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 Abstract— Cable-driven parallel robots (CDPRs) are 
extremely flexible parallel manipulators, which have high 
velocity, acceleration, and payload to weight ratio compared with 
traditional rigid-link parallel robots. In this paper, the 
steady-state and time-history analyses of a spatial CDPR are 
developed using the finite element method (FEM) and the 
modified analytical method. To validate the feasibility of these two 
approaches in solving the steady-state and time-history responses 
of the spatial CDPR, the results from the proposed methods are 

examined with those of SAP2000. It shows that their solutions 
are well fit to the results from SAP2000 which is time-consuming. 
This demonstrates the effectiveness of the FEM and the modified 
analytical method. 

 Index Terms— CDPRs, FEM, analytical method, steady-state 
response, time-history response 

I. INTRODUCTION 

ver the past decades, owing to the cutting-edge 
characteristics of cable-driven parallel robots (CDPR), this 

type has been received much interest from many scholars from 
all over the world. The CDPR is a category of parallel robots 
and uses flexible cables to connect the end-effector and the 
frame instead of using rigid links [1]. Thus,  the end-effector is 
controlled by changing the length of the cable length [1]–[3]. 
Due to using such flexible cables, CDPRs have some noticeable 
advantages such as large reachable workspace, saving cost, 
lightweight, easy to assemble in various spatial configurations, 
and ease for transportation [3]–[8]. Hence, CDPRs have been 
used for applications in 3D printing [5], transportation [6], [9], 
and so on. 

Although CDPRs have many interesting characteristics, they 
are facing a critical problem in terms of vibration because of 
using flexible cables. Indeed, cables are easily vibrated in both 
axial and transversal directions owning to their inevitably 
flexible characteristics [2]. Regarding vibration analysis of 
CDPRs, several approaches have been introduced to deal with 
that problem. In general, they can be categorized into four main 
groups: (1) the simple model by using spring elements, (2) the 
finite element approach, (3) the analytical method, and (4) the 
dynamic stiffness method. 

 
 

This paper was first submitted on May 9, 2021. 

Sy Nguyen-Van is with the Department of Mechanical Engineering, Thai 
Nguyen University of Technology, 3/2 Street, Tich Luong ward, Thai Nguyen, 

Vietnam. (e-mail: vansy@tnut.edu.vn). 

Minh-Quang Tran is with the Industry 4.0 Implementation Center, Center 
for Cyber–physical System Innovation, National Taiwan University of Science 

and Technology, 10607 Taipei, Taiwan, and also with the Department of 

Mechanical Engineering, Thai Nguyen University of Technology, 3/2 Street, 
Tich Luong ward, Thai Nguyen, Vietnam (e-mail: 

minhquang.tran@mail.ntust.edu.tw). 

 

Recently, Sy et al. [8] has been introduced a new finite 
element method and the modified analytical approach for 
modeling of cables in the CDPRs. These methods have been 
validated on free vibration analysis of planar and spatial CDPRs 
model. The natural frequencies of the CDPRs obtained by such 

two methods were validated by the results of SAP2000. 
However, the steady-state and time-history analyses of CDPRs 
have not been investigated yet so far in such a study.  

This paper aims to perform the steady-state and time-history 
analyses of CDPRs by using the above two methods (the finite 
element method and the modified analytical approach). For 
validations of their abilities in solving the steady-state and 
time-history analyses, the results of the proposed methods are 
validated using SAP2000. 

 

 
Figure 1. A general structure of cable robots [10]. 

II. DYNAMIC DESCRIPTIONS OF CABLE-DRIVEN PARALLEL 

ROBOTS 

As reported in [2], [8], for a general structure of cable-driven 
parallel robot shown in Figure 1, the kinematic equation for the 
CDPR is provided in Eq. (1), 

 i i i- ( 1,2,..., )i n= + =p a l b   () 

where li is the vector along the ith cable and its norm is also the 

ith cable’s length; ai, bi, and p present the position vectors of the 

point Ai, point Bi and the centroid of the end-effector, 

respectively. Si is the unit vector of the ith cable. 

