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 Abstract—The traditional serial type articulated robot has 
good positioning repeatability; it is still difficult to have good 
positioning accuracy. Unfortunately, accuracy is a necessary 
condition for aviation applications. Under the development of 
aviation heavy industry, laser tracker is used to promote the 
accuracy of the robot. However, there are some limitations about 
using laser odometry in practice: 1. complicated pre-processing 
and calibration 2. Limited to plain and simple environment 3. 
Expensive manufacture and maintenance. Therefore, this study 
developed a visual and inertial system to achieve the objective 
without less cost. To this end, a light-weight and low-cost visual-
inertial localization method is applied to achieve the requirement 
of the high accuracy of the industry robot. Final, the past two 
methods and results (Denavit–Hartenberg model calibration and 
iterative learning control) to improve robot location accuracy are 
also included in our comparison. The results show that the 
proposed method has sufficient performance to meet most 
applications. 

Index Terms—robot, localization, adaptive 

nder the demands on energy saving and light-weighted 
products, aluminum and composite materials have been 

gradually adopted to replace heavy-weighted steel materials. 
This change of adoption of raw materials is especially significant 
for automotive and aerospace industries. In contrast to 
traditional application specific machinery equipment, industrial 
robots are more flexible and are more suitable in reconfigurable 
smart manufacturing system. With the continuous improvement 
of industrial robot technology, robotic machining will be applied 
to more machining applications [1]. 

Industrial robots on flexible and reconfigurable issues, they 
are appropriate to develop manufacturing systems which are 
helpful to perform automatically operation such as cutting, 
drilling, grinding, polishing, milling, and deburring. Industrial 
robots are applied in the field of aviation manufacturing with the 
continuous advancement of industrial robot technology. But 
some problems have also been exposed, such as insufficient 
accuracy of robots and too many processing points [2]. 
Therefore, industrial robots need to be more 
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I.  INTRODUCTION 

The current industrial robots have good repeatability, 
ranging from ±0.02 to ±0.3 mm. However, in machining 
applications, it mainly depends on the accuracy of the trajectory 
accuracy (dynamic/continuous point position) of the industrial 
robot, instead of the repeatability of the robot. Unfortunately, 
robot manufacturers usually do not provide accuracy and 
trajectory accuracy specifications. The accuracy of the robot 
roughly falls between a few mm to 10 mm [3]. In most 
manufacturing applications, robot accuracy and trajectory 
accuracy are prerequisites and mandatory. 

We develop a method that fuses visual odometry and a 6-
DOF IMU by solving an optimal algorithm, and the estimated 
robot position is guaranteed by this algorithm. This method can 
be applied to the machining field or more other related field.  

In this study, the accuracy of the robot is corrected by a light-
weight and lower-cost positioning equipment. The fusion of the 
3D camera and the IMU sensor can improve the average 
accuracy of robot positioning (≤ 1 mm). In some applications, it 
can replace the existing high-cost laser positioning correction 
method. In order to accurately improve the accuracy of the robot, 
the sampling frequency of the 3D camera must be greater than 
100 Hz, and the calibration time must be less than 10 minutes. 
In addition, the past two methods and results (Denavit–
Hartenberg model calibration and iterative learning control, ILC) 
to improve robot location accuracy are also included in our 
comparison. Denavit–Hartenberg(D-H) model calibration can 
decrease the robot location error caused by inaccurate 
parameters [4, 5]. Iterative learning control consists of an inner 
loop and an outer loop. Inner loop deals with drive dynamics and 
outer addresses impreciseness of kinematic parameters as well 
as joint static bias. hence, iterative Learning Control (ILC) can 
be used to promote the tracking performance of a robot arm 
manipulator [6, 7, 8, 9, 10]. 

The rest of the paper is organized as follows. We briefly 
describe the ways to improve the accuracy in Section Ⅱ. The 
detailed method fusing the measurement data from IMU is 
described in Section Ⅲ. The 3D Camera to estimate an optimal 
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position of feature point is described in Section IV. Finally, the 
experiment results are listed in Section V, followed by a 
conclusion in Section ⅤI. 

II. TECHNICAL GAPS/COMPENSATION METHODS FOR 

INDUSTRIAL ROBOTS USED IN MACHINING 

Basically, there are two methods to improve the accuracy of 
the robot. The first method is kinematic model correction, and 
the other is external sensor correction. 

