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 Abstract—Soft robots have been known for safer than rigid 

robots and being able to work closer with human and other 

surrounding objects, especially for having contact with delicate 

objects. One solution for delicate manipulation is to design flexible 

soft grippers with sensing capability and proper controllability. 

Adaptive control of soft gripping could be achieved with the 

sensing information between the gripper and the object. This 

paper presented a soft gripping robot system incorporate with 

Graphene-based Piezoelectric Sensor (GPS). The soft gripper was 

made of 3D printing (3DP) with the material of thermoplastic 

polyurethane (TPU). Six air chambers were made inside the soft 

gripper. The soft gripper was to be actuated by the inflation of 

these air chambers by pressurized air. The GPS was made of 

graphene and polyvinylidene fluoride (PVDF), which were 

initially well mixed in a solution and applied at the tip of the soft 

gripper. The layered structure of graphene allowed PVDF to have 

piezoelectric effect without the need of polarization. As the 

gripper tip had tactile contact with an object, the graphene/PVDF 

membrane slightly deformed and produced electricity. A 

mechatronic system was built to collect the piezoelectric signal. As 

a result, the gripping response was found to be linearly 

proportional to the applied pressure for pneumatic actuation. 

Furthermore, GPS was found to have around 6 times more 

sensitive than commercial PVDF sensor. The signal-to-noise (SNR) 

of GPS was around twice greater than commercial PVDF sensor. 

Therefore, the proposed soft gripper with GPS was suitable for 

gripping delicate objects and detection of small gripping 

responses at the gripper tip. 

 
Index Terms—Soft Gripper, Pneumatic Actuation, Mechatronics, 

Graphene/PVDF Piezoelectric Membrane. 
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I. INTRODUCTION 

OFT robots have drawn great attentions to the field of 

robotics and automation. Various soft robotic applications 

have been developed, such as soft grippers [2, 3], bio-inspired 

robotics [4-6], soft wearable robots [7], artificial muscles [8, 9], 

medical devices [10], rehabilitation and surgical devices 

[10-15], and human-machine interaction (HMI) [16], etc. Soft 

robotics had the advantages of being able to work with human 

with greater safety and less probabilities of causing damages to 

human or other surrounding objects. Researchers have spent 

efforts on developing the methods to manufacture soft robots 

[17-19], and how to control them [20-23]. Polydimethylsiloxane 

(PDMS) has been used to make soft grippers [24, 25], which had 

rigid bone structures made of polylactic acid (PLA). PLA bone 

structures were manufactured by 3D printing and inserted into 

the soft PDMS fingers. The soft gripper was actuated by 

utilizing cables to pull the bone structures and bend the soft 

fingers. On the other hand, pneumatic actuations were used in 

some 3D-printed soft grippers [26, 27], which were made of 

thermoplastic polyurethane (TPU). 

Proper control of soft grippers could be done as appropriate 

analyses of their kinematics motions and the responses of the 

contact with other objects. Variable Denavit-Hartenberg (DH) 

parameters [28-30] have been utilized to parametrically model 

the kinematics motions of soft grippers with respect to different 

levels of actuations. The experimental results showed that the 

kinematics motions of soft grippers were nonlinear due to 

flexibility of the elastomeric materials, which was challenging 

for the prediction of interactive responses between the soft 

gripper and the grasped objects. A mixture of polyvinylidene 

fluoride (PVDF) and graphene (Gr) was used to design a 

piezoelectric sensor [31]. Since the PVDF and Gr were well 

mixed in the solution and could be applied to the surface in any 

shapes, the PVDF/Gr mixture was directly applied at the tip of 

the soft finger [1, 32]. Once it was cured, the piezoelectric effort 

of the PVDF/Gr membrane could detect the instantaneous 

tactile responses of grasping. This paper presented a 

pneumatically actuated soft gripper that integrated with the 

graphene-based piezoelectric sensor (GPS), as well as the 

details about the soft gripper design, the mechatronic system, 

the measurement system, and the experimental setup. 

II. DESIGN OF A PNEUMATIC SOFT GRIPPER WITH 

GRAPHENE-BASED PIEZOELECTRIC SENSOR (GPS) 

Fig. 1 showed the design of a pneumatically actuated soft 
finger, which was general for soft gripper designs with different 
numbers of fingers. In this paper, a two-finger soft gripper was 
presented. Each soft finger was made by a 3D printer (i.e. 
FlashForge 3D Printer Creator Pro). The soft material was TPU 
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(i.e. Flex mark 8) with the Shore hardness of 80A. Table I 
showed more details about the 3D printing parameters. 

