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 Abstract—Humanoid robots used for medical care, household, 
logistics are deployed more widely in a complex working context, 
and a great deal of current robot research focuses on teleoperated 
high degree-of-freedom control for delicate human skill 
transferring. However, severe vibration phenomenon caused by 
unwanted noise usually leads to non-smooth robot trajectory. 
Although advanced robot arms have been equipped with torque 
sensors to perform torque control, it is not feasible to deploy 
widely in different workspaces due to its cost. The work reported 
a model-free approach as an easy-realized and inexpensive 
method. First, noise elimination was realized by empirical mode 
decomposition and Savitzky-Golay filter. Second, regenerating 
motor controllable trajectory was done by downsampling and 
quadratic interpolation to re-construct a simpler, accurate 
trajectory with piecewise constant acceleration. After attenuating 
unwanted vibration noise and interpolating proper sample points, 
it was shown that the accuracy was improved by 60% with the 
proposed approach. The result also demonstrates remote human 
skill transferring, which matches teleoperated target signals for 
the human motion to robotic arm kinematic motion. 

 Index Terms—Humanoid robots, Interpolation, Motion control, 
Path planning  

I. INTRODUCTION 

UMANOID robots have been introduced in the past 20 
years [1-6] to extend the human presence into complex 

workspaces, such as space exploration [7], underwater 
investigations [8], remote medical care [9], and companion [10]. 
Based on rapid improvement in robot perception and actuation, 
humanoid robots are primarily combined with teleoperation 
systems to transfer human expert skills. For space exploration, a 
control method of the model-based teleoperation system [11] 
demonstrated the improvement in robustness against modeling 
error from the remote site. In this context, time and expertise in 
robotics are required to construct a model representation, 
making it infeasible for fast application deployment. 
Nevertheless, the presence of external noise and undeclared 
disturbance lead to noisy trajectory and severe vibration, 
hampering robotic arms to perform sophisticated, human-like 
manipulation in complex environments. 

In order to reduce labor costs and improve operation 
efficiency, learning from demonstration (LfD) [12, 13] for robot 
motion control is becoming more prevalent these years. Indeed, 
in any teleoperation system, precise trajectory planning is of 
crucial importance in imitating human motion. However, it is 
not easy to transfer an expert’s skill and imitate human motion 
owing to the difference between human arm movement and 
robot arms kinematic motion.  
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Prior LfD research has seen to address two issues in imitating 
and learning human motion: (1) extracting primitive motion and 
matching demonstration data to enable a robot to reproduce the 
motion captured from humans and (2) enhancing the learned 
control policy to adaptation and generalization beyond just 
cloning trajectories and actions. This research focused on 
extracting necessary motion and preparing data for virtual 
training environments to enable a dual-arm manipulator system 
in imitating human motion. There are three approaches to 
capture human demonstration data. First, demonstration data 
was captured from robots, with a camera mounted on a robot and 
a human operator wearing a virtual reality (VR) headset that 
displayed the robot’s view [14]. For example, an RGB-D camera 
combined with a VR headset was used in the Softbank Pepper 
robot to imitate the user’s upper limb pose [15]. Although the 
research introduced intuitive VR-based teleoperation for the 
humanoid system, manipulation error could occur when 
mapping human seven joints motion to Pepper’s five joints arm 
motion. Second, demonstration data could be recorded under 
human guidance by sensors, such as torque sensors, force 
sensors, and motion sensors in the exoskeleton for rehabilitation 
[16] and complex manipulation tasks [17]. Usually, human 
operators wear motion capture sensors for delicate human 
motion capturing, such as Leap Motion, Manus SteamVR 
Tracker, etc. 

For the motion planning of upper-limb robot arms, the most 
prevalent methods are analytic expressions (Fourier transform, 
polynomial functions) and optimization-based approaches [18]. 
In order to attenuate noise from target signals and prevent 
manipulators structure from wearing, prior investigations had 
introduced multiple approaches to trajectory smoothing. In 
2010, a shortcutting heuristic approach [19] was proposed to 
repeatedly replace the intermediate trajectory with a collision-
free segment for many- degrees of freedom (DOF) robot 
manipulators. However, the time-optimal curves could reduce 
the resemblance between the original and final trajectory. One 
study selected minimum jerk and fixed time-optimal trajectories 
for machine axes [20]. Still, other trajectory smoothing research 
leveraged filters and neural network-based models to realize 
smooth and accurate motion in a teleoperated robot head system 
[21]. These results served as efficient approaches for the low 
DOF and known kinematic motion, such as autonomous driving 
cars and unmanned ground vehicles. However, human experts 
usually perform dexterous movements based on previous 
experience and instant decisions, which makes simplifying 
trajectories an improper method.  
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In this paper, a new approach was introduced to attenuate 
noise and regenerate robot trajectory in transferring human 
expert skills to robotic arm kinematic motion. In the proposed 
method, robot arms could imitate human motion accurately via 
noise elimination and quadratic interpolation along target 
signals. First, undeclared noise was attenuated from captured 
trajectories via decomposing signals and smoothing out low-
magnitude, high-frequency components. Then, a few properly 
located sample points were selected to regenerate motor-
controllable trajectory by second-order polynomial 
interpolation. 