According to (1), the other kinematic equations are described 

by Eqs. (2)-(6), 

    
T2

i i i i i= - -+ +l p a b p a b  () 
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in which p  presents the linear velocity of the centroid and ω is 

the angular velocity of the end-effector. J presents the (n x 6) 
Jacobian matrix of the CDPR. Thus, the dynamic equation of 
CDPRs is determined by Eq. (7) [2], 
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I 0 g f0p
J T
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where m stands for the mass of the end-effector; IP presents the 
inertia tensor of the end-effector about its centroid 
corresponding to the global frame O0; I3x3 is the 3x3 identity 
matrix; g is the gravity acceleration vector; fe presents the 
applied force vector; and eτ is the applied moment vector of the 

end-effector; T is the force vector of the cable, 

 1 2 ... nT T T=T . Hence, the force vector of the cable is 

determined by Eq. (8), 

 T =J T w  () 

where w is the applied wrench and is defined using Eq. (9), 
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It should be noted that tensions applied to cables are 
calculated by the tension distribution algorithm. In this work, 
the quadratic or nonlinear programming algorithm is proposed 
to define the tension applied to cables which are described by 
Eqs. (10)-(12), 

1
minimize:

2

T T+T CT c T  (10) 

min maxwith: iT T T   (11) 

T =J T w  (12) 

where C and c denote the weighting factor of the objective 
function, respectively. Tmax and Tmin denote the maximum and the 
minimum tension allowed to cables, respectively.  

III. FINITE ELEMENT FORMULATION  

Regarding a cable element that contains nodes of i and j, has 
the length of lij, it is applied a tension of Tij. Thus, the general 
equation of motion of an element on the cable is described in Eq. 
(13) [8], [11], [12]. 

( )L G+ + =Mu K K u 0  (13) 

where u  is the displacement and u  is the acceleration vector. 

While LK presents the conventional stiffness matrix and 

GK describes the geometric stiffness matrix. Those parameters 

are defined in Eq. (14), 

T

xi yi zi xj yj zju u u u u u =  u  (14a) 

( )
1

0

( ) T T T
L s ij ijk T l d= −

, , , ,
K N N ΔΔ N N  (14b) 

1

0

G ij ijT l d= 
,

K N  (14c) 

T

i i i j j jx y z x y z =  Δ  (14d) 

where N denotes for the shape function; ,
N stands for the 

ordinary differentiation of the shape function ( N ); ks is the 

elastic stiffness with sk EA= ; / ijx l = has a value in the range 

[0, 1]; Δ  denotes for the vector of nodal coordinates. Then, N 
and N’ are given as follows. 

   
1

(1 ) ;
ijl

 = − = −,
N I I N I I  (15) 

where I is the (3x3) unit matrix, thus Eq. (15) can be rewritten 
by Eq. (16).  

2

1T

ijl

− 
=  

− 

, , I I
N N

I I
 (16) 

The mass matrix M is defined by Eq. (17), 

2

26

ijl

g

  
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I I
M

I I
 (17) 

where   stands for the weight per unit length. Hence, the 
stiffness matrix is presented in Eqs. (18), 

s ij
L
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k T
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where G is the transformation matrix and it is calculated by Eqs. 
(19), 

2

2

2

l ml nl

ml m nm

nl nm n
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G  (19a) 
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( ) / ; ( ) / ; ( ) /j i ij j i ij j i ijl x x l m y y l n z z l= − = − = −  (19b) 

 

Figure 2. The three-dimensional catenary cable element [13]. 