 
Fig. 1.  Assembly design of the pneumatic soft finger with GPS. 

 
TABLE I 

3D PRINTING PARAMETERS FOR MANUFACTURING THE SOFT FINGERS 

Parameters Values Units 

Layer height 0.12 mm 

First layer height 0.15 mm 
Perimeter shells 3 layers 

Top solid layers 4 layers 

Bottom solid layers 4 layers 
Infill fill density 100 % 

Print speed 15 mm/s 

Travel speed 20 mm/s 
Extrude temperature 215 ℃ 

Platform temperature 50 ℃ 

 

The length of the soft finger was 92 mm as the width and 

thickness were 20 mm and 35.8 mm, respectively. Fig. 2 

showed the cross-section view of the soft finger. An air flow 

channel was made inside the soft finger with wall thickness of 2 

mm. As pressured air was pumped into the air channel and 

inflated the air chambers, the deformations of the air chambers 

bended the soft finger to actuate the grasping motion. The soft 

finger was installed in a finger holder, that was 3D printed with 

PLA. The air channel was sealed with the use of an O-ring and 

tightened by M3 screws and nuts. On the opposite side of the air 

chambers, some cellular structures were 3D printed to provide 

greater flexibility of the soft finger. The GPS was applied at the 

finger tip for detection of tactile responses during the grasping 

motions. The flexible foundation at the finger tip not only 

prevented damages to the grasped objects, but also enlarged the 

deformation of the GPS leading to greater sensitivity of the 

tactile responses of grasping. Two notches were made at the 

bottom of the soft finger to allow greater bending so that the 

pneumatic actuation of the soft finger was close to human 

finger’s bending motion.  

 
Fig. 2.  Cross-section view of the pneumatic soft finger design. 

The preparation of GPS started with proper stirring and 

mixing of PVDF and Gr in a solution of N-methyl-2-pyrrolidone 

(NMP). The stirring condition was 10,000 RPM for 2 hours in 

an ice bath. Once a complete homogenization of the PVDF/Gr 

mixture was achieved, it was degassed at 90℃ for 24 hours. The 

PVDF/Gr mixture could then be applied at the tip of the soft 

finger and a PVDF/Gr membrane was obtained as the solution 

completely vaporized. The piezoelectric effect (i.e. β-phase of 

the material) was induced by the properly mixed Gr inside 

PVDF without the need of polarization. Metal wires were 

connected to the PVDF/Gr membrane to detect the potential 

difference as the deformation occurred. 

III. EXPERIMENTAL SETUP FOR PNEUMATIC ACTUATIONS AND 

IN-SITU SENSING MEASUREMENTS 

To verify the performance of the proposed soft gripper 

design with GPS, it was compared with commercial PVDF 

sensors, as shown in Fig. 3. The experimental setup of the 

pneumatic actuations of the soft grippers with two different 

kinds of sensors was presented in this section. The tactile 

responses of grasping were measured and analyzed. 

 
(a) 

 
(b) 

Fig. 3.  Two kinds of sensors that have been used in this paper: (a) proposed 

GPS, (b) commercial PVDF sensor. 

Fig. 4 showed the mechatronic system for the pneumatic 

actuations of the soft grippers. The red lines provided the 24V 

powers as the black lines were connected to the ground. A 

current controller was powered and connected to a computer via 

via USB-RTU Modbus (thick black line). The current controller 

sent signals to a proportional value via a light blue line. The 

value controlled the pressure of the output air (thick blue line). 
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A transducer was used to measure the pressure of the output air 

and send a feedback signal to the proportional value (via the 

green line). The experimental setup allowed proper control of 

the pressured air flow applied to the air channels of the soft 

gripper. The maximum pressure that was applied to the soft 

gripper was 40 psi in this paper. 

 
Fig. 4.  Experimental setup for the pneumatic control. 

The in-situ measurement setup for analyzing the tactile 

responses of the soft gripper was shown in Fig. 5. A charge 

amplifier was used to enlarge the sensor signals. A convertor 

was used to transform the analog signals to digital signals. The 

voltage of the in-situ response due to grasping was analyzed. 

The motion of grasping a soft paper cut was studied in this 

paper. The pressure of the pressured air for actuating the soft 

gripping was properly controlled to perform stable grasping 

without damaging the objects. 

 

Fig. 5.  In-situ measurement of the soft gripping signal. 