II.  MATERIALS AND METHODS 

The experimental setup schemed to build a proficiency-
based robot training platform, as shown in Fig. (a), so that 
human movement was transferred to robotic arm kinematic 
motion. The human expert’s delicate arm motion was captured, 
followed by attenuating unwanted noise, regenerating motor 
controllable trajectories, and transferring signals to a virtual 
training environment. 

 

A. Experimental Setup 

Robotic manipulator motor: In dual-arm manipulation, a 
brushless direct current motor (H54-100-S500-R, ROBOTIS, 
USA) was used in each robot arm joint to imitate and transfer 
human expert skill delicately. In Table I, the motor has 
continuous torque 25.3 N/m, resolution 501,923 pulse/rev, 
continuous speed 29.2 rev/min, and four operating control 
modes. In this study, in order to develop an approach for motor 
without torque control to imitate human arm motion, each motor 
was set to perform in the velocity control mode. 

TABLE I 
HARDWARE SPECIFICATIONS OF BRUSHLESS DC MOTOR  

USED FOR THE DUAL-ARM MANIPULATOR SYSTEM 

Item Specifications 

Resolution 501,923 pulse/rev 

Continuous Speed 29.2 rev/min 

Continuous torque 25.3 N/m 

Operating modes 

Torque control mode 

Velocity control mode 
Position control mode 

Extended position control mode 

 

Motion capture devices: Human arm motion was obtained in 
the form of several separated angle signals by motion tracking 
devices in the real world. The devices were mounted on a human 
operator’s arm to capture each movement of seven joints, 
including 3-DOF in the shoulder, 1-DOF in the elbow, and 3-
DOF in the wrist. In this study, motion tracking devices captured 
human arm movement under 100 Hz. 

 

B. Proposed Method 

With 7-DOF human arm movement captured as seven 

separate trajectories, joint 1 to joint 7 human demonstration 

data was obtained. Briefly, the goal was to generate motor 

controllable signals that resembled the actual human arm 

motion. Among current teleoperated robot systems research, 

velocity control was often utilized in virtual reality (VR) based 

framework [22]. However, one-to-one expert skill transferring 

could not be realized precisely due to the lack of validation 

procedure in mitigating the kinematic mismatching between 

humans and robot arms. Hence, the novelty of the proposed 

work lies in preparing motor controllable signals for a virtual 

training environment as shown in Fig. 1 (a). Therefore, with the 

presence of inherent physical tremors and teleoperation sensor 

noise, attenuating the noise before regenerating motor 

controllable trajectories is important. As shown in Fig. 1 (b), 

noise elimination and regenerating motor controllable 

trajectory were used to transfer the human operator’s 

demonstration signals to the virtual training environment. 

 

For the target signals, preventing unwanted vibration and 

attenuating noise were preferred. By decomposing a target 

signal via empirical mode decomposition (EMD), several 

intrinsic mode functions (IMFs) could be obtained. After the 

Savitzky-Golay filter (SG filter) smoothing adjacent data on 

some of the IMFs, quadratic interpolation was used to generate 

simpler polynomial functions. Few sample points were chosen 

for the first interpolation, but new sample points were added if 

the moving root-mean-square error (MRMSE) was too large. 

By adding more sample points at proper locations, it was 

ensured that the filtered signal resembled the original one. 

 

C. Noise Attenuation 

For motor without torque control, robotic manipulator in 

velocity control is easier to be achieved by following simpler 

trajectories. However, the presence of noise hurts robotic arms 

manipulation, which requires noise to be attenuated before 

simplifying target signals. 

The EMD method introduced by Huang et al. [23] was used 

Fig. 1. The proficiency-based robot training platform proposed in this work 

matched human expert demonstration data to the virtual training 

environment. (a) a systematic view of the proposed approach (b) a detailed 

explanation of the proposed method. 

 (a) 

 (b) 
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in this study to decompose human movement target signals. 

Since a human operator usually demonstrates delicate 

manipulation based on previous experience and instant 

environment dynamics, target signals have a non-stationary and 

nonlinear frequency in time series. EMD connected local 

extremes along the signals using cubic splines as envelopes, 

subtracted the average signal of upper and lower envelopes 

from the original signal, and retained only some of the 

components that satisfy the relative sifting tolerance criterion. 