 

IV. THE MODIFIED ANALYTICAL METHOD 

Figure 2 illustrates a cable element, in which the two nodes of 
the cable are I(0,0,0) and J(lx, ly, lz). s and p stand for the 
undeformed and deformed configurations of the cable element, 
respectively. Hence, the three equilibrium equations of the cable 
element are described in Eqs. (20),  

1

dx
T F

dp

 
= − 

 
 (20a) 

2

dy
T F

dp

 
= − 

 
 (20b) 

3

dz
T F s

dp


 
= − + 

 
 (20c) 

where, F1, F2, F3 are the cable tension components projected in 

x-, y-and z-axis, respectively;  presents the weight per unit 
length of the cable; T denotes the cable tension applied at the 
Lagrange coordinate s. In CDPRs, T is generated by using the 
tension distribution algorithm in Section II. The relationship 
between T and F1, F2, F3  is given as follows: 

( ) ( )
22 2

1 2 3T s F F F s= + + −  (21) 

Also, the tension (T) and the strain () of the cable element 
has a relationship as follows: 

1
dp ds dp

T EA EA EA
ds ds


−   

= = = −   
   

 (22) 

where E stands for Young’s modulus, A denotes the 
cross-sectional area of the cable element. 

The Cartesian coordinates are presented in terms of the 
Lagrange coordinate of s in Eqs. (23), 

0 0

L Ldx dx dp
x ds ds

ds dp ds
= =   (23a) 

0 0

L Ldy dy dp
y ds ds

ds dp ds
= =   (23b) 

0 0

L Ldz dz dp
z ds ds

ds dp ds
= =   (23c) 

As shown in Error! Reference source not found., six 
boundary conditions are described in Eqs. (24), 

( ) ( ) ( )0 0 0x y z= =  (24a) 

( ) ( ) ( )0 0 0, ,x y zx L l y L l z L l= = =  (24b) 

By substituting Eqs. (20-22) into Eq.(23), the cable lengths are 
projected in x-, y-and z-direction using Eqs. (25), 
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where L0 presents the unstressed length of the cable. Then, the 
above Eqs. (25) can be expressed in terms of the node forces 
( 1 2 3, ,F F F ) as follows: 

( )1 2 3, ,xl f F F F=  (26a) 

( )1 2 3, ,yl g F F F=  (26b) 

( )1 2 3, ,zl h F F F=  (26c) 

The above equations are differentiated to 1 2 3, ,F F F , as 

follows: 

1 2 3
1 2 3

x

f f f
dl dF dF dF

F F F
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= + +
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 (27a) 

1 2 3
1 2 3

y

g g g
dl dF dF dF

F F F
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= + +

  
 (27b) 

1 2 3
1 2 3

z

h h h
dl dF dF dF

F F F

  
= + +
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 (27c) 

Writing into a matrix form as following Eq. (28), 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

x

y

z

dl f f f dF dF

dl f f f dF F dF

f f f dF dFdl

       
       

= =       
             

 (28) 

where F presents the flexibility matrix. All elements of matrix fij 
are described in Eq. (29), 
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with Ti and Tj are initial tensions applied to the cable robots: 

2 2 2
1 2 3iT F F F= + +  (30a) 

2 2 2
4 5 6jT F F F= + +  (30b) 

where, 

4 1F F= −  (31a) 

5 2F F= −  (31b) 

6 3 0F F L= − +  (31c) 

Finally, the stiffness and the tangent stiffness matrix are 
calculated using Eqs. (32) and (33), 

1

11 12 13
1

21 22 23

31 32 33

f f f

f f f

f f f

−

−

 
 

= =
 
  

K F  (32) 

T

− 
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K K
K

K K
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In this paper, the applied cable tensions (T0) in the modified 
analytical formulation are calculated by the tension distribution 
algorithm described in Section 2 for the CDPRs. Then, the 
stiffness matrix of cables can be generated using the following 
procedure: 

• Step 1: Input w, E, A and nodes I(xi, yi, zi), J(xj, yj, zj). 

• Step 2: Calculate 0 0 0, ,x j i y j i z j il x x l y y l z z= − = − = − . 

• Step 3: Initializing the values of L0, F1, F2, F3. 

