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Abstract— This paper deals with the design of an optimal 
tracking control for fully-actuated Surface Vessel Systems with 
completely unknown dynamics. A feed-forward term in proposed 
controller is introduced for obtaining the corresponding 
autonomous tracking error model. An integral reinforcement 
learning (IRL) and an Actor/Critic technique are then developed 
to solve Hamilton-Jacobi-Bellman (HJB) equation in optimal 
control term. The convergence of the proposed technique to the 
analytical solution of HJB equation is guaranteed. Additionally, 
the trajectory tracking effectiveness is also mentioned. Simulation 
studies are given to evaluate the quality of the proposed method.    

 Keywords- Surface Vessels (SVs), Integral Reinforcement 
Learning (IRL), Adaptive Dynamic Programming (ADP), Lyapunov 
Stability Theory.  

I. INTRODUCTION 

HE optimal control has been extensively considered in the 
development to improve control system performance of 

Surface Vessels (SVs). The application of optimal control 
theory has mostly concentrated on solving 
Hamilton-Jacobi-Bellman (HJB) equation using reinforcement 
learning (RL) technique because it is impossible to analytically 
solve this equation. In practice, it is usually utilized to develop 
traditional nonlinear controller in SVs control system. Existing 
control schemes to SVs are often considered by cascade control 
system [1-4]. In [1], full-state regulation control problem is 
addressed by dividing into 2 sub-tasks and then translation 
control scheme and rotation controller are presented with exact 
observers. Furthermore, finite time sliding mode control design 
is developed for SVs with the sliding variable to be obtained 
from observer of not only uncertainties/disturbances but also 
velocity error [2]. In [3], although the cascade control system is 
handled, but it is obviously different from the existing method in 
[1, 2], the tan-Barrier Lyapunov technique addressed the error 
constraint and finite time control problem. Additionally, authors 
in [3] solve the actuator saturation by inserting additional term 
into given control scheme and then obtaining its updating law. 
In [4], although this model is also considered as Under-Actuated 
system of Wheeled Mobile Robots (WMRs) but in contrast to 
designing WMRs control system, the outer sub-system is 
fully-actuated and the inner-subsystem is under-actuated. 
Additionally, actuator saturation and observer are also similarly 
implemented as in [2, 3]. The application of sliding mode 
control (SMC) for SVs is extend to integral SMC technique by 
the work in [6]. For the purpose of developing the control design 
for SVs with input/output and state constraint, the optimal 
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control algorithm is considered as remarkable solution with the 
difficulties in solving HJB equation. In recent years, 
Reinforcement Learning (RL) algorithm has been remarkably 
mentioned with many approaches, such as Actor/Critic, On/Off 
policy Integral Reinforcement Learning (IRL) technique, Q 
learning, etc. [5-9]. In [5], the updating law in actor and critic are 
implemented simultaneously based on the consideration of 
Hamiltonian function. This method is also used in [7] for all 
control loops of cascade controller with modified critic NNs. 
However, because of time-varying desired trajectory, the 
tracking error model needs to be known as autonomous system. 
Therefore, it leads to the effect of control performance. 
Moreover, authors in [9] proposed the additional term of 
Nussabaum function to handle unknown control direction with 
modified performance index.     

In this paper, two ARL learning based optimal control schemes 
are presented for SVs to find the solution to optimal tracking 
problem, including online on-policy IRL algorithm and 
Actor/Critic Learning structure. A transformation method to 
autonomous tracking error model is also introduced for 
developing reinforcement learning algorithm. This is in contrast 
to the existing method [7] that implement Actor/Critic RL for 
non-autonomous systems.           

II.  PROBLEM FORMULATION AND PRELIMINARIES 

A class of fully-actuated Surface Vessel (SV) systems are 
considered as: 
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where the joints vector   3, ,
T

q x y   describes the potition and 

heading angle under the earth-fixed coorfinate. 
3  is the 

vector of control input. The transform matrix  J q is known as: 
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The knowledge of classical matrices      , ,M q C D    is shown 

in [1,2,3]. Furthermore, in this work, these matrices are 
considered as unknown matrices. They can be decoupled by 

known estimated terms      , ,M q C D  and unknown terms 

     , ,M q C D    as: 
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According to (1) and (3), it leads to the model: 

 

         , , ,

q J q

M q C D g q q t



       




     
      (4) 

It is assummed that the lumped uncertainty is bounded 

 , , ,q t    . In this paper, the control purpose is to design an 

IRL based optimal control design in presence of 
Uncertainties/Disturbances. 

