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Abstract— Robotic bin picking system (RBP) with Artificial 

Intelligence (AI) has been widely used in different applications for 

learning the features of new workpieces and detecting their 

respective coordinates through a camera.  One of the biggest 

bottlenecks of AI is the need for a vast amount of labeled data for 

sufficient training of the AI model. If either the quantity of the 

data is insufficient or the quality of the labeling is unstable, 

problems will arise when training and testing the AI. Also, many 

of the robotic picking systems will use a vacuum as the main 

gripper because the soft vacuum cup can easily adapt to the 

workpiece, however because of the different speeds of the 

handling, weights of the workpieces, and the air pressure exerted 

by the vacuum cup there is diversity in the behavior of the 

grasping. Thus, it is challenging to find a digital twin system to 

verify and analyze RBP to improve its real-world performance.  

To resolve the first of the problems, we propose an early 

deployment method for automatically generating diverse data with 

domain randomization and an auto-picking point annotation 

system for labeling the data. For the second problem, we employ 

the usage of mathematical formulas to calculate and approximate 

the gripper reactions using various parameters.  

Our proposed system will train and implement an AI for RBP 

using its own generated dataset in an early stage. Furthermore, we 

will test its performance in the simulator and real-world with a 

vacuum gripper to validate our system and formulas. 

Keywords: Auto Annotation, object recognition, robotic random 

bin-picking. 

I. INTRODUCTION 

In comparison to AI with computer vision, the algorithm of 
traditional computer vision is more likely to underperform. If 
there are any changes in the conditions such as lighting, texture, 
or scaling, then the desired rule-based solutions will not be 
achieved. If a large enough dataset with diversity for the AI 
model’s training is prepared, higher performance and 
robustness can be achieved by the model. YOLO [1], an object 
detection AI model, is extremely fast and accurate in detecting 
multiple and diverse objects as well as outputting their bounding 
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box at their corresponding locations. MaskRCNN [2], an 
instance segmentation AI model, functions well in segmenting 
objects with pixel alignment providing a higher precision than 
that of a bounding box. The incorporation of AI models into 
vision has been widely used in robotic pick and place research 
[3] [4]. This incorporation facilitates the detection of an object 
without CAD models and promotes rapid conversion for factory 
purposes since it does not require an engineer to rewrite the 
algorithm, it just requires a change in the datasets. Although the 
current results of using AI in the mentioned fields are decent, AI 
models require a vast amount of data and labeling of the 
corresponding answers for sufficient training. However, the 
labeling will require significant manpower. If the quality of the 
labels for the datasets is unstable, such as the occasional 
mislabeling, problems will arise when training and testing the 
AI model. To combat some of these problems, data 
augmentation has been used to increase image datasets [5] by 
creating slight alterations in existing data and Generative 
Adversarial Network (GAN) [6] has been used to automatically 
increase or generate new datasets based on the training dataset.  

Ideally, it is better to generate the images through simulators 
[7] since they can generate the objects with random posture with 
a physics engine to calculate the physics reaction of objects in 
the environment. Authors in [8] propose a method for mapping 
textures on an object with lower distortion. This optimization 
function provided is a new mapping approach in the computer 
graph domain. And [9] uses CoppeliaSim, a robot simulator 
platform, to simulate the motion of the robot along with the 
robotic picking, stacking, and truck unloading which are the 
three main jobs for robots in a warehouse. 

It is also critical to simulate RBP behavior when picking the 
workpiece to analyze its limitations. Authors in [11] propose 
mathematical formulas for unilateral grasping of vacuum cups, 
which can be used as theoretical limits for stable grasping. 
While in [12], authors propose a model for contact stability for 
vacuum cups during movement along with a procedure to 
calculate or approximate such model. 

The above literature contributes to reducing the need for 
manpower for AI and predicting the RBP gripping stability. 
However, the methods still face the following problems [10]: 

• Generation of the images without annotations cannot be 
used for the training of the AI model as it still requires 
the annotations for the learning phase. 
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• Annotations that do not consider the grasping point will 
fail at robotic picking. 

• Data augmentation does not provide enough diversity. 