2 2 2
0 0 0 0x y zL l l l= + +  

0
1 0

0

xlF T
L

= −  

0
2 0

0

yl
F T

L
= −  

0
3 0

0

zlF T
L

= −  

• Step 4: Calculate Ti and Tj using Eq. (30a) and Eq. (30b). 

• Step 5: Determine the stiffness matrix using Eq. (32) and 
Eq. (33). 

The Newton Raphson iteration for updating the misclosure 
vector is not considered in this modified 

procedure: ( ) ( ) ( ){ }T
xo x yo y zo zdL l l l l l l= − − − . Thus, this 

algorithm can model perfectly vertical cables. 

V. DYNAMIC RESPONSES 

In this section, the formulations of the steady-state and time 
history analyses are presented first then numerical simulations 
of a spatial CDPR are performed. It should be noted that some 
assumptions for modeling of the CDPR are made as follows: 

• The total mass of the platform is the point mass located at 
the centroid of the end-effector. 

• All cables are connected at the centroid of the end-effector. 

• Cable tensions are determined by using the tension 
distribution algorithms mentioned in Section 2.  

A. Steady-state response  

For general vibration models of CDPRs, its dynamic equation 
describes in Eq. (34). 

te+ = 0Mu Ku F  (34) 

where, the frequency and amplitude of the excitation force are 
  and F0, respectively. The displacement and the acceleration 

vectors are u and u , respectively. 

te=u A  (35) 

te= 2
u ω A  (36) 

where A is the amplitude of the displacement response. 
Substituting u and u into Eq.(34), we can get:  

( )2− = 0K M A F  (37) 

The amplitude in terms of the frequency of the excitation 
force is given as follows: 

( )
1

2 
−

 = −
  0A K M F  (38) 
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Then, the frequency response function is defined as follows: 

( ) ( )10log =   H A  (39) 

B.  The Newmark-Beta method 

One of the most famous algorithms to solve the time history 
dynamic response of the structures is the Newmark-Beta 
method [13]. The general dynamic equation of motions of cable 
structures is defined by Eq. (40). 

( ) ( ) ( ) ( )t t t t+ + =Mu Cu Ku F  (40) 

where M, C, and K represent the mass matrix, damping matrix, 
and stiffness matrix, respectively; F(t) is the external applied 
load’s vector; while ( ), ( )t tu u and ( )tu are the acceleration 

vector, velocity vector, and displacement vector, respectively.  

The damping matrix can be calculated as follows: 

M K = +C M K  (41) 

in which M  and K present mass and stiffness proportional 

damping factors, respectively, and their values are both equal to 
0.05 [14]. To solve the dynamic equation with known external 
forces, the initial acceleration, velocity, and displacement, the 
Newmark-beta method is applied to get the total dynamic 
response in terms of time. 

A proposed procedure to determine the dynamic response for 
the spatial CDPR is as follows: 

Step1: Initial calculations 

a. Defining the stiffness-matrix K, the mass-matrix M, and 
the damping constant C. 

b. Initializing and0 0 0
u, u u  (the initial acceleration, velocity, 

and displacement) 

0 0 0 0 0 0 0M u + C u + K u = F  (42) 

( )-1
0 0 0 0 0 0 0u = M F - C u - K u  (43) 

c. Selecting time step t and parameters  and  , then 

calculating integration constants: 

0.50

2









 (44) 

0 1 22

3 4 5

6 7

1 1
; ; ;

1
1; 1; ( 2);

2 2

(1 );

a a a
t tt

t
a a a

a t a t



 

 

  

 

= = =
 


= − = − = −

=  − = 

 
(45) 

d. Determining effective stiffness matrix ˆ :K  

0 1
ˆ a aK = K + M + C  (46) 

Step 2: For each time step 

a. Calculate effective loads at the time t t+  : 

0 2 3

1 4 5

ˆ ( )

( )

t t t t t t t

t t t

a a a

a a a

+ += + + + +

+ + +

F F M u u u

C u u u
 (47) 

b. Solve for the displacement at the time t t+  : 

ˆ ˆt t t t+ +=K u F  (48) 

c. Determine accelerations and velocities at the time t t+  : 

0 2 3( )t t t t t t ta a a+ += − − −u u u u u  (49) 

6 7
t t t t t ta a+ += + +u u u u  (50) 

C. Numerical simulations 

In this section, a spatial CDPR in Figure 3 which is exerted 

by a harmonic force is performed for the steady-state and 

time-history responses. In this scheme, Ti and Ai stand for the 

applied tension and the cross-sectional area of the ith cable. Data 

for the simulations of the spatial CDPR are listed in Table 1. 

