a ROS navigation stack to navigate using a
known map. When the robot reaches a pre-defined waypoint in
the map, the robot starts to search the Aruco markers by
rotating 360 degrees around the self-axis. In this experiment,
the target locations are defined with the Aruco marker ID 0, and
the goal locations are defined with the ID 2 of the 4X4 Aruco
dictionary. Once the marker is detected, the marker pose is
calculated with respect to the robot’s base frame. Then the
angular error β of the marker with respect to the robot base
frame is calculated using the tangent of marker x and y
coordinates with respect to the base frame given in (6).

 tan()
Fx

Fy
  (6)

The robot is then rotated to satisfy the angular error
condition of -0.05< β <0.05 radians. The reason for this initial
rotation is to minimize the error produced by the ROS
navigation stack when reaching the target. Once the robot
satisfies the angular error condition, the target location is
calculated with respect to the map frame according to the
following method.

Rotation angle yaw (ψ) of the robot, can be calculated using
the robot orientation, which is published by the move_base

node in the form of a quaternion, 0 1 2 3q q iq jq kq    as

shown in (7).

 1 0 3 1 2

2 2
2 3

2()
tan ()

1 2()

q q q q

q q
  


 

 (7)

For the pose of the robot with respect to the map (xrm, yrm, zrm

, ψ) and pose of the marker with respect to the robot base frame
(xb, yb, zb), the pose of the marker with respect to the map frame
(xm, ym, zm) is given by (8).

cos() sin() 0

sin() cos() 0

0 0 0

0 0 0 0

rm
m b t

rm
m b

rm
m b

x
x x x

y
y y

z
z z

 

 

 
    

        
       

 

 (8)

I.Naotunna, and T.Wongratanaphisan.
Journal of Robotics Society of Taiwan (iRobotics)

8

Where xt is the distance from the object to the robot goal
position, it should always be larger than the defined inflation
radius of the Navigation Stack to avoid unnecessary recovery
behaviors.

Then the calculated xm and ym values are sent to the
move_base node to plan the path to navigate closer to the
object. Once the robot comes closer to the object, the
manipulator system is brought closer to the object smoothly by
sending velocity commands until the defined forward error
conditions (forward error < 0.5 m) and angular error conditions
(-0.05< β <0.05) of the marker are satisfied with respect to the
base frame. After satisfying the conditions, the manipulation
command is sent to the Baxter robot to perform pick-and-place
tasks.

B. Object Manipulation

 During the mobile manipulator operation, The Baxter’s
arms follow a predefined pose sequence to perform object
handling. The Baxter joint trajectory action server is used to
move the arms according to the specified joint angles. The joint
trajectory action is a ROS node that provides an action interface
for tracking trajectory execution. It passes trajectory goals to
the controller and reports success when they have finished
executing. When the robot's operation starts, both the arms
move to the predetermined navigation pose from its default
neutral pose, as shown in Fig. 15(a). The defined navigation
pose avoids unnecessary collisions with the obstacles during
the system navigation by keeping both arms inside the
boundary of the robot’s footprint. Therefore, the mobile
manipulator control algorithm is programmed to maintain this
predefined navigation pose during autonomous navigation.

Fig. 15. Baxter performing object picking task: (a) Navigation pose, (b)
Searching pose, (c) Reaching to the box, (d) Grab the box using grippers, (e)
Picking the box, and (d) Return to the Navigation pose.

When performing the object picking task, once the robot
reaches the object location, the arms move to the predefined
searching pose as shown in Fig. 15(b).As mentioned before, the

pose estimation of the box is done based on the Aruco marker,
located at the top of the target box, which has the average
dimensions of 20cm x 15cm x 12cm. The Baxter’s left-arm
camera is used to identify the Aruco marker. Then using the
OpenCV Aruco pose estimation library, the 6D pose of the
Aruco marker Par=(Xar,Yar,Zar,rollar,pitchar,yawar)T is
calculated. Then, the Aruco marker pose with respect to
Baxter’s base frame is calculated using the ROS tf2 package.
Next, the inverse kinematics of Baxter’s left arm is calculated
using Baxter’s Solve_Position_IK_Request ROS service. It is
an inbuilt ROS service of the Baxter robot to calculate the
inverse kinematics. Based on the calculated joint angles the
object is picked as shown in Fig. 15(c) and Fig.15 (d). Finally,
both the arms reach back to the navigation pose and prepare for
the navigation as Fig.15 (e) and Fig. (f). After that, the robot
navigates to the goal location, and using a similar method,
Baxter places the object on the goal location.