Then, a sifting process was conducted subsequently to obtain a 

small number of IMFs that could represent original signals.  

Through this approach, non-linear target signals were 

decomposed into several IMFs, including high- and low-

frequency components. It was found that the fast-changing but 

low magnitude IMF composed of up to 50% of the 

unintentionally jittered signal. To preserve human motion 

features and attenuate noise, the SG filter served as a sliding 

window filter to smooth out some of the high-frequency 

components and keep others the same. Then, a denoised signal 

was obtained by synthesizing several IMF components. 

 

D. Regenerating Motor Controllable Trajectory 

After the noise elimination process, motor controllable 

trajectories were generated without severe vibration for velocity 

control mode. Quadratic interpolation was used to ensure the 

signal’s second derivative remain constant. Initially, fewer 

sample points were picked via a higher downsampling 

operation to avoid the acceleration changing too rapidly. 

However, a small number of sample points reduced the 

similarity between the original and the final signal. In order to 

avoid the acceleration changing frequently, new sample points 

were added at the proper location each time when the difference 

was too large.  

MRMSE used in this work evaluated the difference between 

the original signal and the semi-final signal. Apart from a single 

root-mean-square error (RMSE), MRMSE investigated the 

difference at each time by a sliding window, making it suitable 

to serve as an indicator to add new sample points. As a sample 

point adding indicator, the peak height of MRMSE was used to 

find the time instant where the error amplitude was larger than 

a certain value. After the downsampling operation, the MRMSE 

of the trajectory signal was available. New sample points were 

added at the locations that the semi-final signal was too 

different from the original target one i.e., MRMSE peaks. More 

sample points were added until the final signal resembled the 

original one. With the proposed approach mentioned above, a 

simpler polynomial signal that preserved human delicate arm 

movement features and performed by motors in the velocity 

control mode was created. 

III. RESULTS 

As shown in Fig. 2, the joint 7 human demonstration data 
with severe vibration was motor uncontrollable. In order to 
generate motor controllable trajectories, EMD was used to 
decompose human motion signal into several IMFs, as plotted 
in Fig. 3 (a). It was found that over 50% of the jittered vibration 
came from high frequency but low magnitude IMF components. 
Therefore, the SG filter with different sliding window length 

was used to smooth out each component as plotted in Fig. 3 (b), 
where noisy IMFs were filtered by longer sliding window length 
and IMFs with slight change were filtered by shorter window 
length. 

After attenuating noise from non-specific frequency 
components, a filtered signal was obtained by synthesizing all of 
the IMFs. However, the number of the sample points in original 
and filtered signals was 1370, making the fast-changing 
acceleration signal motor uncontrollable. Therefore, the 
downsampling parameter was chosen to be 80 to connect fewer 
sample points at this step.  

Second-order interpolation could generate a piecewise 
constant acceleration path for motors without torque control, and 
MRMSE was used to improve the resemblance between original 
and interpolated signals. As shown in Fig. 4, new sample points 
were added at peaks where MRMSE was too large. After a series 
of iteration processes to add new sample points, the similarity 
between original and final signals has been improved. An 
accurate final signal was plotted in Fig. 5, where unwanted 
vibration has been attenuated. Compare the original signal with 
the final signal, the range of acceleration was reduced from 
20,000 degrees/s2 to 300 degrees/s2 as shown in Fig. 6. 

 
 (a) 

Fig. 2. Joint 7 target signal recorded from human demonstration. Owing to 
the presence of noise, severe vibration hampered the robot arm to imitate 

delicate human motion. 
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TABLE II 

COMPARISON OF SAMPLE POINTS AND RMSE BEFORE AND AFTER  
A SERIES OF ITERATION BETWEEN JOINT 1 TO JOINT 7 SIGNALS 

Joint 

Before interpolation After interpolation 

Sample 

points 

RMSE 

(degree) 

Sample 

points 

RMSE 

(degree) 

1 19 0.448 26 0.285 

2 19 0.480 28 0.254 

3 19 0.967 40 0.289 

4 19 0.592 28 0.213 

5 19 0.742 44 0.304 

6 19 0.670 34 0.317 

7 19 1.127 59 0.345 

Average 19 0.718 37 0.286 

 

Table II demonstrated the improvement of adding new 
sample points along seven trajectories. When picking fewer 
sample points after downsampling operation, 19 points were 
chosen and the RMSE was 0.718 degrees on average. The 
resemblance was enhanced by adding new sample points at 

 (b) 

Fig. 3. Several IMFs decomposed from the target signal were sent to the 

SG filter and the first three IMFs that contributed unwanted vibration the 
most were depicted. IMF 1 had a smaller magnitude and higher frequency 

than IMF 2 and IMF 3, and IMF 3 preserved human movement features the 

most. (b) data showed that some noisy components were smoothed out by 
the SG filter from (a).  