• Theoretical limits of the grasping stability are not tested 
and corrected. 

• Other constraints for the stability of the grasping are not 
explored, i.e the angle of grasping or the diameter of the 
vacuum cup. 

To combat this set of problems, we propose 1) an early 
deployment method for automatically generating diverse data 
with domain randomization and an auto-picking point 
annotation system for labeling the data, and 2) mathematical 
formulas to calculate and approximate the gripper reactions 
using various parameters.  

This system will help outsource manpower in hazardous 
environments such as heat-treatment plants in Taiwanese 
factories, starting in 2022.  In said scenario, the system will 
select and pick a heavy workpiece amongst others that are 
randomly stacked inside the bin. After picking, the industrial 
robot will move the workpiece towards the conveyor that will 
then carry it into the furnace. Because the workpieces are heavy, 
the workpiece types are numerous, and the environment 
surrounding the furnace is hot (~50°C), there is a need for rapid 
change over systems that can train and implement AI models 
from self-generated datasets and digital twins to analyze and 
predict the grippers reactions in the real world using simulators. 

II. SYSTEM ARCHITECTURE 

A. System Structure 

First, our system automatically generates the 3D model with 
the real workpiece’s texture and loads the model into the 
simulator. Then, uses the simulator to generate data for a large 
quantity and diversity of images. Next, it calculates each 
object’s occlusion status and provides a different annotation 
class accordingly (OK/NG). Lastly, the generated datasets and 
annotation files are used to train the AI model. The resultant AI 
model is then inserted and used by the robotic picking system as 
shown in Fig 1. 

 

Fig. 1. System Architecture. 

B. Experimental Devices, Instruments, and Workpieces 

The real case experiment test was performed using a 6 axis 
M-710iC/45M robot with FOVision vision module shown in  
Fig. 2 and 3. The experimental workpieces used were candy 

bags, chewing gum packages, chocolate bars, checker pieces, 
and weight blocks. 

 

 

Fig. 2. M-710iC/45M Robot 

 
Fig. 3. FOVision vision module. 

III. PICKING MODELS 

This section describes the picking model, which is generated 
using multiple RGB-D cameras. The workpiece is scanned to 
generate the 3D mesh file. A 2D image is extracted to map the 
texture on the 3D model using the UV-mapping method [8].  

The mesh is made up of vertices, each having its X, Y, and Z 
coordinate, and a texture that is applied from an image. The 
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mapping method used for the texture is UV-mapping, which 
finds the relationship between the 2D image pixel and the 3D 
coordinate of the mesh using the following geometric equations: 

𝑢 = 𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 =  
𝑋

 𝑋2 +  𝑌2 + 𝑍2
 
 

() 

𝑣 = 𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 =  
𝑌

 𝑋2 + 𝑌2 +  𝑍2
 

 
(2) 

Another approach is generating the models with only the 
picking surface of the real workpiece. To do this, we let the 

workpiece’s picking surface face towards the camera and 
take the photo. We redo this process, but this time with a 

non-picking surface. Using this method, we can generate 3D 
models from a single real workpiece to multiple 3D models in 

a fast manner, including 3D picking models and 3D 
non-picking models. The modeling pipeline is shown in Fig. 

4. 

 

Fig. 4. Picking Modeling Pipeline. 

A.  Automatic Generation of Images 

This section describes the automatic generation of the images 
and their corresponding annotations, using the picking models 
as described in Section III. A simulator with a physics engine 
and domain randomization with the following parameters are 
used: object posture, object quantity, lighting posture, camera 
postures, light intensity, light color, and color rendering. 

After the physics reactions have settled in each environment, 
a shot is taken by the virtual camera inside the simulator and 
extracted to calculate each workpiece’s occlusion status. 

B. Priority Strategy for Labels 

Like in the real case scenario where only the easily accessible 
workpieces are picked, the annotations are designed so the 
picking class for each workpiece considers the occlusion level 
and the visible pixel surface area seen by the camera as shown in 
Fig 4. For example, workpieces on the top of the crate will have 
a higher priority for picking because they have less occlusion 
and higher pixel surface area visible to the camera in 
comparison to the other workpieces, making the picking easier 

for the robot. Workpieces closer to the middle of the crate will 
have a priority higher than those which are closer to walls since 
these can be considered as obstacles, increasing the difficulty in 
the picking. 