IV. EXPERIMENT AND RESULTS

The developed system was validated with two experiments.
The first experiment was conducted to analyze the performance
of the mobile manipulator navigation while the second
experiment is conducted to validate the overall system
performance by performing fetch-and-carry tasks. All the
experiments were performed inside the first floor of the main
engineering building of Chiang Mai University. The 2D map of
the floor area is shown in Fig. 16(a), and the generated 2D map
of the floor is shown in Fig. 16(b).

(a)

(b)

Fig. 16. 2D Map of the experimental area: (a) Detailed 2D map of the
experimental area, and (b) Generated occupancy grid map.

A. Performance Analysis of the Navigation System

The performance of the system navigation is analyzed by a

iRobotics

Vol. 04, No. 1, March, 2021

9

navigation task to the pre-defined waypoints of the generated
map, as shown in Fig. 17 (b). The experiment is conducted to
evaluate the accuracy of navigation of the system along with
the given map. This experiment includes 15 trials, and the
entire set of data is recorded while the robot navigates from the
waypoint O to waypoint A, waypoint A to waypoint B, and
waypoint B to waypoint O as shown in Fig. 17. The Cartesian
coordinates of the waypoint O, A, and B are (0, 0), (22.5, 2.0),
and (22.5, 9.0) respectively.

Fig. 17. Waypoints locations

To analyze the navigation performance of the developed
system, the local planner and the robot's actual path are observed
at each trial. Root Mean Square Deviation (RMSD) is used to
validate the navigation performance of the system. In this
experiment, RMSD value between the local planner and the
robot’s actual path (RMSD)LR is calculated to analyze the
performance of the developed mobile robot controller. If the
local position, robot position, and the number of data points are
given by the (Xl,Yl), (Xr,Yr), and n; the (RMSD)LR can be
calculated as shown in (9).

 2 2

1 1

1 1
() ()

n n

LR l r l rRMSD X X Y Y
n n

     (9)

 In addition to that, the goal reaching accuracy was also
calculated by measuring the final robot position of the robot

once the robot completes the full path OABO. The
robot’s final position and the orientation is measured based on
the odometry data provided by the Intel RealSense T265
camera.

Fig. 18. Local path and the robot’s actual path recorded in the second trial

Fig. 18 shows the local path and the robot’s actual paths
during trial 2. When carefully observed, it was seen that the
robot followed the local planner without having any
considerable deviation. However, when comparing the robot’s
actual path and the local planner, there is a slight deviation in the
robot’s actual path from the local planner when navigating from
point A to point B. The main reason for that is the floor area of
point A to point B is an empty area compared to the floor area of
path OA. Therefore, RGB-D data provided by the depth camera
was not enough to perform precise loop closure in an empty
area. One possible explanation would be that there are no
objects for the depth camera to detect, to tie the submaps
together and perform loop closure. However, the odometry
provided by the T265 tracking camera reduces this error in the
empty environment.

 According to the position and orientation errors measured at
the final goal location O, it was observed that the robot did not
always stop at the exact goal location O (0, 0) after completing

the path OABO. The same was observed in the robot’s
path shown in Fig. 18. The position and orientation errors can
also be reduced by minimizing the goal tolerances and the
footprint size. However, reducing the goal tolerance to a lower
value creates unwanted oscillations when reaching the goal
points. In addition to that, the localization errors affect the
accuracy of reaching the goal. However, when compared with
the size of the robot, the position errors and orientation errors of
the existing setup is acceptable. Table II shows the overall
navigation performance of the system during the experiment.

 TABLE II

OVERALL NAVIGATION PERFORMANCE OF THE SYSTEM

Performance measurement Value

Average (RMSD)LR 0.2 m
Minimum distance from the final goal point O 0.15m

Maximum distance from the final goal point O 0.41m

Maximum angular error at the final goal point O 0.02 rad
Minimum angular error at the final goal point O 0.15 rad

Average measured xy goal tolerance 0.21m

Average measured yaw goal tolerance 0.11 rad
Number of successful trials 15

Number of unsuccessful trials 0

B. Overall System Performance

The developed system was validated by performing

fetch-and-carry tasks inside the same floor area as shown in

Fig. 16. The selected floor consists of a three corridors, a room

with objects, and a vacant living-area. In this experiment, the

robot’s main tasks were to select an object in a random position

on the map, move it to the desired target, place it in the target

position and return it to the starting position. Fig. 19 shows the

initial position of the robot (O), goal location (G), and the

object locations (P, Q, R, S) where the object is placed during

the experiment. This test consists of 15 experiments, and in

each experiment, the location of the object is randomly selected

from one of the locations (P, Q, R, S) mentioned above. The 2D

coordinates of the P, Q, R, S, and G with respect to the initial

position O (0, 0) are (14.5, 3.0), (20.0, 7.5), (22.0, 9.5), (24.5,

8.5), (0.0, -1.5) respectively.