Assumption 1: The desired trajectory  d t satisfies that there 

exists a function  1 . : n nk   such that  1d dk   

III. OPTIMAL CONTROL ALGORITHM FOR SVS 

A. INTEGRAL REINFORCEMENT LEARNING ALGORITHM 

FOR SVS 

This section introduces the application of optimal control in 
surface vessels by solving optimal control problem with Integral 
RL technique. This method enables us to develop optimal 
control scheme for uncertain SVs because of computing control 
policy from data collection. The Online On-Policy Integral 
Reinforcement Learning (IRL) is introduced to find control 
design for SVs with the advantage of eliminating the knowledge 
of internal dynamics. 

For the purpose of implementing the trajectory tracking 
control scheme, the control input   in (2) is utilized the 

feed-forward term d   to develop the remaning optimal control 

u   for autonomous systems as follows: 
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According to (1), (2) and assumption 1, we achieve the 
corresponding autonomous tracking error model as: 
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The term  u t  in control input (2) plays the role of optimal 

control to minimize the following cost function: 

   
0

, ,J x u x u d 


                (7) 

As we all known the optimal control is solve from HJB 
(Hamilton-Jacobi-Bellman) equation. However, it is hard to 

analytically solve this equation in theory and practical problem. 
To overcome this challenge, this work presents the application 

of On Policy IRL algorithm to find the term  u t  as follows:  

Step 1: Initializing admissible policy  0u t  ,    0oV x t   and 

using  0u t  for system.  

 Collecting the data  x t  and  0u t  in the time interval 

 0,T  at N sampling time; 

 0i  . 

Step 2: Finding the function   1iV x t approximating Bellman 

function   *V x t based on the data collection with the control 

input being   iu x t : 
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Step 3: Updating the control policy   1iu x t : 
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 If      1i iV x t V x t     then 

            * *

1 1;i iu x t u x t V x t V x t    and Stop 

Algorithm 

 If      1i iV x t V x t     then 

o 1i i  ; 

o Using  iu t  for system and collecting the data 

 x t  and  iu t  in the time interval  0,T  at 

N sampling time; 

o Comming back Step 2;  

In order to solve the equation (8) in the algorithm based on 

data collection, we will approximate   iV x t  by Neural 

Network    ˆ
iV x W x   and finding the updating law of Ŵ  by 

optimality principle. According to (8), it follows that: 
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Based on the data collection in N sampling times 

       1 1,..., ; ,...,
T

N NH h t h t Y y t y t        and Least-Squares 

solution, we imply the training weight of Critic NN as: 

 
1

ˆ TW HH HY


  



iRobotics 

                                                  Vol. 04, No. 1, March, 2021 

 

3 

B. ACTOR/CRITIC LEARNING ALGORITHM FOR SVS 

This section introduces the second approach of optimal 
control in surface vessels by using Actor/Critic learning 
structure. This method is able to address optimal control scheme 
for uncertain SVs by obtaining the adjusting mechanism of 
Weights in Actor/Critic parts from arbitrary values.  

As described in [9], we can utilize a Neural Networks (NN) 
based approximation method to develop the ARL algorithm in 

SVs controller. Because the Bellman function   *V x t  and 

optimal control input   *u x t can be known as smooth functions 

with respect to the state  x t , they are represented over any 

compact domain. 

*( ) ( ) ( )TV x W x x               (11) 
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where 
NW  is a vector of unknown ideal NN weights, N  

is the number of neurons of the proposed Neural Network, 

( ) NX   is a smooth NN activation function vector with 

(0) 0j   and 0| 0
j

x
x








1,...,j N  , ( )X  is the 

reconstruction error of the Bellman function 
*( )V x .  

It is because of uncertain ideal NN weights, one need to find 

appropriate updating laws 
ˆ ˆ,a cW W  with the purpose of 

approximating the actor/critic parts and obtaining the optimal 
controller without solving analytically the HJB equation. In 

addition, the smooth NN activation function vector ( ) Nx    is 

chosen based on the description of SVs (see section 4). In [9], 
the Weierstrass approximation theorem is able to uniformly 

approximate not only  *V x but also 
 *V

x

x


with  
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, 0  
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The estimated Bellman function of critic part ˆ( )V X  and the 

estimated optimal control policy of actor part ˆ( )u X are 

employed to approximate the Bellman function and the optimal 
control input as: 

ˆ ˆ( ) ( )T

cV X W X                (13) 
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Based on the property of Hamiltonian 
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 under the optimal 

control input   *u x t  and associated value function   *V x t , 

the adaptation laws of critic ˆ ˆ,a cW W  weights are simultaneously 

trained to minimize the squared Bellman error hjb and the 

corresponding integral, respectively.  

Due to the error between estimated functions ˆ ˆ( ), ( )V X u X   

and optimal results    * *,V X u X , the Bellman error hjb  can be 

computed as:   

*
* *

ˆ
ˆ ˆ, , , ,

1 1ˆ ˆ ˆ ˆ( , )
2 2

hjb

T T T

c T

V V
H X u H X u

X X

W X u X Q X u Ru





    
        

  
           (15) 

where ˆ ˆ( , ) ( ( ) ( ) )X u F X G X u
X





 


  is the regression vector of 

critic part. 