A. Kinematic Model Calibration 

The economically feasible solution to improve the absolute 
accuracy of the robot is through the calibration procedure. The 
method is to identify and compensate the geometric and non-
geometric errors in the robot structure. Because these internal 
errors are usually not easy to measure directly, they must be 
identified indirectly through attitude errors and the associated 
mathematical model (DH Model). After constructing the DH 
Model, the robot is ordered to multiple positions in the 
workspace, measures the real position and compares the posture 
error, and then calculates the internal error of the robot 
structure. After calibration, the error model can be used as a 
virtual sensor to measure and compensate for robot 
inaccuracies. 

B. External Sensor Correction 

Although it is possible to imitate the practice of the 
automobile industry, manually correct the accuracy with the aid 
of the teach pendant. However, it is not feasible in practice, 
because there are huge differences in the number of workpieces 
and operating procedures. In this case, it is too tedious or even 
impossible to use manual teaching methods to compensate for 
robot errors. Therefore, this research focuses on how to feed 
back the accuracy information of the external sensor (3D 
camera) to the robot system for further performance 
improvement. 

III. LOW-COST VISUAL LOCALIZATION METHOD 

First, define the state of the robot, as in equation (1) 
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Where  0x , …, nx  are states to be estimated. kx  is defined 

as the state at time tk. 
w
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w
bk
v  and 

w
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q  are respectively the 

position, speed, and attitude of the arm end-effector at time kt

(world coordinate system). ab  and gb are the deviation of 

accelerometer and gyroscope. 
b
cp and 

b
cq  are the relative 

displacement and relative angle of the camera and the robot. 

Second, the optimization problem is expressed as equation 
(2). The formula is the objective function for minimizing the 
error between measurement and model. The state function can 
be solved by nonlinear optimization methods (such as gradient 

descent method), where 
w
bk
p  and 

w
bk
q  are the optimized arm 

position and attitude. 
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, 𝑥) are residuals for IMU and visual 

measurements respectively. Detailed definition of the residual 

terms will be presented in equation (3) and equation (4). B is 

the set of all IMU measurements, C is the set of features which 

have been observed at least twice in the current sliding window. 

{𝑟𝑝 , 𝐻𝑝} is the prior information from marginalization.   

The first term in equation (2) is initialization, and the second 
term is the error generated by the displacement integral of the 
IMU and the motion model, as in equation (3). 
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where [. ]𝑥𝑦𝑧 extracts the vector part of a quaternion q for error 

state representation, and ⊗  denotes the multiplication for 

quaternions (i.e., Hamilton product), and 𝛿𝜃𝑏𝑘+1
𝑏𝑘  is the three-

dimensional error-state representation of quaternion. [ 𝛼̂𝑏𝑘+1
𝑏𝑘 , 

𝛽̂𝑏𝑘+1
𝑏𝑘 , 𝛾𝑏𝑘+1

𝑏𝑘 ] are pre-integrated IMU measurement terms using 

only noisy accelerometer and gyroscope measurements within 

the time interval between two consecutive image frames. The 

accelerometer and gyroscope biases are also included in the 

residual terms for online correction. 

The third term is the error produced by the camera 
measurement and the state estimation model to correct the 
actual displacement, as shown in equation (4). Although the 
integration of the second term will cause the error to 
accumulate, the error can be corrected back through the third 
formula. 
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𝑗 -th image. 𝜋𝑐
−1  is the back projection function which 

transforms a pixel location into a unit vector using camera 

intrinsic parameters. Since the degrees-of-freedom of the vision 

residual is two, we project the residual vector onto the tangent 

plane. b1, b2 are two arbitrarily selected orthogonal bases that 

span the tangent plane of 𝑃̂̄𝑙
𝑐𝑗
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Finally, 𝑝𝑏𝑘
𝑤  can be used to compute the error with the 

ground truth to evaluate the accuracy. 

IV. VISION SERVO SYSTEM CALIBRATION 

A. Camera coordinate system and image coordinate system 

In order to understand the relationship between 2D image 
and 3D relative distance, it is necessary to understand the 
relationship between the camera coordinate system and the 
image coordinate system. Figure 1 is a schematic diagram of 
camera coordinates and image coordinates. P(X,Y,Z) is a point 
in the three-dimensional space observed in the camera 
coordinate system. The corresponding point where P is 
projected onto the image plane is 𝑃𝑗(𝑢, 𝑣). 

 
Figure 1. schematic diagram of camera coordinates and 

image coordinates. 