A low-pass filter was used to remove the noises in the 
acquired signals. Fig. 6 showed the typical responses of the 
in-situ measurements of repetitive grasping the cup in a 
frequency of 2 Hz. Fig. 6 (a) showed the raw data of the 
repetitive responses directly obtained from the setup in Fig. 5. 
The low-pass filtered data was shown in Fig. 6 (b). As the soft 
gripper was actuated and tactile contact occurred between the 
GPS and the cup, GPS deformed and generated a positive signal. 
On the other hand, GPS recovered back to its original shape and 
released a negative signal as the gripper released the cup. The 
positive peak values were recorded for the later analysis. 

 
(a) 

 
(b) 

Fig. 6.  Signal responses of the GPS from a repetitive gripping test: (a) raw data, 
(b) processed data by low-pass filtering. 

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS 

Fig. 7 showed the responses of grasping the cup using the 

soft gripper with two different kinds of sensors. The red lines 

presented the responses based on the proposed GPS as the blue 

ones indicated the signals from the commercial PVDF sensor. 

Various pressure levels (i.e. 10, 20, 30 and 40 psi) were applied 

to actuate the soft gripper and the corresponding tactile 

responses of grasping the soft cup were analyzed. The error bar 

was based on the statistical analysis of 70 repetitive grasping 

motions. The relationship between the voltage response and the 

applied air pressure was modeled by Least Square 

Approximations (LSA). Fig. 7 (a) and (b) showed the responses 

of grasping motions of the left and right fingers, respectively. 

Fig. 7 (c) and (d) showed the responses of releasing motions of 

the left and right fingers, respectively. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 7. Sensing responses based on the proposed GPS (red lines) and 
commercial PVDF sensors (blue lines): (a) signals from left finger while 

grasping a paper cup, (b) signals from right finger while grasping a paper cup, 

(c) signals from left finger while releasing a paper cup, (d) signals from right 

finger while releasing a paper cup. 

The experimental results showed that the signals from the 
proposed GPS was around 6 times stronger than the commercial 
PVDF sensor. The signal-to-noise ratio (SNR) of the proposed 
GPS (i.e. mean over standard deviation ranged from 2 to 8) was 
also greater than the commercial sensor (i.e. ranged from 1 to 5). 
The consistency between both sides of the gripper was good as 
the variance was less than 0.01 V. A greater sensitivity of the 
tactile responses between the proposed GPS and the grasped 
objects allowed better control of applied air pressure for the 
pneumatic actuations of the soft gripper. 

In practical robot manipulation with the proposed soft 
gripper and GPS, the system could be built based on the 
structure shown in Fig. 8. A two-finger soft gripper with GPS 
was installed at the end of a 6R robot arm, as shown in Fig. 9. As 
the gripper started to execute the grasping motion, the in-situ 
measurements of the GPS signals were collected and enhanced 
by the charge amplifier. The analog signal was then converted to 
digital and the positive peak value of grasping motion was 
recorded. The acquired signal, which represented the interfacial 
response between the GPS and the object, could then be used as 
feedback information for the control of robot motion and 
applied air pressure. The feedback signal was sent to the current 
controller and used to adjust the air pressure provided by the 
proportional value. On the other hand, robot motions could be 
adjusted based on the feedback signal as well. The propose 
system would be useful for customized object manipulation 
with uncertain information of the objects. Soft manipulation 
with tactile sensing could ensure appropriate grasping without 
damaging the objects. 

 
Fig. 8.  Architecture of the controls of the 6R robot arm and pneumatic soft 
gripper, and the in-situ measurements of the GPS signals. 

 

 
Fig. 9.  Integration of a pneumatic soft gripper and GPS with a 6R industrial 

robot arm. 
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V. CONCLUSIONS 

In this paper, a pneumatic soft gripper design was proposed 

and integrated with Graphene-based Piezoelectric Sensor 

(GPS). The soft gripper was made of elastomeric TPU material 

and manufactured by 3D printing. An air channel and several 

air chambers were made in the pneumatically actuated soft 

gripper. GPS, that was made by the mixture of PVDF and Gr, 

was applied at the tip of the soft fingers. As pressured air was 

applied to the air channel and inflated the air chambers, the soft 

fingers bended to grasp. As the GPS had contact with an object, 

the PVDF/Gr membrane deformed and generated a positive 

signal. The peak value of the signal was recorded to analyze the 

interfacial tactile response between the GPS and the object. The 

mechatronic system, in-situ measurement system and their 

application to a 6R robot manipulation were also presented in 

this paper. The experimental results showed that the proposed 

soft gripping system could deliver a more sensitive sensing 

signal than the usage of commercial PVDF sensors. The 

responses of the proposed GPS could be used to adjust the 

applied air pressure and robot motion. 
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