The adaptation law of Critic weights is given: 

ˆ
1

c c hjbT

d
W k

dt


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where , ck   are constant positive gains, and ( ) N Nt   is 

a estimated symmetric gain matrix obtained from the differential 
equation as: 

0; ( ) (0)
1

T

c sT

d
k t I

dt
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     

 

   


       (17) 

where st


is resetting time satisfying the property of 

eigenvalue   min 1 0 1, 0t       . To ensure ( ) N Nt   is 

positive definite and prevent the covariance wind-up problem, 

the covariance matrix ( ) N Nt  can be satisfied as: 

1 0( )I t I     

In addition, the adaptation law of actor NN part is proposed 
using the minimization of squared Bellman error.  

 
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a a c
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dt x x
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 
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 
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Remark 1: The proofs of stability in these two proposed 
solutions can be implemented by Lyapunov stability theory with 
the Lyapunov function being established from the Bellman 
function. Moreover, it is obviously different from [1,2,3,6] 
studying traditional nonlinear control approaches, this work 
considers the optimal control solution for SVs with two 
methodologies for finding the HJB solution. Moreover, this 
work extends the ARL based control for the case of 
non-autonomous system with time-varying reference.  
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IV. SIMULATION STUDIES 

In this section, the proposed on-policy IL method is applied 
to a SV to show the convergence of actual trajectory and training 
weights. The parameters of a SV are considered with the 
following inertia, Coriolis matrices: 

20 0 0

0 19 0.72

0 0.72 2.7

M

 
 

  
  

; 

0 0 19 0.72

0 0 20

19 0.72 20 0

y z

x

y z x

v v

C v

v v v

  
 

  
   

; 

In this work, we only discuss the motion of SVs on the 

surface. It implies that   0g    because there is no change of 

potential energy. The desired trajectory is given as 

     12sin 0.2 , 12sin 0.2 , 0.2
T

d t t t t     . The Critic Neural 

Network of   iV x t  is choose by RBF with 12 nodes and the 

smooth activation function  x to be appropriately chosen. 

Fig.1, 2, 3 show the join variables converge to their desired 
values and confirm that the convergence of training weights. 
Furthermore, Off-Policy IRL is also considered for this SV to 
achieved the responses in Fig. 4, 5. On the other hand, 
Actor/Critic learning structure is also implemented to obtain the 
corresponding results in Fig. 6-17, in which, Fig 6-9 show the 
results in case of no Disturbance Observer and Fig10-17 show 
the results in case of using Disturbance Observer. 

 

Fig. 1.  The response of trajectory using on-Policy IRL algorithm. 

 
Fig. 2.  The convergence of Critic Weights using on-Policy IRL algorithm. 

 
Fig. 3.  The response of trajectory in Descartes coordinates. 
 

 
 

Fig. 4.  The response of trajectory using off-Policy IRL algorithm. 
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Fig. 5 The response of trajectory in Descartes coordinates using off-Policy IRL 
algorithm. 

 

 
Fig. 6.  The response of trajectory using Actor/Critic algorithm (Case 2). 

 

 
Fig. 7.  The convergence of Critic Weights using Actor/Critic algorithm  

(Case 2). 

 

 
Fig. 8.  The convergence of Actor Weights using Actor/Critic algorithm 

(Case 2). 

 

 
Fig. 9 The response of trajectory in Descartes coordinates using Actor/Critic 

algorithm (Case 2). 
 

 
Fig. 10 The response of trajectory in Descartes coordinates using Actor/Critic 

algorithm (Case 2). 
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Fig. 11.  The convergence of Critic Weights using Actor/Critic algorithm  

(Case 2). 

 
Fig. 12.  The convergence of Actor Weights using Actor/Critic algorithm 
(Case 2). 

 

 
Fig. 13.  The Tracking error in Axis X using Actor/Critic algorithm (Case 2). 

 

 
Fig. 14.  The Tracking error in Axis Y using Actor/Critic algorithm (Case 2). 

 

 
Fig. 15.  The Tracking error in Angle using Actor/Critic algorithm (Case 2). 

 

 
Fig. 16.  The RISE Estimation using Actor/Critic algorithm (Case 2). 

 
Fig. 17.  The Control Inputs Actor/Critic algorithm (Case 2). 

V. CONCLUSION 

An ARL based optimal control was developed for nonlinear 
SV in the presence of unknown parameters and disturbances. A 
transform method was proposed for obtaining the corresponding 
autonomous tracking error model. This enables us to extend IRL 
algorithm for solving the optimal tracking control. The stability 
and optimality were guaranteed by analyzing with Lyapunov 
stability theory. Simulation results show the suitability of the 
proposed solution.  
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