 

In general, the origin of the image coordinate is the upper left 
corner of the image plane, so there is a translational relationship 
between the camera coordinate system and the image coordinate 
system as shown in Figure 2. 

 
Figure 2. Schematic diagram of projection plane and 

image plane coordinates 

 

Let 𝑓𝑥and 𝑓𝑦 be the focal lengths in the X-axis and Y-axis 

directions respectively, and a homogeneous matrix can be 
produced. 
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B. Camera calibration 

In order to correctly estimate the actual distance of the target 
object, the internal parameters of the camera 𝑓𝑥, 𝑓𝑦, 𝑐𝑥, and 𝑐𝑦 

need to be obtained first. Camera calibration can calculate the 
camera's internal parameter matrix (Intrinsic Matrix) and 
external parameter matrix (Extrinsic Matrix). The internal 
parameters can be obtained 𝑓𝑥 , 𝑓𝑦 , 𝑐𝑥 , and 𝑐𝑦 . The external 

parameters can obtain the rotation matrix of the camera relative 
to the world coordinate (including translation and rotation). 
Pinhole Camera Model can be expressed as follows: 
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When the focal length of the camera is fixed, the internal 
parameter matrix will not change with the movement of the 
object or the movement of the camera. From these data, the 
required image characteristics can be further obtained. Camera 
calibration package provided by ROS is used to calibrate the 
camera. Detailed calibration information is based on [11, 12]. 

C. Image positioning 

According to [13], the positioning system can be completed 
through a 3D camera and an inertial measurement system 
(IMU). In this system, the IMU and camera are fixed on the 
robot, as shown in Figure 3. As the robot moves, the actual 
position, distance and posture of the movement can be detected 
to provide information for assisting positioning. In this system, 
the distance of movement can be estimated through the feature 
points in the environment. In practice, artificial feature points 
(such as Apriltag) can be used to increase reliability. The fusion 
of the two sensors makes a higher positioning accuracy through 
the measurement of the camera's Odometry and IMU. 
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Figure 3. Visual inertia Odometry. 

 

V. EXPERIMENTAL RESULT 

A. Experimental result 

In the experiment, a reflective ball and Laser Photosphere 
position will be installed on the robot, as shown in Figure 4. The 
high-speed camera positioning system is used to locate the end-
effector of the robot, and the laser tracker is used for 
measurement at the same time. The measured value of the Laser 
tracker can be used as ground truth to obtain the error. Figure 5 
shows the setup of the 3D camera. 

In addition, the past two methods (Denavit–Hartenberg 
model calibration and iterative learning control) to improve 
robot location accuracy are also included in our comparison.  
Section B shows the results of the Denavit–Hartenberg model 
calibration. Section C shows the results of the iterative learning 
control. Different from the 3D camera used in this research, 
both methods use Laser tracker as the robot position 
measurement tool. Table I shows the specification of the 3D 
camera and Laser tracker. Although the laser tracker has 
excellent measurement capabilities, the high price hinders its 
popularity.  

 

 
Figure 4. experiment setup: robot and reflective ball. 

 

 
Figure 5. experiment setup: Camera. 

 

Table I. Specification: 3D camera vs Laser tracker 

Specification 3D camera Laser tracker 

Brand Optitrack Leica 

Measurement 

volume 

FOV:82°×70° 

240 Frame/sec 

 Resolution:1280×1024 

160 m 

horizontal :360° 

vertical: ±45° 

Measuring 

precision 
<0.3 mm 15 μm + 6 μm/m 

cost $ 27,000 $ 200,000 

 

Since the coordinate systems of the two sensors are 
different, and the laser tracker lacks a posture measurement 
function. Therefore, the experimental design is to give 10 way 
points on a straight line trajectory, and stay on them for a while, 
and finally compare the position errors of the 10 way points, as 
shown in Figure 6. The reason of using this method is that a 
transformation between the frames of the two sensors through 
the 10 waypoints can be constructed. Table II shows the results 
of 9 experiments, the average error is about 0.53mm. 

 
Figure 6. Experiment description. 