 

Figure 3. The CDPR exerted by the harmonic force. 

TABLE 1 
PARAMETER DESCRIPTIONS OF A SPATIAL CABLE-DRIVEN PARALLEL 

ROBOT 

Parameter descriptions Value 

The end-effector mass (kg) 30 

The cross-sectional areas’ A (m2) 50.265 x 10-6 

The frame dimensions of the CDPR (m) 2.5 x 2.5 x 2.5 

The of end-effector position, [x,y,z] (m) [0;0;1.25] 

The elasticity modulus, E(N/m2) 2.01 x 1010 

The weight per unit length,  (N/m) 0.251 

The minimum tension, Tmin (N) 100 

The maximum tension, Tmax (N) 1000 
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1) Steady-state response 

 
Regarding the CDPR in Figure 3, the amplitude of the 

external force of 1500 N is applied to the end-effector along the 
z-axis and the range of excitation frequency is from 1 Hz to 40 
Hz with 390 equal steps. The frequency response of the 
cable-driven parallel robot is illustrated in Figure 4. It shows 
that the frequency response gotten from the FEM, modified 
analytical models are nearly identical to the response of 
SAP2000. Thus, the FEM and modified analytical models of the 
CDPR can accurately predict the steady-state response. 

2) Time history response 

The parameters of Newmark,  ,  , are also [0.5, 0.25], 

respectively. The harmonic external force is applied to the 
end-effector along the z-axis with an amplitude F0, and the 
excitation frequency, fC, of 5 Hz. The time of analysis is 1 
second (s) and the time step is 0.001s. The horizontal 

displacement responses of the end-effector due to the harmonic 
external force gotten by the FEM, modified analytical method, 
and SAP2000 are shown in Figure 5. It can be seen that a good 
agreement of displacement responses of the end-effector gotten 
by FEM and modified analytical in this research and SAP2000 
is obtained.  

In addition, Figure 6 illustrates the displacement responses of 
the end-effector obtained by FEM in 0.5 seconds corresponding 
to three differential frequencies (5 Hz, 10 Hz and 15 Hz) of the 
harmonic force (F with the amplitude of F0). Although the 
amplitude F0 is not changed, the magnitude of response is 
increased by increasing the frequency of the external forces. 

VI. CONCLUSION 

In this paper, the steady-state and time history dynamic 
responses of the spatial CDPR were presented using the FEM 
and the modified analytical method. The proposed approaches 
were verified in terms of accuracy compared to those of 
SAP2000. Excellent results obtained proposed methods 
demonstrate that the dynamic behaviors of CDPR can be 
achieved by using FEM and the modified analytical method 
instead of using time-consuming software such as SAP2000. 
Consequently, some conclusions can be made as follows: 

• With different excitation frequencies and the same 
amplitudes of harmonic forces, the displacement responses 
of the end-effector in the CDPR will have different 
amplitudes.  

• These results prove that the developed FEM and the 
modified analytical method can be effectively used in the 
preliminary design of the CDPR. 

ACKNOWLEDGMENT 

This research is supported by Thai Nguyen University of 
Technology in Vietnam and the Center for Cyber-physical 
System Innovation at Taiwan Tech in Taiwan. 

 

 

Figure 4. The frequency response of the CDPR.  
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Figure 5. The dynamic response vibration of the CDPR 

 
 

Figure 6. The z-response of the end-effector of the CDPR according to 

excitation frequencies. 
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