 

Fig. 5. Finetuning the label based on the normal of the picking point. 

The smoothness of the picking point surface and the angle 
from which it is picked play a significant role in the success of 
picking the workpiece. A change in the elevation of the surface 
or insufficient surface area, as seen in Fig. 6, can prevent 
grippers from successfully picking up a workpiece. 

 
Fig. 6. Finetuning the label based on the flatness of the picking point. 

Fig. 7 displays the schematic diagram from modeling 
different surfaces of the object. Several picking and non-picking 
surface models are made from a single object so the AI can learn 
and infer which workpiece can be picked and, when performing 
the picking, from what part can it be picked. 

 
Fig. 7. Multiclass Labeling for Single Workpiece. 
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IV. PICKING SIMULATIONS 

To test picking in a simulator, we use [11, Eq.8] for 

simulating a stable gripping for the vacuum cup. Since we test 

single point picking, the equation becomes, 

𝑑 ≥ 10−3 
4𝑚𝑡(𝛼 ± 𝑔)

10−3𝜋𝑝𝑣𝜇
 

 

 () 

where d is the minimum required diameter for the vacuum cup 

for a successful gripping, m the mass of the workpiece, α ± g the 

net acceleration at gripping point, pv the pressure, μ the friction 

coefficient, and t the safety factor to account for 

non-perpendicular gripping to the ground. Note that the 

diameter is scaled back to meters and that pressure is taken as an 

absolute value. 

    Provided a diameter for a vacuum cup and the mass of a 

workpiece, we can determine the minimum pressure required 

for a successful grasping from 

𝑝𝑣  ≥  
4𝑚𝑡(𝛼 ± 𝑔)

10−3𝜋𝜇 103𝑑 2
 
 

 () 

    Likewise, provided a diameter and a maximum pressure, the 

maximum mass the vacuum cup will be able to hold from 

𝑚 ≤  
10−3𝜋𝜇 103𝑑 2

4𝑝𝑣𝑡(𝛼 ± 𝑔)
 
 

 () 

    To decrease the gap of the simulation results with the real 

results due to unobserved variables that affect the gripping, we 

use Linear Minimum Mean Squared Error (LMMSE) to reduce 

the MSE loss. Suppose the real result is denoted as Y and the 

simulated result as 𝑌  and let them both be random variables 

with finite mean and variance. We want to determine a function 

with scalars a and b such that, 

𝑌 = 𝑎𝑌 + 𝑏   () 

minimizes 
𝑀𝑆𝐸 = 𝐸[(𝑌 − 𝑌 )2]   () 

let us consider 

ℎ(𝑎, 𝑏) = 𝐸[(𝑌 − 𝑎𝑌 − 𝑏)2]   () 

then, (8) is minimized if 

𝑎 =  𝑎∗ =  
𝐶𝑜𝑣(𝑌, 𝑌 )

𝑉𝑎𝑟(𝑌 )
 
 

 () 

and 
𝑏 = 𝑏∗ = 𝐸 𝑌 − 𝑎𝐸[𝑌 ] 

   () 

using (6), (9), and (10), allows us to re-express (4) as 

𝑝𝑣
∗  ≥  𝑎∗

4𝑚𝑡(𝛼 ± 𝑔)

10−3𝜋𝜇 103𝑑 2
+ 𝑏∗ 

 
 () 

and using (11), (5) can be re-expressed as 

𝑚∗  ≤  
𝑎∗10−3𝜋𝜇 103𝑑 2

4(𝑝𝑣 −  𝑏∗)𝑡(𝛼 ± 𝑔)
 
 

 () 

 

V.  RESULTS 

 For the first set of experiments, we employ our AI model 
trained on our automatically generated dataset in the real-world 
RBP. We use different workpieces as specified in Tab. I and a 
vacuum cup with 0.04 m diameter and pressure of 80kPa. The 
experiment runs 500 picking cycles for the same type of 
workpieces to test the system’s reliability. A picking cycle 

consists of selecting and picking a workpiece. It is considered 
successful if the robot picks up the selected workpiece within 3 
attempts, as shown in Table I. The average success rate is over 

90% with the general workpiece. 