 

Table II. Experimental Statistics for 3D vision calibration 

No. of 

experiment 

Real distance 

(mm) 

Measured distance 

(mm) 

Absolute error 

(mm) 

Error 

(%) 

1 20 18.33 1.67 8.35 
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2 20 19.96 0.04 0.2 

3 20 18.40 1.6 8 

4 20 20.10 0.10 0.5 

5 20 20.26 0.26 1.3 

6 20 19.41 0.59 2.95 

7 20 19.88 0.12 0.6 

8 20 19.15 0.85 4.25 

9 20 19.74 0.26 1.3 

Ave. 20 19.47 0.53 2.65 

 

B. Compared with Denavit–Hartenberg Model Calibration 

The economically feasible solution to improve the absolute 
accuracy of the robot is to identify and compensate the 
geometric and non-geometric errors in the robot structure. 
Because these internal errors are usually not easy to measure 
directly, they must be identified indirectly through attitude 
errors and the associated mathematical model (D-H Model). 
After constructing the model, the robot is ordered to multiple 
positions in the workspace, the actual position is actually 
measured and the attitude error is compared, and then the 
internal error of the robot structure is calculated. After 
calibration, the error model can be used as a virtual sensor to 
measure and compensate for robot location.  

Figure 7 shows the setup of the robot and laser tracker for 
D-H model calibration. In the calibration process, 100 points of 
information are used for D-H model parameter correction. 
Table III shows that the max error is about 0.42 mm and RMS 
error is about 0.10 mm. 

 

 
Figure 7. experiment setup: robot and laser tracker. 

 

Table III. Experimental Statistics for D-H model calibration 

 X Y Z Total 

Max error (mm) 0.14 0.34 0.2 0.42 

RMS error (mm) 0.05 0.06 0.07 0.10 

 

C. Compared with Iterative Learning Control Compensation 

ILC is a relatively a new technique. It ccan used to 
improving the transient response and tracking performance of 

any physical system. It is a technique for systems with repetitive 
operations, which are modified based on the observed error to 
control the input signal at each repetitive operation. By the error 
in the output response after each operation and using the error 
to fix the input signal to the system, ILC can improve the system 
performance [14]. Hence, it suits to robot that is required to 
execute a particular operation repeatedly. 

Table IV shows that the max error is about 1.244 mm and 
RMS error is about 0.816 mm without ILC compensation or D-
H model calibration. Under the condition of ILC compensation, 
the max error is about 0.511 mm and RMS error is about 0.195 
mm. In other words, ILC has a performance improvement of 
more than 2 times. 

 

Table IV. Experimental Statistics for ILC Compensation 

Test Conditions RMS Error / Max Error 

without ILC 0.816 / 1.244 

with ILC 0.195 / 0.511 

 

The DH model correction technique has the best results. The 
results of the ILC technology are slightly better than the results 
of the 3D camera compensation technology, but this does not 
mean that the method proposed is not good. The main reason is 
the obvious performance difference between the 3D camera and 
the Laser tracker. If the 3D camera can have better performance, 
the accuracy of the robot can be significantly improved. Even 
so, the proposed method has sufficient performance to satisfy 
most applications. In addition, D-H model calibration combined 
with ILC or the vision compensation technology proposed in 
this research can achieve better results. 

 

VI. CONCLUSION 

The estimation algorithms and optimization algorithms are 
used to enable the robot to ensure high-precision positioning 
through the calibration of measuring instruments (general 
accuracy). According to the experimental results, the average 
error after correction is 0.53 mm. Compared with the past two 
methods and results of using Laser tracker to improve robot 
accuracy (D-H model calibration 0.36 mm and iterative learning 
control 0.511 mm), the proposed method has sufficient 
performance to meet most applications. After many tests, the 
positioning error is within 8%, and the repeatability of the 
proposed method is acceptable. By reducing environmental 
interference and correcting the internal parameters of the 3D 
camera, the repeatability can be improved. Once the 
repeatability can be reduced, there is an opportunity to establish 
a compensation model to reduce the positioning error. 

In terms of cost analysis, the visual sensor fusion method can 
reduce costs compared to the laser tracker solution. At the same 
time, the pre-positioning work can be simplified, and there is no 
need to spend time installing too many large instruments. 
Through the trajectory of the robot and the real-time positioning 
of this method, it can be inferred which angle of the robot will 
cause a large positioning error. In the future, the cause of the 
problem can be analyzed (e.g., motor, reduction mechanism, and 
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controller). In this study, 3D vision is used to assist the 
positioning of the robot. In addition to improving the positioning 
accuracy of the robot. In the future, sensors can be combined 
with automatic calibration to reduce manpower requirements 
and gradually develop towards Industry 4.0. 
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