 (a) 

 (b) 

Fig. 4. By subtracting the 1st interpolation signal from the original signal, 

MRMSE could be obtained. To improve the resemblance, new sample 
points would be added at peaks as indicated in red hollow circles after 

several iteration processes.  

Fig. 5. The figure demonstrated the final angle signal of the joint 7 human 

arm motion. 

Fig. 6. The figures showed the joint 7 acceleration signal before and after 

using the proposed approach. (a) comparison of original and final 
acceleration signal was plotted and (b) demonstrated the piecewise constant 

path for robotic arms to imitate human motion. 



International Journal of iRobotics 

Vol. 04, No. 3, September 2021 

 

23 

proper locations, and the work improved RMSE by 60% while 
only 20 to 40 sample points were added. Unlike most 
computational methods, this study prepared motor controllable 
trajectories for a virtual training environment. Therefore, 
transferring human expert skills to teleoperated dual-arm 
manipulation could be enhanced.  

IV. DISCUSSION 

The proposed approach provided a novel solution to match 
human motion to robotic arms kinematic motion, which was a 
model-free method that could transfer human expert skill fast 
and wide. Via trajectory signals captured from human arm 
motion in the form of 7 joints, target signals were used to verify 
the proposed method.   

 

A. Sliding window length 

The sliding window length is an important parameter to 
ensure the filtered signal be as similar as the original signal 
recorded from human motion. It was utilized in the SG filter 
and the MRMSE. Initially, target signals captured from human 
arm movement remotely came with severe vibration 
phenomenon, including non-stationary human physiological 
tremor and teleoperated communication noise. Instead of using 
the Fourier Transform to filter noise with a specific frequency, 
the EMD method successfully eliminated the non-stationary 
frequency noise with only a few sifting operations. 

Compared with human physiological finger tremor [24] that 
has 8~12 Hz postural and kinematic frequency, jittered noise 
was eliminated over 5 Hz to preserve features for human arm 
motion in this study. In order to attenuate noise, the sliding 
window length was chosen based on the shortest distance of 
local extremes along velocity signals, where the acceleration 
changed the most. Therefore, the length of 20 sample points 
was preferred. 

 

B. Downsampling and adding new sample points 

To prevent robotic arms from severe vibration, only a few 
sample points should be selected while regenerating motor 
controllable trajectories. That meant a bigger downsampling 
rate and peak height values were preferred. Therefore, the 
number of sample points was reduced from 1470 to 19 via 
downsampling operation, leaving only 18 segments along the 
trajectory. Then, new sample points were added at proper 
locations that were pointed out by the MRMSE to improve the 
resemblance. 

 

C. Quadratic interpolation 

In the experimental setup section, the BLDC motors in the 
dual-arm system were used in the velocity control mode. 
Velocity control motors have a trapezoidal control profile with 
certain acceleration and de-acceleration values, so the second-
order polynomial functions could generate robot controllable 
trajectories. Most research utilizes high-end torque control 
robotic arms to perform the human-like motion, but it is 
expensive and infeasible for wide deployment. A velocity 
control motor used in this work was an easy-realized method for 
fast deployment of robot applications. It could prepare noise 
attenuated, motor controllable trajectories for training models, 

with a 60% accuracy improvement for the desired teleoperated 
two-handed manipulation system. 

The proposed model-free approach successfully augmented 
the dexterity of the teleoperated dual-arm robot system in an 
easy-realized manner, which digitized human expert skills from 
real-world demonstration and transferred them to a two-handed 
robot system in the virtual training environment. Beyond the 
scope of human motion imitation, the perception of the dual-arm 
robot system could be advanced by integrating with an RGB-D 
camera, pressure sensing devices, etc. With a more 
comprehensive understanding of its surrounding, 7-DOF robot 
manipulators in the dual-arm robot system are more capable to 
reduce labor costs and improve operational efficiency in the near 
future. 

V.  CONCLUSION 

This study presented an improved framework for human 
expert skill transferring in teleoperated dual-arm manipulation 
system. Unlike current approaches that directly send 
demonstration data to training models, this work matched 
human motion to robotic arm kinematic motion. However, the 
presence of noise often leads to unwanted vibration, hindering 
robots to perform human-like movements. A model-free 
solution presented in this work provided 60% of the accuracy 
improvement in human motion imitation, utilizing the EMD 
method and quadratic interpolation to eliminate unwanted noise 
and regenerate motor controllable trajectories. It could 
effectively denoise and reconstruct human delicate motion 
remotely with prior knowledge to manipulator model, making 
the deployment of dual-arm manipulation system more feasible 
and tangible in any kind of workspaces. 
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