 TABLE I.  ROBOT PICKING SUCCESS RATE 

Workpiece Mass Cycle Success  Success rate 

Candy 0.034 500 440 88% 

Chewing gum 0.062 500 420 84% 

Chocolate 0.050 500 480 96% 

Checker Piece 0.003 500 490 98% 

 

In the next experiment, we show the effectiveness of (3) and 

(10) for real-world comparison by using weights of varying 

masses. The minimum pressure is determined by slowly 

reducing the pressure of the vacuum cup until the weight is 

dropped. In Fig. 8, the vacuum cup holds the workpiece 

perpendicular to the ground, for which we set the safety factor to 

1. In Fig. 9, the vacuum cup holds the workpiece parallel to the 

ground, thus we set the safety factor to 0.25. Further details are 

expressed in Table II. 

 
Fig. 8. Predicting the minimum pressure required for holding the workpiece 

with the gripper perpendicular to the ground. 

 
Fig. 9. Predicting the minimum pressure required for holding the workpiece 

with the gripper parallel to the ground. 
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TABLE II.  SIMULATION PARAMETERS AND LOSS 

μ t d a b MSE 

1 1 0.04 1 0 100.16 

1 1 0.04 0.87 12.95 4.47 

0.1 0.25 0.04 1 0 208.61 

0.1 0.25 0.04 1.25 7.04 6.30 

 

From Fig.8-9, we justify our choice of vacuum cup diameter 
and pressure for the earlier experiment since for workpieces of 1 
kg, 25 kPa or higher is more than sufficient for grasping. Thus, 
for smaller masses, the statement holds. 

VI. DISCUSSIONS AND LIMITATIONS 

The advantage of this system is its ability to easily model the 

workpiece and automatically generate enormous amounts of 

labeled datasets within an hour. Training AI models with these 

data and annotations can speed up the learning process for 

robotic picking systems without the need to manually create or 

buy CAD models. It is factory flexible and supports rapid 

changeover for production. Unfortunately, the current simulator 

only supports rigid object models, thus simulating flexibility 

and elasticity when stacking objects is not supported by our 

systems like for workpieces such as line cables, candy bags, and 

chewing gum packages. 

We also provide mathematical formulas and corrections for 

usage inside simulations. Unfortunately, the current study is 

limited to vacuum cups. 

As Fig. 8 and Fig.9 suggest the gap between the simulator and 

real-world is small however, there is still an error, albeit small. 

This error could be some unobserved variable as mentioned in 

Sec. IV or due to real-world measurement imprecision when 

measuring air pressure or weighing the workpiece. This 

measurement error may alter the result, so it is not necessarily an 

error from the simulation. This is a topic related to how to 

measure repeatability and reproducibility which we will leave as 

future work.    

VII. CONCLUSION AND FUTURE WORK 

In this paper, we proposed a new approach for automating the 

AI pipeline which not only can be used to compete with other 

robotic picking systems but also serve as a tool to supply 

annotated datasets for AI research and robotic picking systems.  

We proposed a method to generate the picking models with a 

realistic texture that considers its picking surface. It also 

automatically generates the images and annotations based on the 

occlusion status of workpieces for different class labels to teach 

the AI what are the best workpieces and picking points for the 

robot. The datasets generated by our system include a variety of 

real-world variables like the posture of the camera, light, and 

workpieces; color rendering; and light decay which considers 

environment changes to generate the datasets. 

We proposed mathematical formulas to analyze gripping 

stability by considering vacuum cup size, workpiece’s mass, 

handling acceleration and direction, and air pressure to provide 

numerical analysis and to enhance realistic picking inside 

simulations. 

Lastly, we verified the performance of this system with the 

inference of the real robot for picking different workpieces 

which are completely modeled, generated, and annotated by our 

system.  

Future works include expanding the picking annotation 

strategy by considering a wider variety of grippers like the jaw 

parallel grippers or hand-type grippers.  
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