I.Naotunna, and T.Wongratanaphisan.
Journal of Robotics Society of Taiwan (iRobotics)

10

Fig. 19. Waypoints locations

The robot completed all 15 trials during the experiment. Fig.

20 shows the operation sequence during the fetch-and-carry

task performed when the object is placed at the location S. In

this experiment, the robot navigates to the pre-defined

waypoints, as shown in the sequence number 1-8 in Fig. 20.

The robot then searches for the Aruco marker ID 0, located at

the front side of the box. The searching scenario is shown in

sequence number 9-11 in Fig. 20. Once the marker is detected,

the robot reaches the object, as shown in the sequence 12-13 in

Fig. 20. Sequence 14-16 shows the box manipulation scenario

and sequence 17-25 shows the navigation process to the goal

location from the object location. In the goal location, the

Aruco marker ID 2 is placed to identify the exact goal location.

According to the Aruco pose estimation, the robot accurately

reaches the goal location (sequence 27-29) as in Fig. 20. The

robot then places the object on the table at the goal location

(sequence 30-31). Finally, the robot returns to the initial

position, as in the sequence 32-35.

V. CONCLUSION AND FUTURE WORKS

This paper demonstrates the development of a mobile
manipulator capable of performing fetch-and-carry tasks. The
developed system can successfully self-navigate in an indoor
environment and manipulate an object. When considering the
overall performance of the developed system, it can be seen that
the system performs well within a simple environment with the
help of the existing 3D vision system. Therefore, this can be
introduced as a reasonable and straightforward solution for
basic mobile manipulation tasks in various industrial and
domestic environments. This system can be used to minimize
human intervention in the workplace when carrying out
fetch-and-carry tasks especially during the Covid-19 pandemic.
The Navigation system is developed with the Intel RealSense
camera setup, as explained in section III. The localization is
done based on the RTAB-Map package using the RGB-D data
provided by the of the D435i camera. Therefore, poor lighting
conditions may sometimes cause a problem for the localization.

However, in good lighting conditions, the system
performed well without causing any significant issues. This
system functions well in an object-dense environment. As
explained in section IV, in an empty area, the system cannot
perform a precise localization due to the lack of data provided
by the 3D camera to the RTAB-Map node. However, the

Fig. 20. Fetch-and-carry operation sequence of the robot

iRobotics

Vol. 04, No. 1, March, 2021

11

 odometry provided by the RealSense T265 tracking camera
reduces this error. Nevertheless, the maximum range of the
RealSense D435i camera is approximately 10m. Therefore, the
developed system may not perform well in an empty area more
extensive than a 10m x 10m area.

Obstacle detection is also carried out by the RealSense
depth camera, located at a distance of 0.57m from the base
frame. As the overall robot setup's height is only 1.5m, the
obstacles locate with a height of more than 1m above from the
base frame cannot be identified. Also, due to the limitations of
the obstacle detection, the navigation stack is developed with a
larger global inflation radius, and it will limit the system
navigation to space which is less than 1.5m. Introducing laser
scanners will improve system navigation within a small area.
However, the developed system can still avoid obstacles safely.

 A fundamental object manipulation technique is used in
this experimental setup. Therefore, the system can be further
developed by introducing complex object manipulation
techniques such as grasp planning, redundancy avoidance, and
complex geometry manipulation. Currently, the system is
developed to operate either the arm or base exclusively.
Introducing a close kinematic chain for this system will
improve the system's efficiency, allowing it to perform more
sophisticated tasks.

Finally, the system has limited capabilities to deal with
unexpected failures. Significantly, the system cannot deal with
dynamic obstacles present on the left, right, and backside of the
robots. It may cause unnecessary collisions with the robot.
Also, the robot is unable to restart from the recovery state if it
gets stuck during navigation. These issues can be solved by
adding a multiple-camera setup, a complex state machine
technique and a machine learning technique to carry out task
execution by introducing possible failures.

ACKNOWLEDGEMENT

 This research is supported by the Department of
Mechanical Engineering at Chiang Mai University in Thailand.

REFERENCES

[1] R.Bostelman, T.Hong, and J.Marvel, “performance measurement of

mobile manipulators,” in proc. Multisensor, Multisource Information

Fusion: Architecture, Algorithms, and Applications, Baltimore, United

States, 2015.

[2] “Collaborative Robot Series : PR2 from Willow Garage

2013,”robotiq.com,[online].Available:https://blog.robotiq.com/bid/6541
9/Collaborative-Robot-Series-PR2-from-Willow-Garage, Accessed on:

Mar 31, 2021.

[3] Mobile manipulato rRB-1,”robotnik.eu,[online].Available:
https://www.robotnik.eu / manipulators /rb-one/ , Accessed on: Mar 31,

2021.

[4] ”TIAGo, the best robotic partner for research,” pal-robotics, 2015.
[online].Available:http://blog.pal-robotics.com/tiago-your-best-robot-for

-research/,Accessed on: Mar 31, 2021.

[5] “rob@work3,”rob@work,2018,[online].Available:https://www.care-o-b

ot.de/en/rob-work.html. Accessed on: Mar 31, 2021.

[6] “Intel RealSense SDK 2.0 – Intel RealSense Depth and Tracking

cameras,” Intel® RealSenseTM Depth and Tracking Cameras. [Online].
Available: https:// www. intelrealsense.com/sdk-2/, Accessed on: Mar.

05, 2021.

[7] IntelRealSense, “IntelRealSense/realsense-ros,” GitHub, Dec. 11, 2019.

[Online]. Available: https:// github. Com /IntelRealSens /realsense-ros.

Accessed on: Feb. 24, 2021.

[8] T.L Harman, and C. Fairchild, “Introduction to Baxter,” Aug.02, 2016.

[Online].Available:https://sce.uhcl.Edu/Harman/A_CRS_ROS_Seminar
Day3/UNIT3_2BaxterHW&SW/3_2_2BAXTER_Introduction_2_08_20

16.pdf.

[9] “rosserial - ROS Wiki,” wiki.ros.org. [Online]. Available: http://wiki.ros

.org/rosserial, Accessed on: Mar. 01, 2021.

[10] “rtabmap_ros - ROS Wiki,” wiki.ros.org. [Online]. Available:

http://wiki.ros.org/rtabmap_ros,Accessed on: Mar. 02, 2021.

[11] “REP 105 -- Coordinate Frames for Mobile Platforms", wiki.ros.org,

[Online]. Available: https://www.ros.org/reps/rep-0105.html. Accessed

on: Mar. 01, 2021.

[12] “move_base - ROS Wiki,” wiki.ros.org. [Online]. Available:

http://wiki.ros .org/move_base, Accessed on: Mar. 01, 2021.

[13] “navfn - ROS Wiki,” wiki.ros.org. [Online]. Available: http://wiki.ros

.org/navfn, Accessed on: Feb. 27, 2021.

[14] E.W.Dijkastra,”A note on two problems in connection with

graphs,”Numerische mathematik, vol.1, no.1, pp.269-271, 1959.

[15] “Wiki.ros.org. (2020). teb_local_planner” - ROS Wiki. [online]

Available at: http://wiki.ros.org/teb local planner, Access on: Feb. 27,

2021.

[16] C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann and T. Bertram,”

Trajectory modification considering dynamic constraints of autonomous

robots,” ROBOTIK 2012; 7th German Conference on Robotics, Munich,

Germany, 2012, pp. 1-6.

[17] Doxygen. "Aruco Marker Detection." OpenCV. [Online]. Available:

https://docs.opencv.org/master/d9/d6a/group__aruco.html, Accessed on:

March. 4, 2020.

Isira Naotunna received the B.Sc. degree in

Department of Mechanical Engineering from
University of Moratuwa, Sri Lanka, in 2016, and

currently pursuing M.Eng. degree in Department

of Mechanical Engineering from Chiang Mai
University, Thailand. His current research

interests and publications are in the areas of

robotics, and mechatronics Systems

Theeraphong Wongratanaphisan received the

M.S. and Ph.D. degrees in Mechanical
Engineering from Lehigh University, Bethlehem,

PA, USA, in 1996, and 2001, respectively. He is

currently an Associate Professor at Department of
Mechanical Engineering, Chiang Mai University,

Thailand. Her current research interests and

publications are in the areas of mechatronics,

robotics, and artificial intelligence.

